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Abstract: To satisfy mobile terminals’ ( MTs) offloading
requirements and reduce MTs’ cost, a joint cloud and wireless
resource allocation scheme based on the evolutionary game
(JRA-EQG) is proposed for overlapping heterogeneous networks
in mobile edge computing environments. MTs that have tasks
offloading requirements in the same service area form a
population. MTs in one population acquire different wireless
and computation resources by selecting different service
providers (SPs). An evolutionary game is formulated to model
the SP selection and resource allocation of the MTs. The cost
function of the game consists of energy consumption, time
delay and monetary cost.
equilibrium (EE) include the centralized algorithm based on
replicator dynamics and the distributed algorithm based on Q-
learning. Simulation results show that both algorithms can
converge to the EE rapidly. The differences between them are
the convergence speed and trajectory stability. Compared with
the existing schemes, the JRA-EG scheme can save more
energy and have a smaller time delay when the data size
becomes larger. The proposed scheme can schedule the
wireless and computation resources reasonably so that the
offloading cost is reduced efficiently.
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The solutions of evolutionary

service provider

ecently, mobile cloud computing (MCC) has been a
Rgreat paradigm that combines wireless network serv-
ice and cloud computing to enable mobile terminals
(MTs) to take advantage of the abundant wireless re-
source and vast computation power ubiquitously'' ™.
With the emergence of more sophisticated applications,
MTs expect to offload partial computing modules to be
dealt with by the cloud service due to the limited battery
power and smaller computing capabilities, which may im-
pede the performance of service quality extremely™.
However, the MCC introduces high latency since applica-

Received 2018-03-06, Revised 2018-06-20.

Biographies: Zhang Jing (1993—), female, Ph. D. candidate; Xia
Weiwei ( corresponding author), female, doctor, associate professor,
wwxia@ seu. edu. cn.

Foundation item: The National Natural Science Foundation of China
(No.61741102, 61471164).

Citation: . Zhang Jing, Xia Weiwei, Huang Bonan, et al. Joint resource
allocation scheme based on evolutionary game for mobile edge compu-
ting[ J] . Journal of Southeast University ( English Edition), 2018, 34(4):
415 —422. DOLI: 10. 3969/j. issn. 1003 —7985.2018.04.001.

tion data is sent to powerful servers which are distant
from the MTs. Mobile edge computing (MEC) is widely
regarded as a promising solution to address the problem.
In terms of network topology, the computing or storage
resources of the MEC are supposed to be in proximity of
the MTs'™. The MEC server is typically collocated with a
base station in a network cell, and it is accessible to near-
by MTs via a one-hop wireless connection”. In spite of
its physical closeness to the MTs, the MEC server faces
the drawback of limited computation resources.

The wireless networks are confronted with many chal-
lenges due to their limited radio and backhaul communi-
cations capabilities. The previous signal processing and
transmission techniques applied in the conventional cellu-
lar networks may not be efficient enough to meet the
above requirements'” . The deployment of low-cost small
cells is a very promising approach for efficient frequency
reuse and spectrum sharing'”’. Small cells with a small
coverage area and low transmission power usually include
microcells, picocells, femtocells and relays. Heterogene-
ous networks ( HetNets),
small cells and the traditional macro cells,

which consist of numerous
meet MTs’
high-rate requirements. Therefore, in the scenario of off-
loading tasks to the MEC server, there is competition
among numerous MTs over both constrained communica-
tion resources in HetNets and limited computation re-
sources in the MEC'™' .

In this paper, a joint cloud and wireless resource allo-
cation scheme based on the evolutionary game (JRA-EG)
is proposed for overlapping HetNets in mobile edge com-
puting environments to satisfy MTs’ offloading require-
ments and reduce MTSs’ cost.
this paper are listed as follows. First, in the scenario of

