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Abstract: A novel composite technique of orthogonally
bonding carbon fiber-reinforced polymer ( CFRP) strips and
steel strips is proposed to improve the performance of
reinforced concrete (RC) structures based on co-working of
CERP strips and steel strips. To verify the effectiveness of the
method for strengthening RC two-way slabs, seven flat slabs
with the dimensions of 1 500 mm x 1500 mm x 70 mm and
an internal reinforcement ratio of 0. 22% were prepared and
tested until failure under concentrated loading, of which one
was unstrengthened, one was strengthened with CFRP strips
bonded to its soffit making a grid pattern (termed the CFRP
grid), and five were strengthened with a hybrid grid of CFRP
strips and steel strips in two orthogonal directions (termed the
CFRP-steel grid) to the bottom with steel bolt anchorage. The
investigation parameters are the strengthening method, the
strip spacing (150, 200, and 250 mm) and the layers of CFRP
strips (one layer, two layers, and three layers of CFRP strips
are applied for CFRP-steel grid). The experimental results
show that the strengthening RC two-way slabs with CFRP-steel
grid are effective in delaying concrete cracking and enhancing
the load-carrying capacity and deformability in comparison to
the CFRP grid strengthening. The yield-line analysis model is
proposed to predict the load-carrying capacity of the
strengthened slabs. The prediction results are in good
agreement with the experimental results.
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trengthening or retrofitting of both aging and modern
RC structures has become critically important for

1-7 .
I'71 " One reason is to restore the load-car-

several reasons
rying capacity of deteriorated concrete members due to
concrete deterioration, corrosion of steel reinforcement or
fire exposure. The second is to improve the load-carrying
capacity of deficient concrete infrastructures caused by de-

sign or construction errors. The third reason is to provide

Received 2018-01-30, Revised 2018-05-16.

Biography: Lu Yiyan (1965—), male, doctor, professor, yylu90l @
163. com.

Foundation item: The National Natural Science Foundation of China
(No.51108355).

Citation: Lu Yiyan, Zhu Tao, Li Shan, et al. Behavior of RC two-way
slabs strengthened with CFRP-steel grid under concentrated loading[J].
Journal of Southeast University ( English Edition), 2018, 34(3): 331 —
339. DOI: 10. 3969/j. issn. 1003 —7985.2018. 03. 008.

additional strength to concrete structures as a result of in-
creased load demand beyond the original design limit.
The most common strengthening method is based on
the use of external bonded technology. External bonded
steel plates have been regarded as an effective strengthe-
ning method to improve the structural service performance
and ultimate capacity of concrete structures for many
years. Experimental studies show that externally bonded
steel plates can significantly increase the load-carrying ca-
pacity and deformation capacity of RC structures’* " .
However, the main disadvantages of bonding steel plates
include the application difficulty due to heavy weight and
the durability problem due to potential corrosion, which
adversely affects the bond between steel and concrete sur-

face "'

. In recent years, external bonded FRP has be-
come an option to strengthen RC structures due to their
noncorrosive nature. External bonded FRP can provide
confinement and improve the load-carrying capacity of
RC members due to their superior tensile strength. More-
over, this method is easier to apply due to their formabili-
ty and light weight than steel plates. Many experimental
studies show that externally bonded FRP laminates can
maintain the structural integrity and enhance the structural

14-16
U419 - However,

behavior of a structural member
RC elements strengthened with FRP exhibit a drastic re-
duction in the deformation capacity due to premature FRP
debonding "
laminate typically ranges from 30% to 35% of its tensile

strength when the members fail 7"

many

. Moreover, the strain utilization of FRP

The low efficiency
of the strengthening method resulting from debonding
may limit its further application.

