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Abstract: A weighted selection combining ( WSC) scheme is
proposed to improve prediction accuracy for cooperative
spectrum prediction in cognitive radio networks by exploiting
spatial diversity. First,
network (GANN) is designed to perform spectrum prediction

a genetic algorithm-based neural

in consideration of both the characteristics of the primary users
(PU) and the effect of fading. Then, a fusion selection
method based on the iterative self-organizing data analysis
(ISODATA) algorithm is designed to select the best local
predictors for combination. Additionally, a reliability-based
weighted combination rule is proposed to make an accurate
decision based on local prediction results considering the
diversity of the predictors. Finally, a Gaussian approximation
approach is employed to study the performance of the proposed
WSC scheme, and the expressions of the global prediction
precision and throughput enhancement are derived. Simulation
results reveal that the proposed WSC scheme outperforms the
other cooperative spectrum prediction schemes in terms of
prediction accuracy, and can achieve significant throughput
gain for cognitive radio networks.
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ognitive radio (CR) has been viewed as a promising
Ctechnology to alleviate the spectrum scarcity prob-
lem. Secondary users (SUs) are allowed to opportunisti-
cally access the licensed channels allocated for the prima-
ry users (PUs) to improve spectrum utilization efficien-
cy. Spectrum sensing is an essential functionality of the
SUs to timely detect spectrum holes for data transmission.
In the interweave mode, the licensed channels can only
be accessed by the SUs when they are sensed to be in an
idle state, otherwise, the SUs should wait until spectrum
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holes are detected. However, the incapability of spectrum
sensing to eliminate false alarms due to interference will
reduce spectrum sensing efficiency and waste available
To tackle this shortcoming, spec-
trum prediction has been proposed as an effective
approach to help weaken the impact of improper spectrum
detection by providing the dependable knowledge of
available licensed channels.

Spectrum prediction in CR mainly targets channel
availability, i.e. predicting whether the licensed channel

1
spectrum resources' .

is idle or busy. Various types of machine learning tech-
niques have been adopted in spectrum prediction, and
neural network (NN)' has in particular received much
attention due to its good nonlinear quality, high fitting
accuracy, fully distributed storage structure and the hier-
archical quality of the model structure. A wavelet neural
network (WNN) "' has been studied to show that the na-
ture of discrete transform can help build a more accurate
prediction model with less complexity. Channel estima-
tion in predictive modeling scenarios and multi-secondary-
user scenarios has been investigated by using two types of
artificial neural networks ( ANNs)™ . Apart from the
“hard decision” models, a “soft decision” model™ for
spectrum prediction based on back-propagation ( BP) neu-
ral networks has also been studied. Since the parameters
of NN, i.e.,
dient search algorithms and are sensitive to initial values,
the genetic algorithm (GA) ' has been employed to solve
the problem that the NN-based spectrum prediction mod-
els are always trapped in local optimal solutions.

Based on various types of local spectrum prediction

weights and biases, are determined by gra-

techniques, the design of cooperative spectrum prediction
schemes with high prediction accuracy has attracted more
and more attention recently'”.
scheme has been proposed based on the coalitional game
theory'™' .
ative spectrum prediction but lacks the detailed analysis of

A spectrum prediction
It shows an outstanding performance of cooper-

the relationship between SUs’ characteristics and coopera-
tive spectrum prediction performance. Cooperative spec-
trum prediction has been analyzed in both pre-fusion and
post-fusion scenarios'™. The M-out-of-N rule has been
extended for cooperative spectrum prediction in this paper
and the results show that cooperative spectrum prediction
can lead to a significant improvement in prediction accu-
racy.
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However, to the best of our knowledge, the existing
works have not considered the heterogeneity of predictors
for combination. To this end, we propose an efficient
weighted selection combining (WSC) scheme for cooper-
ative spectrum prediction, by selecting a subset of predic-
tors for optimal combination according to the priority of
each predictor, and present an analysis of the scheme in
terms of both prediction precision and throughput en-
hancement. The mean prediction precision of the WSC
scheme is simulated against traffic intensity and compared
with other combining schemes to show its outstanding ef-
fectiveness. It can also be proven that the WSC scheme
can provide evident throughput enhancement from both
the analysis and simulation results.