The main contributions of

MEC, overlapping HetNets are considered. One base sta-
tion and one MEC server configured on it constitute a
service provider. Due to the differences in the capacity of
wireless and cloud resources for different SPs, dynamic
SP selection is included in this paper. Secondly, to meas-
ure the MTs’ cost for task offloading in MEC environ-
ments, the cost function is established, which consists of
not only the energy consumption and time delay, but also
the monetary cost. MTs with tasks offloading require-
ments in one service area form a population. In addition,
different populations form a non-cooperative game.
Thirdly, an evolutionary game is built to model the serv-
ice provider selection and resource allocation of MTs.
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Centralized and distributed algorithms are used to obtain
the EE of the JRA-EG game model, respectively. Simu-
lation results indicate that both the centralized algorithm
and distributed algorithm can reach the EE rapidly. The
differences between them are the convergence speed and
trajectory stability. Compared with the existing schemes,
the JRA-EG scheme can save more energy and has less
time delay when the data size becomes larger.

1 System Model
1.1 Network model

In the mobile edge computing scenario, the HetNets
are composed of one macro base station (MBS) and K
small base stations (SBS). Each base station (BS) con-
nects to a data center named cloudlets, which provide
computation resources. The MBS and the corresponding
cloudlets constitute the macro service provider (MSP). A
SBS and the corresponding cloudlets form a small service
provider (SSP). As shown in Fig. 1, K SSPs are overlaid
with one MSP, providing communication and computa-
tion services to | MTs in a particular area of a two-tier
cellular network. The set of MSP and SSPs is denoted as
K=1{0,1,2,...,K}, in which O represents the MSP and
{1,2,..., K} denotes the SSPs. Orthogonal wireless sub-
channels which have no interference with each other are
Moreover,
there are J service areas denoted as J = {1,2,...,J}. Ar-
ea 1 is only covered by the macro cell network. Area je
{2,3,...,J} is covered by a macro cell and several small

cells. The number of MTs in area j is denoted as N,,

ZNj = [. In the model, a MT with multiple radio
7

allocated to the macro cell and small cells.

transceivers is capable of connecting to different service
providers ( SP). However, this model assumes that the
user can only select one SP for wireless transmission, re-
source scheduling and task offloading on a mission. In
addition, the mobility of MTs is not considered.

For each MT, the tasks are characterized as (d,, b,). d,
is the number of instructions to be executed and b, is the
input data size required to be transferred. Tasks of MT i

must be completed within 7, which is the maximum time
delay that does not impact MTs’ experience.

For base stations, the available spectrum bandwidth of
BS kis W,. The bandwidth of each BS is averaged and
allotted to all MTs connected to it.
difference of BSs, the MTs are capable of acquiring dif-
ferent bandwidth by choosing different BSs. Moreover,
the number of MTs connecting to BS k is denoted as n,.

Cloudlets can deal with tasks from all MTs connecting
to them concurrently due to their multi-tasking capability.
In order to get the utmost use of computation resources,
cloudlets allocate all resources they have to the MTs ac-
cording to a fair formula. Cloudlets of BS k are capable
of handling F, instructions per unit time and tasks of MT

Considering the

are allocated to F,/n, instructions.

Fig. 1
ronment

Overlapping HetNets in mobile edge computing envi-

1.2 Communication model

Orthogonal sub-channels are allocated to the MTs of
macro and small cells. Therefore, there is no interference
with each other. Specifically, the channel between each
base station (BS) and its associated MTs experiences a
fixed distance path-loss, a slow lognormal shadowing and
Rayleigh fast fading. It is assumed that there is no power
control and an adaptive multilevel quadrature amplitude
modulation (M-QAM) is applied. Each BS assigns rate
dynamically according to the received signal to noise ratio
(SNR) per MT. Assuming the identical statistics over all
frequency sub-channels and using adaptive modulation
with L discrete rates, the long-term expected throughput
(in bit/g s - Hz)) is expressed as'”!

I-

n =Y (IPr[, < SNR<T,,] +LPr[SNR = [',])
=1
(1)

where /e {1,2,...,L} and [ ", I';,,) denotes the inter-
val of SNR.

It is assumed that both SBSs and MBS schedule their
MTs in a round robin (RR)"". In this situation, all the
MTs subscribed to the same SP share the long-term ex-
pected throughput equally which is straightforward for the
RR scheduling algorithm. 7, denotes the throughput for
BS k. Hence, the expected throughput R, for the MT sub-
scribing to BS & can be calculated as R, =(W,n,)/n,.