To take full advantage of both external bonded steel
plates and external bonded FRP and to eliminate their dis-
advantages to some extent, Lu"™' proposed a novel tech-
nique, combining these two “simple to apply” strengthe-
ning methods into one to achieve a more effective system
for strengthening RC structures. Based on the investiga-
tion results, the composite strengthening technique
showed very promising results. The RC beams strength-
ened with steel plates and CFRP sheets exhibit higher
load-carrying capacity and flexural stiffness, which con-
tributes to retarding the deflection development of
strengthened beams™. The RC columns strengthened
with steel plates and CFRP sheets exhibited better load-
carrying capacity, ductility and energy dissipation capaci-
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A review of the existing literature reveals that, to
date, very limited research has been conducted on the
strengthening of two-way slabs with steel plate and FRP.
This paper investigates the effect of flexural strengthening
for RC two-way slabs with CFRP-steel grid in comparison
to CFRP grid. The test program consists of seven speci-
mens with similar dimensions and reinforcement details,
one of which is unstrengthened and serves as control spec-
imen, while the remaining 6 are strengthened by two dif-
ferent techniques: CFRP grid or CFRP-steel grid bonded
on the bottom of slabs. In the second method, steel strips
are used instead of whole steel plate and steel bolts are in-
stalled at both ends of steel strips, aiming to reduce the
weight and avoid premature CFRP debonding. The
effect of the strengthening method, strip spacing, num-
ber of CFRP layers on the failure modes, load-carrying
capacity and strains are studied. The yield-line theory is
applied to predict the load-carrying capacity of strength-
ened slabs.

1 Experimental Program
1.1 Test specimen

All specimens are tested until failure under concentrated
loading in a standard laboratory. One is control specimen
(Cul), one is strengthened with CFRP grid (C1C1-200),
and five are strengthened with CFRP-steel grid. Those
composite strengthened specimens are named in the form
of SxCy-z. For example, S1C2-200 is the specimen
strengthened with 1 layer of steel strips in x direction and
2 layers of CFRP strips in y direction with 200 mm strip
spacing.

1.2 Preparation of specimen

All slabs are square with side dimensions of 1 500 mm
and a thickness of 70 mm. The internal reinforcement ra-
tio is 0.22% with 6.5 mm diameter rebars spacing at 200
mm in both directions leaving a concrete cover of 17
mm. The concrete slabs are cast using wooden molds and
cured for 28 d in the laboratory. Afterwards, the
strengthening technology is followed. Fig.1 shows a
schematic view of specimen S1C1-200.

1) The slab bottom is sandblasted by a hand grinder to
remove the irregularities and debris.

2) Five fully saturated CFRP strips with the dimensions
of 1 300 mm x 100 mm x0. 111 mm are carefully placed
on the designed region of the slab soffit upon which epox-
y is applied. A roller is then used to squeeze out exces-
sive epoxy to form a uniform bonding layer.

3) Five steel strips with the dimensions of 1 300 mm
x 100 mm x 1.7 mm are adhered in the orthogonal di-
rection with the same strip spacing.

4) Bolts are installed at both ends of each steel strip to
provide additional anchorage.

Other specimens are strengthened similarly with varia-
tions of material used in the x direction ( CFRP strips or
steel strips), strip spacing (150, 200, 250 mm) and the
layer of CFRP strips (1 layer, 2 layers, and 3 layers).
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Fig.1 The configurations of specimen S1C1-200

1.3 Material properties

The concrete slabs are cast and cured following stand-
ard GB 50010—2010"*'. The average strength of con-
crete cubes is 25 MPa, determined with three 150 mm x
150 mm x 150 mm concrete cubes after 28 d of curing.
The properties of steel strip and rebar are determined by
tensile tests in accordance with ISO 6892-1 "', The yield
strength, ultimate strength and modulus of the steel strips
are 249 MPa, 329 MPa, and 201 GPa. Those for rebar
are 364 MPa, 530 MPa, and 204 GPa, respectively. The
properties of CFRP coupons are determined by tensile
tests according to ASTM D 3039 "**'. The nominal thick-
ness, tensile strength, modulus, and elongation of the
CFRP are 0. 111 mm, 3.02 GPa, 235 GPa and 2.42%,
respectively.

1.4 Test setup and instrumentation

Before casting concrete, all specimens are fitted with
14 strain gauges bonded on the rebars, as shown in Fig. 2
(a). After strengthening, 15 strain gauges are bonded on
the similar location of CFRP strips and steel strips, as
shown in Fig.2(b). After the specimen is placed on the
roller supports with a span of 1 400 mm, five linear vari-
able differential transducers (LVDTs) are located at four
corners on the top of slab and the center of slab soffit to
measure displacement. The test is carried out with a uni-
versal hydraulic jack (capacity of 300 kN), the concen-
trated load is applied through a steel plate with the dimen-
sions of 200 mm x 200 mm x 20 mm at the center of
slab, as shown in Fig. 3. The load is applied with an in-
crement of 0.5 kN. Each loading level is maintained for
5 min to properly monitor the onset of crack. After con-
crete cracking, the interval becomes 10 min.
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The concrete crack occurs at the center of slab bottom at

the increase of load. Inspection of the slab soffit shows a
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Fig.2 Arrangement of strain gauges. (a) Strain gauges on rebars; (b) Strain gauges on CFRP and steel strips
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Fig.3 Test setup. (a) Schematic diagram; (b) Prototype

slab at 18 kN. After the yield of the rebar beneath the
loading area, the concrete cracks on the slab soffit devel-
2.1 Failure modes of specimens op quickly. Finally, the specimen fails with a sudden
rupture of CFRP at 95 kN, accompanied with audible
cracking of the epoxy resin, as shown in Fig.4(b).

