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Abstract ; In order to solve the problem of efficiently assigning
tasks in an ad-hoc mobile cloud ( AMC), a task assignment
algorithm based on the heuristic algorithm is proposed. The
proposed task assignment algorithm based on particle swarm
optimization and simulated annealing ( PSO-SA) transforms
the dependencies between tasks into a directed acyclic graph
(DAG) model. The number in each node represents the
computation workload of each task and the number on each
edge represents the workload produced by the transmission. In
order to simulate the environment of task assignment in AMC,
developed to describe the
dependencies between tasks and the costs of each task are
defined. PSO-SA is used to make the decision for task
assignment and for minimizing the cost of all devices, which

mathematical models are

includes the energy consumption and time delay of all devices.
PSO-SA also takes the advantage of both particle swarm
optimization and simulated annealing by selecting an optimal
solution with a certain probability to avoid falling into local
optimal solution and to guarantee the convergence speed. The
simulation results show that compared with other existing
algorithms, the PSO-SA has a smaller cost and the result of
PSO-SA can be very close to the optimal solution.
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obile devices (MDs) have gained enormous popu-

larity in our daily life. As a result, mobile applica-
tions running on the mobile devices require much more
time and energy. In spite of the significant development
in the capabilities of these MDs, compared with computer
systems, MDs are still limited by storage, lifetime, and
computing abilities, etc. Mobile cloud computing
(MCC) """, by enabling offloading part of the workload
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to a remote cloud, cloudlet or other MDs, opens up a
new possibility to further enhance the MDs computing
ability and to extend their storage and lifetime.

The ad-hoc mobile cloud ( AMC) consists of a number
of nodes with different performances, and each node has
the capability to serve both as a server and, at the same
time, a client. These nodes communicate over radio and
operate without the benefit of any infrastructure, thereby
creating an opportunistic resource sharing platform. Such
characteristics make AMC an ideal solution for scenarios
with weak or no internet connection.

AMC coordinates with MDs which are close to each
other to process an application together, and offers an ef-
ficient solution for reducing the latency of the MDs appli-
). Moreover, due to the rapid development of
energy harvesting technology, MDs are expected to har-

cations

vest energy from an ambient environment so as to facili-
tate self-sustainability and perpetual operation. With ener-
gy harvesting capability, MDs are more likely to perform
task sharing to maximize the overall utility of the whole
network.

Workflow can effectively describe the complex con-
straint relationships between activities. The directed acy-
clic graph (DAG) is a common way of describing it. In
recent years, the research of DAG scheduling has made
great progress. Gotoda et al. "™ first proposed the sched-
uling problem of multi-DAGs sharing a set of a distribu-
ted resource. Then, they put forward some solutions to
the problems such as the minimization of the make span
and the fairness of scheduling. Xu et al. "7’ also made
some improvements on this basis. However, only a few
studies have been made on the DAG scheduling with a
constraint. In this paper, a DAG model representing the
dependencies between tasks under the constraint of time
delay is proposed.

Task assignment is also an important part of cloud
computing. Many intelligent optimization algorithms such
as the genetic algorithm, particle swarm algorithm, ant
colony optimization are introduced into the research of the
task assignment. In Ref. [ 8 ], an improved particle
swarm optimization ( PSO) algorithm applied to work-
flow scheduling is studied. Rahman et al."*’ proposed the
improved PSO algorithm to make the plan for virtual ma-
chine migration. In Ref. [ 10 ], the genetic algorithm
(GA) is used to optimize the path length and the number
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of common hops jointly. In Ref. [10], the GA is used to
maximize the throughput of the network. Although

"4 optimized the task assignment in

Truonghuu et al. '
cloud computing in different ways, neither the fairness of
the resources’ use nor the interference of the transmission
in the wireless network is considered. To fill this gap,
this paper proposes a model of wireless network ad-hoc
mobile cloud communication, and the total energy con-
sumption of all devices and fairness of resource usage of
all devices are considered simultaneously.

The PSO outperforms other population-based optimiza-
tion algorithms, such as the GA and other evolutionary
algorithms, due to its simplicity'”™""'. The efficiency of
solving various optimization problems was proved in
Refs. [ 18 —21 ]. However, the PSO has disadvantages. It
is easy to fall into local optimal solutions, and it shows
slow convergence in evolution and poor precision. The
SA algorithm has the ability to make it possible to jump
out of the trap of local optimal solutions and its conver-
gence has been proved theoretically ™. The algorithm in
this paper combines the particle swarm optimization and
simulated annealing with a strong ability to jump out of
local optimal solutions, so as to improve convergence
speed and precision.