1.3 Computation model

The task offloading time delay T, = A" + Ay + AY" +
AP consists of four parts''’: the uplink communication
delay A}', downlink delay A{', backhaul link delay A"
and cloud task processing delay A;™. The backhaul link
rate between BS and Cloudlets is so high and the distance
between them is so short that A" is too small to be con-

sidered. Compared with input data size b,, the output da-
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ta size from cloudlets is small, so the downlink delay A}”
is regarded as constant £.

In addition, A} is given as A = b,/r, and A7 is de-
fined as A7 =d,/f,, where r, =R, =w,q, and f, = F,/n, if
MT i selects SP k. w, is defined as W,/n, since MT i se-
lects SP k. Hence, the time delay can be also written as

b. d.
T(fow) =——+— +¢ (2)
wn, fi

The energy consumption E, = p, A" + piA}' of MT i in-
cluding uplink and downlink energy consumption is

b,
E(w) =p, W

i'Tk

+pié (3)

where p, represents the transmission power of MT i. Note
that there is no power control so that p, is fixed. p; de-
notes the received power of MT i when it receives the
output data.

The monetary cost of MT i consists of two parts. The
first part is the communication cost and the second part is
the computation cost. g, and g, are the price per unit
transmission rate and the charge per unit computation re-
sources of SP k, respectively.

C(fisw) =qwm, +8.f; 4

According to Egs. (2) to (4), the overhead of the mo-
bile edge computing approach in terms of time delay, en-
ergy consumption and monetary cost can be computed as

Z(f»w) z')’iTTi(ani) +')’FE:‘(W;’) +')’icci(fi’wi) (5)

where | is the impact factor of overtime cost and 7. re-
presents the impact factor of energy consumption on the
strategy of MT. In addition, the impact factor of mone-
tary cost is denoted as .

The MTs in the same service area cooperate with each
other and different service areas compete for the cloud
and wireless resources of SPs. The object function of

joint cloud and wireless resource allocation is

min Y, 2 Z(fw)

sst. T.<T,.Viel (6)

The objective of Eq. (6) is to minimize all MTs’ over-
head in the HetNets under the latency constraints.

2 Evolutionary Game Formulation

The joint cloud and wireless resource allocation prob-
lem is modeled by taking advantage of a dynamic evolu-
tionary game. Solution refinement and bounded rationali-
ty as well as dynamics are the remarkable characteristics
of the evolutionary game' .
the existence and uniqueness of EE. Bounded rationality
refers to the fact that players can slowly change their strat-

Solution refinement ensures

egies to achieve the EE solution, which is specifically ad-
justed to the time-varying performance satisfaction. Due
to the fact that the communication and computation ca-
pacity of each SP is limited, MTs at the different service
areas, which are geographically separated, compete to
share the available bandwidth and CPU cycles. Here, an
evolutionary game is used since it can capture the dynam-
ics of SP selection (i.e., strategy adaptation) based on
the available information of the MTs.

An evolutionary joint cloud and wireless resource allo-
cation game ( JRA-EG) G = {1, (a, ).
(772(1'))1-6,.,‘5,7,(5,(} is formulated. 7= {1,2,...,1} repre-
sents the game players. a, is the SP selection strategy of
player i. 7r,(i) is defined as the cost function of MT i
that selects SP & in population j.

@ Players
Fig. 1, each MT in each service area which can choose
multiple SPs including MSP and SSPs, is a player of the
game. Note that the MTs which can connect only to one
SP are not involved in the game.

@ Population
game refers to the set of MTs in the same service area.
The number of populations is J.

@ Strategy  The strategy of each MT refers to the se-
lection of SP. Accordingly, the SP selection strategy set
can be denoted as K = {0, 1,2, ..., K} which refers to the
selection of the MSP and K SSPs. s/, which denotes the
SP selection strategy set of population j, is the subset of
K. The MT i in population j selects SP strategy a; from

For a particular service area as shown in

The population in this evolutionary

5. SisaJx(K+1) SP selection state matrix of all pop-
ulations. Matrix § is composed of elements 0 and 1,
where S[j, k] =0 shows that SP k cannot be connected
and S[j, k] =1 shows that SP k is accessible.