1 System Model

A time slotted system with one PU and N pairs of sec-
ondary transceivers is assumed in this paper. SUs are ran-
domly distributed around the PU, and opportunistically
access the licensed channel for data transmission. PU traf-
fic on the licensed channel is assumed to follow a Poisson
process, and the ON (busy) and OFF (idle) times of the
channel are drawn from geometric distributions. When
the ON and OFF times of the channel are, respectively,
denoted by 7,y and ¢, the traffic intensity can be calcu-
lated by

tON
p=" (1)

tON + tOFF

Let H, represent the ON state and H, represent the OFF
state. The probability of the licensed channel being busy
and idle can be, respectively, estimated by

P(H)) =p (2)
P(Hy)) =1-p (3)

We assume that the received PU signal at SU j is com-
plex phase shift keying ( PSK) with zero mean and a
variance(¢))*, and the noise is independent circular sym-
metric complex Gaussian (CSCG) with zero mean and a
variance (o-i)z,j =1,2,...,N. Thus, the false alarm prob-
ability P’ and the detection probability P/, of spectrum sens-
ing can be, respectively, approximated by'"

J
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where £’ is the energy detection threshold for the j-th SU;
¥ =(d’/d’)? is the average signal noise ratio (SNR) of
the PU signal measured at the j-th SU; 7_is the available
sensing time and f, is the sampling frequency; Q(x) is the
tail probability of the standard normal distribution. For a

target detection probability PT,, the false alarm probability

is related to the target detection probability as

Pl=0( /2y +10°(P) +y Jfr)  (6)

In centralized cooperative spectrum sensing, all the
participating SUs send their spectrum sensing results to
the fusion center (FC) for combination, and the final re-
sults will be sent back as a guide for action. Thus, a
cloud computing unit'"" is disposed at the FC to provide
storage for the spectrum sensing results and computational
capacity. Since the prediction duration is comparable with

. . 12
the sensing duration"”

, we redesign the frame structure
as a three-phase frame structure as shown in Fig. 1. Dur-
ing the spectrum prediction and spectrum sensing phase,
spectrum prediction is performed at the FC based on the
historical sensing results.
sensing is performed by SUs. Afterwards, the FC collects
all the sensing results from participated SUs and makes fi-
nal decisions according to the cooperative prediction re-
sults and cooperative sensing results in the reporting
phase. Finally, if the licensed channel is decided to be
idle, data transmission is performed by a selected SU dur-
ing the data transmission phase; otherwise, no SU is al-
lowed to transmit on the licensed channel.

Meanwhile, local spectrum

T T

s T

T-t—t
s b

Sensing and

predtiction Data transmission

Reporting

T

Fig.1 Three-phase frame structure

2 Cooperative Spectrum Prediction

2.1 Design of the WSC scheme for cooperative spec-
trum prediction

In this section, we propose a WSC scheme for coopera-
tive spectrum prediction by selecting a subset of local pre-
dictors for optimal combination according to the reliability
of each predictor, and analyze the performance of the
proposed scheme. The scheme consists of three parts as
shown in Fig.2. N GANN-based predictors are designed
for local spectrum prediction in the first part. An ISODA-

[ Data fusion unit

il

[ Fusion selecting unit ]

Fig.2 The structure of WSC scheme
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TA-algorithm-based fusion selection unit is designed to
choose a subset of predictors for combination in the sec-
ond part. A data fusion unit is designed to make optimal
weighted combination in the third part.
2.1.1 GANN-based predictors

Each GANN-based predictor in the WSC scheme is de-
signed to make spectrum prediction based on the historical
spectrum sensing results of a particular SU. Take the j-th
(j=1,2, ..., N) predictor as an example, the time series
forecasting task consists of predicting the real-state value
x,,, of the PU at time ¢ based on the historical spectrum
sensing results (8'); ., = {5, .8 . n 8,8}
' is presented

t—t,+1

composed of 7, observations. When (SH
to the NN, it will come up with an output x’,, and it can
be viewed as an estimate of the desired output x The
will be used to adjust the
The train-
ing phase will only terminate when the difference between
the desired output and its estimate drops down below
some given threshold or the predefined training time is
However, for the nonconvex NN, the training
phase often stops at a local optimal solution, which re-
sults in low prediction accuracy. Thus, the GA is em-
ployed to solve the local optimal solution problem for its
excellent global search ability.

