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Abstract: The rigidity of spacelike hypersurface M" immersed
in locally symmetric space M|"' is investigated, where the
(normalized) scalar curvature R and mean curvature H of M"
satisfy R = aH + b, and a, b are real constants. First, an
estimate of the upper bound of the function L(nH) is given,
where L is a second-order differential operator. Then, under
the assumption that the square norm of the second fundamental
form is bounded by a given positive constant, it is proved that
M" must be either totally umbilical or contain two distinct
principle curvatures, one of which is simple. Moreover, a
similar result is obtained for complete noncompact spacelike
hypersurfaces in locally symmetric Einstein spacetime. Hence,
some known rigidity results for hypersurface with constant
scalar curvature are extended for the linear Weingarten case.
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symmetric Lorentz space
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et M!*' be an (n + 1) -dimensional pseudo-Riemanni-
Lan manifold of index 1, i.e. Lorentz space. When
the Lorentz space M,"' has constant curvature ¢, we call
it a Lorentz space form, denoted by M'll+1 (c¢), with de
Sitter space S;"'(1) and anti-de Sitter space H,"'( —1).
Suppose that M" is a spacelike hypersurface immersed
in M}"', where M" is said to be spacelike if the metric on
M" induced from that on M|*' is positive definite. The
spacelike hypersurface with constant scalar curvature or
constant mean curvature has been extensively studied in de
Sitter space ;"' (1)"", anti-de Sitter space H,*'( - 1)"
and the general Lorentz space'”. It is worth noting that
all the above results were obtained for the case where the
ambient manifolds possess very good symmetric proper-
n+1

ties. Furthermore, when M|
does not have symmetry in general, many results can be
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found. For example, Liu et al. " obtained some rigidity

theorems independently for complete noncompact M" with

n+1

a constant scalar curvature, where M|" satisfies the fol-
lowing two conditions: Condition 1) For any spacelike
vector u and any time-like vector v, K(u, v) = - ¢,/n;
Condition 2) For any space-like vectors u and v, K(u, v) =
¢,, where c,, c, are real constants; and K is the sectional
curvature of M|

On the other hand, as a natural generalization of hyper-
surface with constant scalar curvature or with constant
mean curvature, the linear Weingarten hypersurface has
been extensively studied during the past decades'®™”. A
hypersurface is said to be linear Weingarten if its ( nor-
malized) scalar curvature R and its mean curvature H sat-
isfy R =aH + b, where a and b are real constants. Moti-
vated by this observation, Yang'” extended the theorems
in Refs. [4 —5] to the linear Weingarten case.

Recently, Wang and Liu''" investigated the rigidity
problems for compact M" with constant scalar curvature in
Mf“ which satisfies Condition 1) and Condition 3): For
any spacelike vectors g and v, k(,u,, v) <c,.

Inspired by the above observations, we continue to
study the rigidity for linear Weingarten spacelike hyper-
surface M" in M;"", where M;"" is locally symmetric and
satisfies Condition 1) and Condition 3).

1 Preliminaries

Let M!"" be a locally symmetric space and M" be an

n+1

n-dimensional spacelike hypersurface immersed in M;" .
For any p € M", we choose a local orthonormal frame

€, €,,...,e, , in M" around p such that e, e,, ..., e, are

n+l
tangent to M". Let w,, w,, ..., ,,, be the corresponding
dual co-frame. We shall use the following standard con-

vention for indices:
1<A,BC, ...<n+1, 1<i,jk ...<n

The structure equations of M’ "' are given by

dw, =- Za)AB Nwy oy +o, =0
B
d = L K
Wpp =~ Z‘UAC A Wcp _?ZEC‘C"DKABCD(‘)C N w,
T o

where K., are the components of the curvature tensor of
n+1
M.

Restricting these forms to M", we have w,,, =0. Since

n+1
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0=dw,,, = - 2 ,.; I\ w, by using Cartan’s lemma,
we have
W, 41 2 hljwj h!/ = h/'
J
LetA Zhw, ] n+l’ 72}1:: n+]’ ‘H‘=

— Z h, be the second fundamental form, the mean cur-
n =

vature vector and the mean curvature of M", respectively.

The structure equations of M" are

-=—2wu/\w w, +w, =0

ij Ji

dw w,; =-— ;wik A w, + 2, ZRW‘”A N o,
=1

The Gauss equations are
RW = T(ijkl + (hikhjl - hilhjk)
n(n —1)R = Y K, -n’H +§ (D)
77

where R is the normalized scalar curvature and S = Z hi .
7
The Codazzi and Ricci equations are
-h, =K,

ijk ikj (n+1)ijk

+ K,
hy,

>

h, +

(n+1)i(n+1) k")l

= 2 Koh,

m

()it = Donanyim

K(u+1 )ij(n+1)
where the covariant derivative of h; is defined as

; hijkwk = dhij - Zk, hkjwki - Zk, hikwAj

Similarly, the components &, of the second derivative

V’h are given as
2 hijklwl = dhijk
1

= 2 oy = X hyo,
7 7

The Laplacian Ah; of h is defined as Ah,; =

2y,

1
Z P -
k

By direct calculation, we obtain

Ahii = Z [(hijkk _hikjk) +(hikjk _hikkj) +(hikkj _hkkij) +hkklj] =

k
2 h:, nalknsik T nHZ hikhkj -
3

(nH) ; +nHK
Sh, + Z(hm, e F PR + 20, R

n+lin+lj
mj* * mkik

mijk)