@ Population share 7/, denotes the number of MTs se-
lecting strategy SP k in population j. Then, x, = n’,;/Nj is
the population share of SP k in population j, where x| e
[0,1].

@ Population state The population state is denoted as
a vector X, =[x, x|, x,,..., x;] € X, where X is the
population state space which contains all J populations.

K
Here Zx; = 1.
k=0

@ Cost function The cost is the expected consumption
of a player choosing a certain SP selection strategy. The
cost of a player is determined by energy consumption,
delay cost and monetary cost.

To obtain the cost, the cost function is used to quantify
MTs’ consumption on tasks offloading. For a particular
population j, the cost of a MT choosing SP k can be ex-
pressed as

(i)
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Aelgaolgsl) o

where 7,(i) = Z,, F./ 2 n, = f and W/Z nwo=w,. If
J J

MT i connects to SP k, f, =f, and w, =w,.

It is assumed that MTs in population j are requested to
offload the identical task load and have the same require-
ment for impact factor in a task offloading. Therefore,
the MTs in a population have an identical task offloading
characteristic. Therefore, 772(1') can be simplified as

=47 L+ L + .E( S r )+
i Vi (ka * k +§) Yi\P Wiy vpg
'yjc(Qkank +84) (3)

The cost, communication resource allocation and com-
putation resource allocation depend on all MTs’ SP selec-
tion strategies in terms of the population state as well as
the strategies of the SPs.

The definition of EE is as follows.

Definition 1 EE of the game G is a strategy profile
a” =(a/',a,,...,a) such that for each player i in I,
m(a ,a") <m(a,a’,). a,es if MT i is in popula-
tion j. a”, is the optimal strategy set except MT i.

The population state space X can be derived by a”.
Therefore, the population state space X° is regarded as
EE.

3 Centralized Algorithm for JRA-EG

In this section, the centralized algorithm based on rep-
licator dynamics is introduced.

3.1 Centralized algorithm formulation

In the dynamic evolutionary game, an individual from
a population, who is able to replicate itself by the process
"I In this
case, a replicator with a lower cost can reproduce itself
faster. The replicator process can be modeled by using a
series of ordinary differential equations, which is called
replicator dynamics. The proposed centralized algorithm
based on replicator dynamics provides a method to acquire
the population information of others and converges to-
wards an equilibrium selection. The centralized algorithm
is also efficient to investigate the speed of convergence of
strategy adaptation required to reach a stable solution in
the game''” .

We consider an evolutionary game of SP selection in a
heterogeneous wireless network where the population of
MTs in area j can choose the available MSP and SSPs.
The speed of the MT in observing and adapting the SP se-
lection is controlled by gain parameter o, o >0. In the
game model, the aim of each MT is to minimize its cost.
Hence, we can formalize the replicator dynamics as

of mutation and selection, is called a replicator

X (1) =ox (D [m(1) -7 ,(1)] (9)
where 77’,'{( t) is the current cost of the individuals choosing

strategy k in population j; 7r;(1) is the average cost of
population j, and o is the gain parameter for the rate of

strategy adaptation. The growth rate x ’(f) is relevant to
the difference between the cost 77,(#) and the population’s

average cost 77%(t) as well as the current size of popula-
tion share x};( 1.

The average cost 7’ (t) of the population can be de-
rived as

m(D = X x(nm() (10)

Based on this replicator dynamics of the MTs in popu-
lation j, the number of MTs choosing SP k increases if
the cost is below the average cost. It is impossible for a
MT to choose SP k, which provides a higher cost than the
current cost. This replicator dynamics satisfies the condi-

tion of » x,(#) = 0. Therefore, if Y x,(#) =0, then
k k

Y x() =0,t>0.
k

3.2 Centralized algorithm design

In the initial phase, all MTs randomly choose one SP
from the SP selection strategy sets and the centralized
controller computes the initialized population state ma-
trix. Then, each SP allocates communication and compu-
tation resources on average according to the number of
MTs connected to it. Next, MTs compute individual off-
loading cost and send it to the centralized controller. The
centralized controller computes the average offloading
cost of every population. There is a double circulation in
the cycle phrase. The algorithm is executed iteratively
and each episode consists of population state matrix upda-
ting, resource assignment updating, offloading cost upda-
ting and information exchanging. Finally, EE is derived
when the MTs in each population have the identical off-
loading cost.