The GA is an evolutionary algorithm which applies the

t+1°

difference between x',, and x

t+1

parameters of the NN in the training phase™.

over.

search principles of natural evolution for parameters opti-
It is used to initialize the weights and biases
of the NN in this paper since the accuracy of prediction is
sensitive to the initial values. The main steps of the GA-

mization'"”’ .

based parameter initialization are given as follows:

1) Each set of weights and biases is encoded as a string
to denote a specific chromosome, and a population of
chromosomes is created.

2) The fitness value of each chromosome is calculated
by the mean absolute error (MAE) as

(7)

t+1 ‘

MAE = L 3,
tZt] 1=t

3) Genetic operations of selection, crossover and muta-
tion are performed among individuals to generate the next
generation of chromosomes.

4) The generated offspring replace their parents in the
initial population. They are decoded back into weights
and biases as the result of parameter initialization.

After training of the GANN, a testing phase is needed
to evaluate the performance. The performance evaluation
is done by judging the difference between the estimate
value x’, which is obtained by presenting the testing pat-
terns to the trained GANN and the corresponding real-
state information x. The testing patterns are obtained in
the same way as the training patterns but the data used in
the training phase should be eliminated in the testing
phase to ensure valid evaluation''"’. We define two prob-

abilities, i.e. miss-prediction probability P’l;_ »o and false-
alarm prediction probability P;y > to evaluate the reliabili-
ty of the j-th GANN-based predictor. The miss-prediction
probability represents the chance that the licensed channel
is predicted to be idle when its real-state is busy, while
the false-alarm prediction probability represents the
chance that the licensed channel is predicted to be busy
when its real-state is idle. They are two important per-
formance criteria for the spectrum prediction model,
which can be, respectively, expressed as

Pl =P(¥=-1]x=1) (8)
P . =P(x'=1|x=-1) (9)
where x = — 1 denotes that the real-state of the licensed

channel is idle, and x =1 denotes that the real-state of the
licensed channel is busy.

Therefore, the prediction precision of the j-th GANN-
based predictor can be calculated by

-P..) +P(H)(1

Pjprc:P(H())(l _P]r;.md) (10)

After training and testing, the GANN-based predictors
are established and then they can be used to perform spec-
trum prediction. By presenting the latest #,-length spec-
trum sensing results of the j-th SU to the predictor, the
spectrum prediction result is obtained for each frame.

2.1.2 ISODATA-algorithm-based fusion selection
unit

Since the SUs are randomly located around the PU,
they have various spectrum sensing performance,
therefore, the reliability of the predictors is not equal. In
this part, we propose an ISODATA-algorithm-based fu-
sion selection method to select a subset of appropriate pre-
dictors for further combination. The ISODATA algo-
" is an unsupervised machine learning classifica-
tion algorithm. It is an extension of the K-means classifi-
cation algorithm by selecting the number of clusters auto-
matically. Our main idea is to use the ISODATA algo-
rithm to find out which predictors are most frequently
clustered together with the PU, and choose these predic-
tors for further combination. For the k-th(k=1,2, ..., N)
predictor, its prediction results obtained at the testing
phase are stored at the FC as a binary series and is deno-

and

rithm

ted by X*, and the corresponding real-state information is
also denoted by X. The ISODATA-algorithm-based fu-
sion selection method can be described as follows:

1) A clustering pattern which contains N + 1 vectors
is obtained in each round, and the length of each vec-
tor is chosen as [,. The first N vectors in the clustering
pattern are the prediction results of N predictors and the
last vector in the clustering pattern is the corresponding
real-state information. To make this clear, we take the
[-th clustering round as an example. The clustering pat-
tern established for the I-th round can be denoted by C' =
{(Xll)jfml’ (Xz);ft(,n’ oo (XN)L/MP (X);fz‘,n }, where
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YN Ak A
(Xk)l—lm-l = {x,_,”],x,_,“ﬂ, e

coming from X*, and (X)L,"+1

X, X} is a I,-length vector
= {0 X -
is a /,-length vector coming from X.