2 Experimental Results

The failure mode of specimen Ctrl is flexural failure.

The typical failure mode of CFRP-steel grid specimens
is the flexural failure. As the load increases, firstly, the
concrete crack occurs at the center of slab soffit at about

10 kN; more cracks appear and develop diagonally with

crack pattern radiating outward from the center to cor-

ners, as shown in Fig.4(a). The failure occurs at 38 kN
with cracks over 1.5 mm width and a mid-span deflection
of 19.7 mm, showing good ductility.

concrete cracks form in the unstrengthened region of the

20 kN; secondly, the steel strips beneath the loading area
begin to yield; thirdly, the internal rebars yield and prop-
agate diagonally; finally, the concrete cracks widen and
followed by the partial debonding of steel strips as shown

Specimen C1C1-200 also exhibits flexural failure. The = . .
in Fig.4(c). It should be mentioned that the CFRP strips

T SR
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Fig.4 Failure modes of specimens. (a) Specimen Ctrl; (b) Specimen C1C1-200; (c) Specimen S1C1-200
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also debond in several specimens, but significant deflec-
tions and rebar yielding are observed during testing.
Thus, the failure mode of these specimens can be consid-
ered as flexural failure. On the slab soffit, the concrete
cracks are narrower and more intensive than those in spec-
imens Ctrl and C1C1-200 at failure,
even develop at the ends of CFRP strips. This is because

and small cracks

the stress distributes uniformly along the CFRP strips well
confined by orthogonal steel strips.

2.2 Load-carrying capacity enhancement

As shown in Tab.1, all strengthened specimens
achieve an increase in both cracking load and load-carry-
ing capacity over control specimen. The cracking load of
S1C1-200 (20 kN) and C1C1-200 (18 kN) are 100. 0%
and 80.0% higher than that of specimen Ctrl (10 kN),
respectively. The higher cracking load of S1C1-200 is be-
cause the thick steel strips provide more enhancement on
the elastic stiffness of slab. The ultimate load of S1ClI-
200 (116 kN) and C1C1-200 (95 kN) are 205.3% and
150.0% higher than that of specimen Ctrl (38 kN), re-
spectively. The higher load-carrying capacity of S1Cl-
200 is due to the fine confinement on CFRP provided by
the steel strips. Therefore, it can be concluded that these
two strengthening methods can delay the concrete crack-

ing and improve the load-carrying capacity of RC two-
way slabs significantly, and the CFRP-steel grid strength-
ening technology is more effective.

For CFRP-steel grid specimens, the cracking load and
ultimate load decrease with the increase of strip spacing,
and increase with the increase of the layers of CFRP
strips. The cracking load of SICI1-200 (20 kN) and
S1C1-250 (18 kN) are 9. 1% and 18.2% less than that
of SIC1-150 (22 kN), respectively. The ultimate load of
S1C1-200 (116 kN) and S1C1-250 (108 kN) are 9.4%
and 15.6% less than that of S1C1-150 (128 kN), respec-
tively. This is because considering the strips as equivalent
steel reinforcement, the reinforcement ratio increases with
the reduction of strip spacing. The additional reinforce-
ment can delay the concrete cracking and enhance the
load-carrying capacity of slabs. On the other hand, more
layers of CFRP strips lead to higher cracking load and ul-
timate load. The cracking load of specimen S1C2-200
(22 kN) and S1C3-200 (26 kN) are 10.0% and 30.0%
higher than that of specimen S1C1-200 (20 kN), respec-
tively. The ultimate load of specimen S1C2-200 (124
kN) and S1C3-200 (158 kN) are 6.9% and 36.2 higher
than that of specimen S1C1-200 (116 kN), respectively.
This is confirmed by the failure of specimen S1C3-200
observed first along the steel strip direction.