Algorithm 1 Centralized algorithm

Input: I, K, J, N, cycle index [ and error factor /.

Output: The population state space of EE X~ .

Initialize: b, p,, a;, v v:s vis Wi Fr 4y 810 0

forall i=1 to I do

MT i in population j randomly choose SP k from s,.

end for

The controller computes the population state vector x;.

Each SP acquires n, and allocates w, and f, on average.

Computes 7, by Eq. (8) and 7;/‘ by Eq. (10).

while (abs( 7, —m,) <, V)
forall j=1 to J do
Computes x ’ by Eq. (9) and update x, =x} + x 7
for all populations.
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Each SP acquires n, and allocates w, and f, on average

Computes 7, by Eq. (8) and 77-., by Eq. (10)
end for
end while
Evolutionary equilibrium X * is derived.

4 Distributed Algorithm for JRA-EG

When a centralized controller is unavailable, each MT
has to evolve its SP selection decision gradually and inde-
pendently. The reinforcement learning approach can reach
the target by analyzing the surrounding environment. In
13714 which is a type of
reinforcement learning, is applied to the solve the JRA-
EG problem.

this case, a Q-learning algorithm

4.1 Distributed algorithm formulation

In this section, a distributed algorithm for JRA-EG
based on Q-learning is formulated. In the distributed algo-
rithm, complete cost information of other MTs in the same
or different populations is no longer required for SP selec-
tion due to the learning ability. The distributed algorithm
acquires the EE of the evolutionary game by Q-value.

For the distributed algorithm, a, e s’ is the current se-
lection strategy state of MT i in population j. u, is the
control state for MT i in population j which is the subse-
quent selection strategy of MT i.

The subsequent state of g, is denoted as

a,,, =u 1=0,1,... (11)

siel

where [ denotes the evolutionary times, and / =0 denotes
the initial state. For all MTs in all populations, the cur-
rent selection strategy state vector a, can be denoted as a,
={a,,a,...,a,}. The control vector can be denoted as
u,={u,,u;,...,u)}. For MT i, the selection strategy a,
at time [ is chosen from s’ if MT i belongs to population
j. u)is the subsequent selection state of MT i from s’

The distributed algorithm acquires the EE of the evolu-
tionary game by the Q-value. The Q-value is used to
maintain the knowledge of MTs about each SP, and the
decision can be made by MT i based on the Q-value. In
Section 2, we have assumed that the MTs in population j
are requested to offload the identical task load and have
the same requirement for the impact factor in a task off-
loading. Therefore, the Q-value of MTs in the same pop-
ulation j selecting the same SP k is identical. The MTs in
population j share the Q-value vector Q[j, k], k € K.
Therefore, the dimension of Q-value is J x (K + 1) since
there are J populations and K + 1 SPs. If population j
cannot connect to SP k, Q[ k] is identically equal to ze-
ro. The distributed algorithm starts with @, =[0],, .-

For iteration times ¢t =0, 1,2, , ..., the distributed al-
gorithm updates the iterative Q-value using the learning
rate A, by

Q+|(a/’ ”/) =(1 _/\x)Qi(az’ul) +
A (' (a,u) +9minQ(a;, u)) (12)

where ¢ is the iteration times of the Q-value; A is the
learning rate, 0<<A, <1; and @ is the discount factor, 0 <
0<1; @ is the 1 x (K +1) row vector; and 77/ (a,, u,) de-
notes the cost vector of population j. 77/(a,,u,) can be de-
rived by

7a,u) =7, 7, ....% ..., 7] (13)

1), can be computed by 7, = 7, (i) (w,, f,) according to
Eq. (7) and Eq. (8). Here, a; = k means that MT i se-
lects SP k. w, and f, can be computed as w, = W,/n, and
f.=F./n,, where n, = Num(a, = k) denotes the number
of all MTs who select SP k.