We then choose a local frame of orthonormal vector
fields {e,} such that at p e M",

h, =M,

Then it follows, at p, that

thjk + ZhiiAhif = Zkhffk +

Z)\ nHy, -8 +nHZA +nHz MK, s =

SZKII-HM-Hi + z ()‘i _’\,f) Kiifi (2)
i L]

1 1
?AS =*Z Ah;. =

Set ¢, = h,; — HB,
traceless and

i and it is easy to confirm that ¢ is

lol? = 2 (¢ =S —nH’

ij
P =5 -
nH® =0 with equality holds if and only if M" is totally
umbilical.

where ¢ = (¢;;) is a real matrix. Moreover,

[12]

Following Cheng and Yau “', we introduce the opera-

tor W associated with ¢ acting on any smooth function f
by
w(H) = Z (nHé,; — h))f; (3)
¥

Then, setting f=nH in Eq. (3), we obtain
W(nH) = z (nH§;
w
S (nH):
Let B, B,, --.
that 23,. = 0. Then
i=1

~hy) (H), = SA (nH)* =
_Z)\i(nH)ii (4)

3
Lemma 1'" B, be real numbers such

32 n =2 N2

( ,32 ) S s—/—(2B)
Moreover, the equality holds if and only if at least (n —1)
of B, s are equal.

Lemma 2" Let M"(n >2) be a spacelike hypersur-

face immersed in locally symmetric Lorentz space M/ "'.
If 7, =0, then Y h;, < n’|VH|*.
ij. k

Lemma 3™ Let X be a smooth vector field on the

complete non-compact Riemannian manifold M", such
that div,, X does not change sign on M", where div repre-
sents the divergence operator. If |X| e #'(M), then
div, X =0.

Lemma 4 Let M"(n>2) be a spacelike hypersurface
immersed in locally symmetric Lorentz space M| "' which

satisfies Condition 1) and Condition 3). Then

%AS ;huk + Z/\ (nH), +nc(S —nH') +
(S —nHY A}

where ¢ =2¢, +¢,/n.

Proof First,
M;"" implies that K

we observe that the local symmetry of
=0, thus

Kipen:e
Since M|*' satisfies Condition 1) and Condition 3),
nHZ A i +S 2 Ky == €,(S —nH)

(6)
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_22(’\./')‘1\' _Ai)ﬁkjik = ¢ 2 (/\_,» —)\k)z =
I

ik

2nc, (S - nH*) (7

Then the lemma can be proven easily by substituting Egs.
(5) to (7) into Eq. (2).
Lemma 5™ Let M" be a linear Weingarten spacelike

hypersurface immersed in locally symmetric Lorentz space

n+1 . 1 E7
M] with b < m;K Then L = W +

gy

((n-1)aA/2) is elliptic.
Lemma 6 Let M"(n>2) be a spacelike hypersurface
immersed in locally symmetric Lorentz space M| "' which
satisfies Condition 1) and Condition 3) with &, =0 and

R =aH +b. Then
L(nH) < \¢\2(nc —n |2+ Z2)
n(n —1)

where ¢ =2c, +c¢,/n.

Proof First, we obtain from Eq. (1) that
nH =Y K, —n(n-1)R +S§ =
by

D Ky +S —n(n-1)(aH +b) (9

. 10
gi1sa constant''”".

Since M| "' is locally symmetric, » K
0
Substituting Eq. (9) into (4), we have

1 2
L(nH) = —-AS =n VH|* - Z/\,.(nH),.,. (10)
Applying Lemmas 2 and 4 to Eq. (10), we obtain

L(nH) < nc(S —nH) + (8" —=nHY A}) (11)
Let w, =A, — H, we can obtain
Do =0 el = Y

S A= Y u +3H|p|? +nH

Using Lemma 1, we obtain that

-nHY A} =-n’'H' -3nH" |p|* —nH Y, u, <

n(n —2) 3
i —— (12

Substituting (12) into (11), we have

-n’H —3nH2\¢\2 +

L(nH)<nc ||’ +(|@|" +nH)2 -n’H' -

-2) 3
3nH2|¢|2+n(n7\HH¢\ =
vn(n-1)
_2)
ol (ne=ntt + o + =2 1| | )
vn(n—-1)

2 Main Results

Theorem 1 Let M,"' be a locally symmetric

Lorentz space which satisfies Condition 1) and Condition
3). Suppose that M"(n >2) is a compact linear Weingar-

ten spacelike hypersurface immersed in M} "' with h,, =0.