Tab.1 Test results of all specimens

Specimen P,/kKN P,/kN P,/kN P, /kN P ,/kN P /kN Failure mode Characteristics

Cirl 10 31 35 38 Flexural failure Oversize crack
C1C1-200 18 64 72 95 Flexural failure CFRP rupture
S1C1-150 22 81 100 115 107 128 Flexural failure CFRP rupture
S1C1-200 20 64 96 91 109 116 Flexural failure Steel strip debonding and CFRP rupture
S1C1-250 18 62 90 83 100 108 Flexural failure Steel strip debonding and CFRP rupture
S1C2-200 22 78 103 102 116 124 Flexural failure Steel strip debonding and CFRP debonding
S1C3-200 26 86 122 126 142 158 Flexural failure Steel strip debonding

Notes: P, is the cracking load; P, is the load of central steel strip starts yielding; P,, is the load of steel strip at diagonal section starts yielding; Pyl

is the load of central rebar starts yielding; P, is the load of rebar at diagonal section starts yielding; P, is the ultimate load.

2.3 The load versus deflection response

Fig. 5 shows the relationships between load and mid-
span deflection for all specimens. For specimen Ctrl, the
load increases almost linearly before concrete cracking,
and almost keeps constant after the yield of rebar, as
shown in Fig.5(a). On the other hand, specimen C1Cl1-
200 behaves in a relatively stiffer manner with smaller de-
flection than that of specimen Ctrl at the same load.
When the load exceeds 45 kN, the deflection increases al-
most linearly. This is because the diagonal cracks are
fully developed and the CFRP strip providing stiffness is a
linear elastic material. For specimen S1C1-200, the curve
comprises four nearly linear parts. The first change in
stiffness is caused by the onset of concrete cracking on
slab soffit, the second by the onset of steel strip yielding,
and the third results from the rebar yielding. The curve is
similar to that of C1C1-200 before concrete cracking. Af-

terwards, the stiffness is much higher than that of CI1CI1-
200 due to the higher stiffness provided by the thicker
steel strip than CFRP strip. However, the stiffness de-
creases gradually with the yielding of steel strips, even
becomes lower than that of C1C1-200 after 96 kN, at
which steel strips at diagonal section yield. The maxi-
mum deflection of S1C1-200 is 25.3 mm, 2. 2% and
28.4% larger than that of specimens C1C1-200 (24.7
mm) and Ctrl (19.7 mm).

Fig. 5(b) shows the curves for specimens strengthened
with different strip spacings. The flexural stiffness de-
clines with the increase of strip spacing. Regarding the
strips as additional rebars, this is because the equivalent
reinforcement of strengthening strips decreases with the
increase of strip spacing.

Fig. 5(c) compares the curves for specimens strength-
ened with different CFRP strip layers. With more layers of
CFRP strips, the flexural stiffness of the specimen increases
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Fig.5 Load versus mid-span deflection relationship for specimens. (a) Different strengthening methods; (b) Different strip spacings; (c) Different

CFRP strip layers

while the deformation capacity degrades significantly. The
maximum deflections of specimen S1C2-200 (20.5 mm) and
S1C3-200 (15.2 mm) are 19.0% and 39.9% lower than that
of specimen S1C1-200 (25.3 mm). Therefore, there should
be an upper limit of CFRP strips layers in strengthening
practice to make full use of materials.

2.4 The load-strain relationship

Fig. 6 shows the load-strain relationship for specimens
Ctrl, C1C1-200 and SI1C1-200. For specimen Ctrl, the
rebar strain increases slowly before concrete cracking,
grows nonlinearly with the developing of cracks, and in-
creases sharply after the yield of central rebar. The curve
of specimen C1C1-200 behaves similarly. After the
cracks are fully developed, the CFRP strain increases al-
most linearly. The rebar strain is much lower than that of
specimen Ctrl at the same load, and the yield load of cen-

40

tral rebar is almost twice that of specimen Ctrl. It means
that the CFRP grid shares the load for rebars effectively.
For specimen S1C1-200, there is an obvious turning point
when rebar yields, after which the CFRP strain increases
much faster. This is because the load is mainly carried by
CFRP strips afterwards. Compared with C1C1-200, the
rebar strain and CFRP strain are relatively lower at the
same load, and the yield load of the central rebar is
42.2% higher. It means that the CFRP-steel grid shares
the load for rebars more effectively.