Let a, be the initial state. Assume that there is a feedback

control u, on compact set u, s'. u, is computed by

u, = arg min@Q,(a;, u,) (14)
Then, the subsequent SP selection strategy a,,, is ob-
tained.
All populations update the iterative Q-value by

Qz+l(al’ul) :(1 _/\‘I)Qj(al9u]) +
A(m(a,, u,) +0n}‘inQ,(a,,u,)) (15)

where Q and 7(a,, u,) are J x (K +1) matrices.

Finally, the optimal SP selection strategy a,” and opti-
mal control vector u,” are obtained and then the optimal
resource allocation is obtained when the Q-value conver-
ges. The Q-value converges to

limQ,(al*,ul*) =Q"(a/,u) (16)

The convergence property of the distributed algorithm
is associated with learning rate A,. Once Q" converges,
the EE of JAR-EG is obtained. Theorem 1 describes the
convergence condition.

Theorem 1 Fort=1,2,..., let Q,(a,, u,) be upda-
ted by Eq. (15). If A,,t=1,2,..., satisfies

(17)

and 6 satisfies 0 <#<1, then the iterative Q-value Q,(a,,
u,) converges to its optimal value as t—oo, that is ltimQ,
(a’,u')=Q" (a,u).
Proof The proof is similar to that in Ref. [13].
After the Q-value converges, the evolutionary game
reaches the evolutionary equilibrium a® =a," and X" .

4.2 Distributed algorithm design

In the distributed algorithm, all MTs need to compare
the current Q-value with other strategies’ Q-values and
adjust their selection strategy by themselves.
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The initialization is similar to the centralized algo-
rithm. Different from the centralized algorithm, the algo-
rithm imports Q-learning rate, discount factor, learning
possibility and Q-value. In the cycle phrase, there are
three circulations. In each episode, the resource alloca-
tion, SP selection strategy, offloading cost and Q-value
are updated. Unlike the centralized algorithm, every indi-
vidual needs to utilize the Q-value to learn the change of
the entire network. The algorithm does not stop until the
Q-value matrix of each MT is identical.

Algorithm 2 Distributed algorithm

Input: I, A, 6, error factor /.

Output: Population state space of EE X~ .

Initialize: b, p;. a ¥/, 7 vi Wo Fio 40 810 00 Q.

forall i=1 to I do

MT i in population j randomly chooses SP k from s;.

end for

Each SP acquires n, and allocates w, and f, on average.

Computes 7r(a,, u;) by Eq. (13) and Q by Eq. (15).

while (abs( Q' - Q1j. k]) <¢. V)
for all j=1 to J do
forall i=1 to N, do
rand = rand() is a random number between 0 and 1.
if (rand<p)
MT i randomly chooses SP k from s'.

else
MT i chooses SP a;,, by Eq. (11) and Eq. (14).
end if

Each SP acquires 7, and allocates w, and f, averagely
for MTs.
Computes 7(a,, u,) by Eq. (13) and Q by Eq. (15).
end for
end for
end while
Evolutionary equilibrium X is derived.

5 Performance Analysis and Evaluation
5.1 Parameter settings

The simulation scenario is described in Fig. 1. We re-
gard HetNets with one MSP and four SSPs, K =4. So,
the SP strategy set is K={0,1,2,3,4}. We set the num-
ber of population J =2* and the number of MTs in popu-
lation j is randomly distributed between 0 and 100. The
bandwidth and processing ability of SPs are respectively
set to be W =[200, 80, 80, 80,80] Hz and F =[80, 40,
40,40, 40] 10’ cycles. The throughput of BSs is set to
ben=[1.5,2,2,2,2] bit/(s - Hz) and the transmission
power of MTs is p =[10,5,5,5,5] mW. The price for
communication resources is [0.5, 0.1, 0.1, 0.1, 0.1]
dollar/MHz. The charge for computation resource is 0. 1
dollar/(10°cycles). For the distributed algorithm, the
discount factor is set to be @ = 0. 98" and the learning
possibility p =0. 1",