Our main contributions can be summarized as follows;
The energy consumption and time delay are regarded as
costs at the same time. The dependencies between tasks
are converted into a DAG model. The task assignment in
the AMC is transformed into an optimization problem and
a PSO-SA based algorithm is proposed to solve this com-
plex optimization problem.

1 System Model

The considered ad-hoc mobile cloud is illustrated in
Fig. 1. Ad-hoc mobile cloud consists of a set of mobile
devices connected by a set of wireless links. The device

WiFi area

Fig.1 Task assignment in ad-hoc mobile cloud

which asks for help from neighbors is denoted as a mas-
ter; in contrast, the device which provides cooperation to
the master for offloading is denoted as slave. As shown in
Fig. 1, Master O is connected to each slave via a wireless
link and it has a computing-intensive task Q
culated, but it does not have enough computing resources
to execute them, so Master O split O,
(Q,, 9,, Q,, ==, Q,). Each part is transmitted to a
specific slave to be processed or be calculated by local

to be cal-

total

to n + 1 parts

computing. As can be seen from Fig. 1, O, represents the
part of tasks calculated by local computing and other parts
of tasks are offloaded to different slaves to be calculated.
Each task is not independent during the execution, so it is
necessary that the slave nodes are also able to collaborate
with each other.

1.1 DAG model

Let M represent the total number of the tasks. The de-
pendencies of the tasks can be represented by the DAG
models. In this paper, a four-tuple G = {T,E,W,6C} is
used to represent the DAG model.

T={e,! is the collection of tasks in the DAG. ¢, repre-
sents task i, where 0 <i <M, M is the number of total
tasks.

E ={e,,} is the collection of directed edges,where 0<
i<M,0<j<M. If e,; =1, it means that task j cannot
begin unless task i is completed.

W=1{w(i)} is the collection of the computing work-
load (i.e., the total number of CPU cycles). w(i) de-
notes task i’s computing workload, where 0 <i<M.

C=1c,,| is the collection of the size of computation
input data (e.g., the program codes and input parame-
ters). c,;is the size of computation input data from task i
to task j, where 0<i <M, 0<j<M.

In order to give a clearer description of the mathemati-
cal model, the following definitions are given:

pre (t,) represents the collection of previous tasks of
task i.

suc(t,) represents the collection of succeeding tasks of
task i.

1, =1{t|pre(t) = | represents the entry task.

t..=11|suc(r) = | represents the exit task.

T, represents the start time of task i. This paper states
defines that a task can be started only when all its previ-
ous tasks are completed.

T, represents the end time of task i and the initial value
is infinite.

Let N represent the total number of the slave nodes, a,,
e [1,N] denote the offloading decision of task m. a, =
n means that task m is offloaded to slave n. Furthermore,
the decision profile is denoted as A = (q,,a,,*+,qa,,) .

For a given decision profile, the DAG model G can be
further processed. If two tasks on one edge are assigned
to the same node, then c,; on this edge will be set to be
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zero, which means that communication energy consump-
tion will not be generated.

Fig.2 shows the dependencies between eight tasks. Let
each circle in the figure represent a task; P,, P,, P, and
P, represent four nodes; the edge between task i and task
;;3 and the
number above the edge between task i and task j repre-
sents the size of computation input data c,;. For exam-

ple, as shown in the figure, e, =1 and e, ; =1, which

J represents the dependencies between tasks e

means that task 5 relies on tasks 2 and 3. These two tasks
are assigned to the same node, so the energy consumption
generated by transferring input data can be ignored,
which means that ¢, ; =0.

Fig.2 The dependencies between tasks

1.2 Communication model and calculation model

According to the decision profile A, the number of the
slave node n which task m is assigned to can be obtained.
Then, the slave node n will execute the computation task
m and return the results to the master. The execution of
task m in the cloud includes three phases: The transmit-
ting phase, the computing phase, and the receiving
phase.

In this paper, the energy consumption generated by the
receiving phase is not taken into account. This is because
the size of the returned result is much smaller than that of
computation input data. Thus, the consumption of this
phase is low enough to be ignored.