2) The N +1 vectors in the clustering pattern are clus-
tered by using the ISODATA algorithm. The clustering
result ¢, () denotes whether or not the k-th predictor is
clustered together with the PU in the [-th clustering
round, and is recorded by

1
c.() = {0

where u, denotes the cluster the k-th vector is assigned to,
and u,,, denotes the cluster the PU is assigned to.

3) Suppose that the clustering process is performed for
N, rounds,

XX}

Uy =Uy,,y

(11)

U Uy,

and N, is large enough. The clustering fre-
quency which denotes the frequency of each predictor be-
ing clustered together with the PU can be calculated by

2 e, (D)

f_1:1
L =

N (12)

4) Sort the clustering frequency of all the predictors in
a descending order, and select the first K predictors for
further combination.
2.1.3 Reliability-based weighted combination unit

To make full use of the diversity among different pre-
dictors, a reliability-based weighted combination scheme
is employed. In this scheme,
each selected predictor represents its contribution towards
the global prediction decisions.

tion rule in this paper is considered as

the weighting factor for

The weighted combina-
161

o (13)
= Zalfci +B <0

i=1

where x' is the prediction result of the i-th selected predic-
tor; «, is the weighting factor; and g is the correction fac-
tor, i=1,2,....K

To achieve the maximum cooperative spectrum predic-
tion precision, the weighting factor «; and the correction
factor B are estimated according to the likelihood ratio test
(LRT) as'"”!

P(x, %, ., 3 | H)  P(X|H)T PCHY) (14)
P(x, %, 2 Hy) P(X\H)HP<H>
The corresponding log-LRT can be expressed as
o P Bl (1s)
% p(H, \X)y

Suppose that A, contains all the selected predictors
whose prediction results are idle, and A, contains all the
selected predictors whose prediction results are busy.
Since

log PULID - PCH) PR H)
gP(H\X) & P(H,) gP(f(\H) -
P(H,) =P
lo +(+1 log ——2™ +

L pcay t )gz oe’ P
-1 log ——=>% 16
( )Z; g P (16)

The optimum weighting factor ; and the optimum correc-
tion factor B can be expressed as

- 1-P

p, md

20

a; = log - ifx' =+1
~ P
o = ’ (17)
- 1-P e
a; = log——2* ifx' =-1
P}Lm(l
B =log P (18)
P(H,)

When a large number of predictors are selected for fur-
ther combination, a Gaussian approximation of the test
statistic R, in (13) can be made according to the central
limit theorem. The expectations and variances of the
Gaussian distribution under different hypotheses can be,
respectively, expressed as

ER,|H) =Y [a/P, —a7(1 =P, | +B
(19)
ER,|H) = Y [a'(1 =P —ai P | +B
(20)
Var(R, | H,) = ZVar(&,&f |H,)) =
> [@ e P =P | (21)
Var(R, | H)) = ZVar(&ifc" |H,) =
> [ +a) P -PL ] 22

i=1

Therefore, the false-alarm prediction probability and

the miss-prediction probability of the cooperative spec-
trum prediction process can be calculated by

of

W :1—Q(

v

p, fa

E(R,|H,) ) 23)

V/Var(R, | H,y)
E(R,|H,))
/Var(R,[H)) )

The prediction precision of the proposed WSC scheme
can be expressed as

(24)

p, md

P,.=P(H)(1-¥,,)+P(H)( - (25)

p fa P md)

2.2 Enhanced throughput by using the WSC scheme

The M-out-of-N rule is employed at the FC to fuse the
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spectrum sensing results from all the SUs for cooperative
spectrum sensing. In this paper, M = ’Vg—‘ is used. The

false-alarm probability and miss-detection probability of
cooperative spectrum sensing can be expressed as'"!