5.2 Performance evaluation of JRA-EG scheme

The impact of gain parameter ¢ on the convergence
speed of the centralized algorithm is shown in Fig. 2. The
curves for different numbers of MTs in the whole service
areas describe the changing trends of running time with
increasing o. We observe that the time to reach equilibri-
um becomes shorter with the increase in ¢ when o <
0.01, which implies that the convergence speed keeps in-
creasing. The changing trends of convergence speed flat-
ten out when ¢ > 0. 01. However, the running time to
reach the EE becomes unstable when the gain parameter o

>0.035. This is because the growth rate x’ of popula-
tion share is too fast to find the EE. Throughout the anal-
ysis above, we can use the gain parameter o e [0. 01,
0.035] in the simulation.

In order to study the impact of the learning rate in the
distributed algorithm, we set the learning rate A¢ to be
four different functions, A} =0.7,A7 =1 - 1/(t+1), A}
=0.5(sin(1 +¢) +1), and A} =0.5(cos(1 +1) +1), re-
spectively. The four learning rate functions all satisfy the
convergence criterion Eq. (17). From Fig. 3 we can see
that with four different learning rates /\f, ’=1,2,3,4, the
iterative population shares are all convergent to the opti-
mal value. In comparison with Fig. 3, we can see that the
fluctuation of the convergence curves of A! and A’ are
slightly smaller than that of A’. However, the conver-
gence curve shows a wide fluctuation for A* when finding
the equilibrium point. The reason is that the value of the
learning rate is very small at the beginning, resulting in
the MTs choosing SP randomly( see Fig.3(d)).

In Fig. 4, the population evolution algorithm, central-
ized algorithm and distributed algorithm are compared. In
Refs. [12, 15 — 16], a population evolution algorithm is
used to achieve the EE. The population evolution algo-
rithm not only relies on the centralized controller to col-
lect population cost information, but also depends on
each MT when comparing individual cost with the average
cost of the population it belongs to. From Fig.4, we can
conclude that the convergence speed of the centralized al-
gorithm is the fastest and that of the distributed algorithm
is the slowest. Besides, the curve of the centralized algo-
rithm approach is smooth and steady while the other two
algorithms fluctuate with the increase in iteration times
until reaching equilibrium. The population evolution algo-
rithm and the distributed algorithm change the population
state individually so that the changing speed is inconsistent
among the loop episodes. Compared with the population e-
volution algorithm, the centralized algorithm has a faster
equilibrium speed while the distributed algorithm has no
requirement for population information exchange. To sum
up, both the centralized and distributed algorithms can
reach EE rapidly and have their respective advantages.
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From Fig. 5, we can observe that the increasing tend-
ency of EE, ES and proposed JAR-EG schemes of energy
consumption differ from each other. The increasing speed
of the EE scheme is the fastest while that of the proposed
scheme is the slowest. At the beginning, the ES scheme
consumes the least energy and the proposed scheme con-
sumes the most energy. However, the energy consump-
tion of the proposed scheme becomes less with the input

data size increasing. When the input data size is larger
than 8 Mbit, the energy consumption of the proposed
scheme is the lowest. The delay consumption comparison
among the EE, ES and proposed JAR-EG schemes is de-
scribed in Fig. 6. We can clearly observe that the pro-
posed scheme has the least time delay compared with the
other schemes. By analyzing the energy consumption and
time delay of the EE, ES and proposed JAR-EG
schemes, we can conclude that the proposed JRA-EG
scheme has better performance and effectiveness when in-
put data size becomes larger.
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6 Conclusion

In this paper, we solve the problem of joint communi-
cation and computation resource allocation based on the
evolutionary game (JRA-EG) in mobile edge computing
environments. To the best of our knowledge, the work is
the first one of integrating the SP selection with resource
allocation so as to achieve the minimum joint mobile
terminals’ energy consumption, time delay and monetary
cost. An evolutionary game is established to select SPs
and allocate cloud and wireless resources dynamically.
We take advantage of the centralized algorithm based on
replicator dynamics and the distributed algorithm based on
Q-learning to obtain the EE of the JRA-EG game model,
respectively. Simulation results verified the effectiveness
of the centralized algorithm and distributed algorithm.
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