Fig. 7 shows the load-strain relationship for specimens
strengthened with different strip spacings. The yield loads
of central steel strip and central rebar show an obvious
descending trend with larger strip spacing. At the same
load, the strains of steel strip, rebar and CFRP strip are
the lowest in S1C1-150, then in S1C1-200, and the high-
est in S1C1-250. Finally, the ultimate CFRP strain of
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Fig.7 Load versus strain relationship for specimens
SI1C1-250

strengthened with different strip spacings. (a) S1C1-150; (b) S1C1-200; (c)
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S1C1-200 (1. 054 7 x 107*) and S1C1-250 (9. 680 x
107%) are relatively higher than that of S1C1-150
(9.355 x10 7). It indicates that a higher utilization ra-
tio of CFRP can be obtained with larger strip spacing.
Fig. 8 shows the load-strain relationship for specimens
strengthened with different CFRP strip layers. The yield
loads of central steel strip for S1C2-200 (78 kN) and
S1C3-200 (86 kN) are 21.9% and 34.4% higher than
that of S1C1-200 (64 kN). The yield loads of central
rebar for S1C2-200 (102 kN) and S1C3-200 (126 kN)
are 12. 1% and 38. 5% higher than that of S1C1-200
(91 kN). For the strains of steel strip, rebar and CFRP
strip under the same load, S1C1-200 gains the highest
value, followed by S1C2-200, and S1C3-200 in succes-
sion. The maximum central CFRP strains for S1C2-200
(6.697 x 107*) and S1C3-200 (6. 483 x 107*) are
36.5% and 38. 5% lower than that of S1C1-200
(1.054 7 x107%). It can be concluded that more CFRP
strip layers delay the yield of steel strip and rebar, en-
hances the load-carrying capacity significantly, but the
additional CFRP strips may not be fully utilized.
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Fig.8 Load versus strain relationship for specimens strength-
ened with different CFRP strip layers(a) S1C1-200; (b) S1C2-
200; (c) S1C3-200

3 Prediction of Load-Carrying Capacity

Fig. 9 shows a typical yield-line failure pattern for a
simply supported square slab, which agrees very well
with the cracks developed as shown in Fig. 4. There-
fore, the yield-line analysis method is applied for the
load-carrying capacity calculation.
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Fig.9 Typical yield-line pattern

Supposing that the virtual displacement (§) along the
concentrated load is 1, the internal virtual work is equal
to the product of flexural moment m, and rotation 6,
along each yield line /,, i.e.

W, = z ml.0, =4m.l, 0, +4m.vl.v102 + @))
2m,,0, +2ml .6,
l.—a l,—a
X = 7 = <2
2 2 (2)
=1 %1 _a

where [, and [, are the net span between roller supports,
taken as 1 400 mm; a is the width of loading plate,
taken as 200 mm.

On the other hand, the external virtual work can be
written as

W.=P . 1=P, (3)

where P_ is the concentrated load.

According to the principle of virtual work, the internal
virtual work is equal to the external virtual work. Thus,
the load-carrying capacity P, can be written as

14

P o=
)

(m, +m)) 4)

Since all specimens exhibit flexural failure, the equa-
tions for the load-carrying capacity of flexural strength-
ened specimens in standard GB 50367—2013 ' are also
suitable for specimens in this study.
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In the x direction, the load-carrying capacity per unit DE_G.,
length m_can be written as oy = T
2
af.bx=f,A +f.A, G, =0.3088. Jf. (7)

} (5)

where «, is an equivalent efficient, taken as 1.0; f, is
the concrete compressive strength; b is the section

m, = alfcbx(h —%) —f,A,(h - hy)

width, taken as 1 000 mm; x is the concrete compres-
sion height; f, and f, are the yield strength of rebar and
steel strip, respectively; A, and A are the area of rebar
and steel strip, respectively; # is the height of member;
h, is the effective height of member.

In the y direction, the load-carrying capacity per unit
length m can be written as

a,f.bx :fyAs + o Ay

m, :fyAs(hO _%) + UcfAcf(

I

where o is the CFRP stress; A is the area of CFRP
strip.
In the case that CFRP strip partially debonds in some

. . 36
specimens, the value of o, is calculated as'™

cf

225 ~b,/b,
Be= T 25+b,0,

where E and ¢ are the elastic modulus and thickness
of the CFRP strip, respectively; G, is the interfacial
fracture energy; f, is the concrete tensile strength; B, is
the width coefficient; b, is the width of CFRP strip,
taken as 100 mm; and b, is the calculation width of
concrete strip.