(1-u)/2

Z Z H (Pr (1+u/2(1 —P/) (26)
—‘Zu wi=
PM =] — Z z H (PQ)(IW)/Z(I —PQ)“_"W (27)
»u:[‘%“Zu =w Jj=1

Thus, the probability distributions of cooperative spec-
trum prediction, cooperative spectrum sensing, and the
true channel state are illustrated in Tab. 1.

Tab.1 Probability distributions considering true channel state,
prediction, and sensing

T h 1
rue channe Prediction Sensing Probability

state

Idle Idle Idle Py =(1-Pp)P(Hy) (1 =¥, )
Idle Idle Busy P, =PpP(Hy) (1 -V, 1)
Idle Busy Idle Py =(1-Pp)P(Hy) ¥V, 1,
Idle Busy Busy Py =PpP(H,) Wp, fa

Busy Idle Idle Ps =PyP(H) Y, na

Busy Idle Busy Pg=(1 —PM)P(Hl)‘I’p md
Busy Busy Idle P; =PyP(H) (1 =¥, 4)
Busy Busy Busy Pg=(1-Py)P(H)(1 -, )

The cooperative spectrum sensing results can be revised
by combining the cooperative spectrum prediction results
to mitigate the effect of false-alarm detection, and an OR-
rule is adopted. The average throughput of the proposed
scheme is calculated by

R,=(P, +P, +P)C,+ (P, +P,+P,)C, (28)

where C, and C, are the average throughput of the SUs
when they transmit on an idle channel and a busy chan-
nel, respectively. For the sake of easy comparison, the
normalized average throughput is denoted by

. R,

vanorm = R (29)
where R is the SUs’ maximum average throughput and
is given by

=P(H,)C, +P(H,)C, (30)

max

To make a comparison, the normalized average
throughput of the SUs when adopting the same coopera-
tive spectrum sensing scheme without cooperative spec-
trum prediction is calculated by

(P, +P,)C, + (P, +P,))C

Rs‘norm = R ’ ] (31)

max

Therefore, the throughput enhancement of the proposed
scheme can be expressed as

Re Rp norm R (32)

s, norm

3 Simulation Results

The performance of the proposed WSC scheme is illus-
trated by simulation results in this section. Three different
simulations are performed based on MATLAB:
tigating the prediction precision of an individual predic-
tor; 2) The prediction precision of cooperative spectrum
prediction; 3) The throughput enhancement of the WSC
scheme.

1) Inves-

Some fundamental parameters are chosen as follows.
The number of the participated SUs is N = 100. Frame
duration T is 100 ms, spectrum sensing duration 7, and
reporting duration 7, are both 2. 5 ms,
quency f, is 100 kHz. The transmitting SU is randomly
selected here and its average throughput on the idle chan-
nel and the busy channel are C, = 1 Kbit/s and C, =
0. 05 Kbit/s, respectively.

In the first simulation, we evaluate the performance of

and sampling fre-

the GANN-based predictor. In the parameter initialization
the population contains 50 individuals. The iter-
ative process of selection, crossover and mutation is per-
formed 1,100 times, where the crossover factor and the
mutation factor are, respectively, set to be 0.4 and 0.2
to adjust the diversity and convergence of the population.