c
IfS<-2yn-1¢c, c=2c, +—-<0, then either S = nH’
n

orS= -2 /n—-1c. When S =nH’, M"is totally umbili-

cal. When S= -2 /n-1¢, M" has two distinct princi-
ple curvatures, one of which is simple.
Proof First, we consider the quadratic form

0(x,y) = - +——“xy+’

Ji—T

By using the orthogonal transformation

u= ! {(1+Vn-1)y-(1-+Vn-1)x}
V2n

/1271{(«/11—1 -Dy-(1+vn-1)x}

We obtain that

V=

n 2 2
Ox,y) =——(u -v)
2 vn-1
Setx= /nH,y= \go\ It is not difficult to verify that
WV =x+y = \go\z +nH =S. Then
n(n-2)

————|Hllegl=
vn(n-1)

nc - nH + \¢\2+

(13)
Substituting(13) into (8), we obtain

n
L <|e|*(nc+ ——=S 14
R L (14)
On the other hand, since L is self-adjoint and M" is com-
pact,

j L(nH) =0 (15)
»

Then, from (14), (15) and S< -2 /n —1¢, we obtain
that

) n
o] (nc+2 n—lS)=0

IfS< -2 /n-1c¢, then \gp |’=0 and M" is totally um-
bilical. If S= -2 /n—-1¢, then all the above inequali-
ties become equalities. Especially,
Lemma 1 holds, we then obtain that M" has two distinct
principle curvatures, one of which is simple.

Furthermore, when M" is complete noncompact, we
have the following extension of Theorem 1.

Theorem 2 Let M|"' be a locally symmetric Lorentz
space which satisfies Condition 1) and Condition 3).

when equality in
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Suppose that M"(n >2) is a complete noncompact linear
Weingarten spacelike hypersurface immersed in M| "' with

h;, =0. If H can attain the maximum on M" and § <
c

-2vn-1c, ¢ =2c, + L <0, then either S = nH* or
n

S=-2+n-1c. When S =nH>, M"is totally umbilical.

When S = -2 /n-1¢, M" has two distinct principle
curvatures, one of which is simple.

Proof According to the proof in Theorem 1, we ob-
tain

n
L(nH) < 2l ne + ——S

(n) <[ P me+ P
Due to the fact that S< -2 /n —1¢, we can immediately
conclude that

n

2 IV 1
Noting that L is elliptic and H attains its maximum on
M", by using the maximum principle, we can obtain that
H is a constant. Consequently,

> hy =n'|VH[* =0

ij, k

L(nH) < o2 Vn-1c+8) <0 (16)

Hence, A, is constant for each i =1, 2, ..., n. Further-
more, L(nH) =0 and we obtain from (16) that

o]’ (2 Vn=1c+5) =0 (17)

By using the same argument as in Theorem 1, the proof
can be completed easily.

Remark 1 Since S is bounded, H is bounded as
well. Then H can attain its maximum on M" since h,, =
0. Hence, the assumption that H can attain the maximum
on M" in Theorem 2 can be removed. So,
difference between Theorem 2 and Theorem 1.6 in Ref.
[10] lies in the assumption that sup H is attained at some
points or not.

If the metric and Ricci tensors of a Lorentz space are
homotetic'”', we call it Einstein spacetime. For the
spacelike hypersurface in Einstein spacetime, we have the
following result.

Theorem 3 Let M!"' be a locally symmetric Einstein
spacetime which satisfies Condition 1) and Condition 3).
Suppose that M"(n >2) is a complete non-compact linear

the main

Weingarten spacelike hypersurface immersed in M| "' with
|VH| e £'(M), where #'(M) represents the space of
Lebesgue integrable functions on M". If S< -2 V/n-1¢,

C
c=2c, +7‘<0, then either S=nH or S= -2 /n-1c.

When § = nH’, M’ is totally umbilical. When § =
-2 /n-1¢, M" has two distinct principle curvatures,
one of which is simple.

Proof According to Ref. [15], we have

L(nH) =div,(P(VH))

where P = (nzH +”(”27_1)a)1 — nA and I denotes the

identity operator. Furthermore, since S< -2 vn-1c¢
and nH* <S, both H and A are bounded on M". Hence,
the operator P is bounded. Then, from |\VH| e ¥
'(M), we obtain that

| P(VH) | e Z'(M) (18)

Thus, from (16), (18) and Lemma 3, we obtain that
L(nH) =0. By using the same argument as in Theorem
2, the proof is completed easily.

Remark 2 The Lorentz space form M| "' satisfies both
Condition 2) and Condition 3), where —c,/n=c, =c.
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WE. R T B3k abdk Lorentz 218 M R u@m M ¢RI EA, P M 693 F W E R Y mE
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KEEIR . £ AR W E; &1 Weingarten; &3 314k Lorentz % 4]
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