Tab. 2 compares the predicted strength P, with the
experimental results P . The ratio P./P, for CFRP-steel
grid strengthened specimens is 0. 93 with a coefficient
of variation (COV) of 0. 10. In addition, the load-car-
rying capacity of ten two-way slabs strengthened with
“* are collected to verify
the accuracy of these equations in predicting the load-

FRP from other references'’

carrying capacity. The prediction and experimental
strengths agree well with a mean value of 0. 98 and
COV of 0.09.

Tab.2 Comparison of load-carrying capacity between prediction and experimental results

Specimen m/ (kN-m- m-") my/ (kN - m - m~!) P,/kN P./kN P./P, Mean COV
Ctrl 2.93 2.93 38 27.36 0.72 0.72

C1C1-200 7.98 7.98 95 74.48 0.78 0.78

SI1C1-150 19.88 9.02 128 134.87 1.05

S1C1-200 16.08 7.98 116 112.28 0.96

S1C1-250 13.67 7.23 108 97.53 0.89 0.93 0.10

S1C2-200 16.08 9.64 124 120. 03 0.96

S1C3-200 16.08 11.07 158 126.70 0.80

JBI11137! 46.30 46.30 442.3 432.13 0.98

JB12137! 47.60 47.60 450.0 444,27 0.99

JB21137! 56.99 56.99 608.3 531.91 0.87

JB221371 58.25 58.25 625.0 543.67 0.87

JB31137! 69.15 69.15 670.8 645.40 0.96

JB321371 70.35 70.35 639.7 656. 60 1.03 0-98 0-09

SB1!%8 5.47 5.14 64 70.49 1.10

SB2!38 5.16 4.88 70 66. 66 0.95

SB3!38 4.87 4.62 72 62.98 0.87

SBg ! 5.47 5.14 62 70. 49 1.14

4 Conclusions

1) All specimens exhibit a flexural failure mode with
visible deflections. Compared with specimen Ctrl, the
cracking load and the load-carrying capacity increase at
least 80. 0% and 150. 0% for strengthened specimens.
These promising advantages mean that these two strength-
ening methods are very effective in strengthening the RC
two-way slabs.

2) The CFRP-steel grid strengthening method takes full
advantage of CFRP strips and steel strips. It is more ef-
fective because the cracking load and load-carrying capac-

ity of S1C1-200 are 11.1% and 22.1% higher than that
of specimen C1C1-200.

3) For slabs strengthened with CFRP-steel grid, longer
strip spacing degrades the load-carrying capacity and the slab
stiffness, but higher CFRP strain can be obtained. More lay-
ers of CFRP strips increase the load-carrying capacity, de-
crease the deflection capacity, and degrade the utilization of
CFRP strips. Therefore, the layers of CFRP strips should be
limited in practice to avoid brittle failure and material waste.

4) The failure patterns of strengthened slabs agree with
the yield-line pattern well. Thus, the yield-line analysis
model is suitable for load-carrying capacity prediction. A
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[13] Qian K, Li B. Strengthening and retrofitting of RC flat

comparison between the prediction and the experimental
results shows good agreement.
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P far g T CFRP-$H AR A% 4 0 (] 38 5 78 5% + W =)t 32 71 1% BE

FEK M EFE F B ORKTE

(RAKRFERERIAZFR, KX 430072)

FE 3 T E R @ ks CFRP £&ap fe s AR & i 69 37 &) B & B 7y ik, #) A CFRP £ i feSRAR £ 3£ B T
M AR B4R A B LB A M AR, b T T3z oy ok A B 4R A5 i £ A & 4R e R, 4t 7 3 R A 1 500 mm
x 1500 mm x 70 mm B #5 5 A4 0.22% #9 s RBAT T PR T % ERE, L P 1 ik mE,1 Pk
FEAR &AL ME CERP 2577 T ik 44 At m ] (CFRP &4 ) |5 3k 48 fE MK IE 316 46 U CFRP 454 Fe 4R AR A 4 %, AL
&AMt Am B (CFRP-4RARAS A ) , 5t RS2 AR 56 B . BF 7 4 4K 6L 46 4n B 75 ok | 44 18] 3B (150,200,250 mm) Fe=
CFRP %4 69 B4 (CFRP-4RAAEME 7 5 7] 681 & 2 ZA=3 & CFRP %4 ). iX W45 R &A% : 5 CFRP &4
Hn ] 4 AR Vb, CFRP-4R A5 A% M A 7 20 38 25 4R A5 it £ X A1 A 0 TR L H R S R BAE A Ao Ak /7. A A %
KRBT Fm BB RE A, TSR G XL R D E84F.
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