A three-layer-NN-model with 6 neurons in the hidden lay-

process,

er is exploited in each predictor. The length of training/
testing patterns is set to be 7, =4 and the input layer of the
GANN model is of the same size. Assuming that the
spectrum sensing SNR of the SUs varies from -25 to 5
dB, Fig.3 shows the impact of fading on the mean pre-
diction precision with different traffic intensities of the
PU. The mean prediction precision is obtained by assum-
ing that SU’s target probability of detection is uniformly
distributed between 0.7 and 0.95. Fig. 3 shows that, for
a given traffic intensity p, the mean prediction precision
increases with the enhancement of SNR, that is, a predic-
tor can make more precise prediction based on the sensing
results from SUs with a higher SNR. It is also shown that
the mean prediction precision converges to |p-0.5] +
0.5 as SNR decreases. This is because the predictor pre-
dicts the licensed channel to be always idle (p <0.5) or
busy (p=0.5) when the input patterns become quite ir-
regular and unpredictable. In this case, the predictor can
be viewed as incapable of spectrum prediction and may be
abandoned for further combination.

In the second simulation, the parameters for the ISO-
DATA-algorithm-based fusion selection scheme are set as
The length of clustering vectors is set to be [, =
10. The maximum number of clusters is 8,
number of clusters that can be merged at one time is 1,
the threshold of
1, the thresh-
the threshold of
standard deviation for cluster splitting is 1,

follows.
the maximum

the maximum number of iterations is 10,
number of vectors for cluster elimination is
old of distance for cluster merging is 4,
and the mini-
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Fig.3 Mean prediction precision of the predictor vs. SNR

mum distance between a vector and each cluster center is
100. The number of selected predictors in the ISODATA-
algorithm-based fusion selection process is set to be K =
{%:50 and the target detection probability is also as-
sumed to be uniformly distributed between 0.7 and 0. 95.
Fig. 4 displays the mean prediction precision of the pro-
posed WSC scheme, a single predictor, and other data
fusion rules such as the AND rule, the OR rule and the
Majority rule’” for comparison. As depicted in Fig. 4,
the mean prediction precision of the WSC scheme exceeds
the other schemes for any traffic intensity, which indi-
cates the superior performance of the WSC scheme at the
cost of higher computational complexity. It is also shown
in Fig. 4 that the WSC scheme has comparable effective-
ness as the real-state-information-based (RS) ANN spec-
trum prediction model'®’ .

—o—Single
——ORM
—a— AND!
—=— Majority!”

g 54 et
(=)} ~ o
T T

Mean prediction precision

f=
W
T

04 1 1 1 1 1 1 1 |
01 02 03 04 05 06 07 08 09

Traffic intensity

Fig.4 Mean prediction precision of different schemes vs. traf-
fic intensity

In the last simulation, the normalized average through-
put R of the WSC scheme and the normalized average

throughput R
&l

p. norm

of the cooperative spectrum sensing

s, norm

scheme' ' versus the traffic intensity p are plotted in Fig.
5. It is observed that R

p, norm

outperforms R regardless
of the traffic intensity. This is because the WSC scheme

can help weaken the impact of false-alarm detection in the

s, norm

process of spectrum sensing and provide more opportuni-
ties for the SUs to perform data transmission. It also
needs to be mentioned that the gap between the two nor-
malized average throughputs, i. e. the throughput en-
hancement R decreases as the traffic intensity increa-
ses. This is because few extra available frequency re-
sources can be obtained when the PU is extremely busy

enh?

on the licensed channel.

—eo— Cooperative spectrum sensing!'!
—=— WSC

Normalized average throughput
3

0.1 02 03 04 05 06 07 08 09
Traffic intensity

0.50 ! !

Fig.5 Normalized average throughput vs. traffic intensity

4 Conclusions

1) A genetic algorithm-based neural network ( GANN)
is designed to perform spectrum prediction in considera-
tion of both the characteristics of the PU and the effect of
fading.

2) A fusion selection method based on the iterative self-
organizing data analysis (ISODATA) algorithm is designed
to select the best local predictors for combination.

3) Considering the diversity of the predictors, a reliabil-
ity-based weighted combination rule is proposed to make
an accurate decision based on local prediction results.

4) A Gaussian approximation approach is employed to
study the performance of the proposed WSC scheme, and
the expressions of the global prediction precision and
throughput enhancement are derived. Simulation results re-
veal that the proposed WSC scheme can provide higher
prediction precision and significant throughput enhance-
ment for any traffic intensity environment.
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