The quality of a wireless link depends on the signal to
interference and noise ratio ( SINR). The SINR of the
link which connects slave node x and slave node y is de-
fined as

t

P H,
SINR”(A) 20_27W (1)

n

where P, is the transmission power of slave node x off-
loading task to slave node y; H,  denotes the channel
gain from slave node x and slave node y due to the path
loss and shadowing attenuation. The channel gain H,_ =
d.;, where is the distance between slave x and slave y, is

the distance attenuation index. o~ denotes the thermal

noise power and W is the channel bandwidth.
Using the Shannon capacity theorem, the transmission
rate for node x and slave node y can be denoted as

R, ,(A) =Wlog,(1+SINR, (A)) (2)

Let ¢, e pre(t,) and G represents the DAG model of
dependencies between tasks. The transmission time be-
tween task j and task k is defined as

) Ciik a.#a
T(A,G) =R, T (3)
0 a; =4
and
Ej!(A,G) =P, T} (4)

According to the decision profile A, a; and a, are the
slave node numbers that tasks j and k are offloaded to.
P, , is the transmission power of slave node a; to slave

and R

k> a;,a;

node a is the transmission rate of slave node g,
to slave node a,. As can be seen from Eq. (3) and Eq.
(4), the low data transmission rate will result in high en-
ergy consumption in the long transmission time.

Let f,,
task m. This paper allows different slave nodes to have
different computation capabilities and different tasks to be
executed for a slave at different clock frequencies. The
computation execution time of task m processed by the

node is given by

denote the computation capability of slave n on

Toe=w(m)f,, (5)

and the energy consumption generated by handling com-
putation task is given by

E, =kw(m)f, (6)

The value of the constant k£ depends on the specific chip
architecture. Combined with the above analysis, energy
consumption can be defined for task m as

E(AG) = ¥ EI+E, (7)

1,epre(t,)

T,(A,G) represents the time delay of this task assign-
ment. The way to calculate the start time and the end
time of each task is introduced as follows; U = {7,] is a
collection of uncalculated tasks where 0 <i < M. Before
the task assignment begins, U contains all the tasks that
need to be processed.

Time calculation is described as follows: First, the ex-
ecution time of the entry task Tp is calculated according
to Eq. (5) and the entry task will be removed from the
collection U. Then each task 7 in the collection U will be
checked whether all its previous tasks pre(¢) have been
completed , and if so, task m can be started. The commu-
nication time and processing time of task m can be calcu-
lated according to Egs.(3) and (5).

The end time of task m is denoted as
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T:(A,G) = max)(Té+T'f"”) (8)

trs
e pre(t,

T.(A,G) =T{(A,G) +T. (9)

exe

Eq. (8) indicates that the start time of the task depends
on the longest completion time and the communication
time of all the previous tasks. T’ represents the end time
of task j. Eq. (9) shows that the end time of a task de-
pends on the start time of the task and the execution time
on the node.

The task which has been computed is removed from
collection U. Repeat the time calculation until U is emp-
ty.

Through this process, the start time and the end time of
each task under the given decision profile A can be calcu-

lated, and the end time of exit task 7, can be defined as

out

the time delay 7,(A,G) of this assignment.

T,(A,G) =T;*(A,G) (10)

Finally the evaluation function is defined as

minK(A,G) =8Y E,(A,G) +ul,(A,G) (11)

S. t.

T,<T,
am E [] ’NJ

where § and u are weights for energy consumption and
time delay, respectively. T, represents the maximum de-
lay of this assignment. Constraint 7, < T, ensures that the
total time delay is smaller than the deadline, and con-
straint a,, e [ 1, N] gives the definition of the decision
variables.

As can be seen from the formulation, this task assign-
ment is an NP-hard problem. Solving such large size
problems using a mathematical programming approach
will take a large amount of computational time. Howev-
er, the heuristic algorithm can obtain a result which is
close to the optimal solution in a relatively small amount
of time. Therefore, this paper adopts the heuristic algo-
rithm to solve the optimization problem.

2 PSO-SA Task Assignment Algorithm

In this section, an algorithm based on the PSO and SA
is proposed to solve the optimization problem Eq. (11).

2.1 Particle swarm optimization

Let x*" e [ 1,N] represent the decision of task m of

f.d"" =n means that task m is offloaded to slave
id,1
i b

particle I, x
n. The position of particle i is defined as X' = («x
id,1 id,m
X Xy

When the PSO-SA is used, an evaluation function is
necessary to calculate the fitness value of each particle in
the swarm and the evaluation function. Let G represent
the DAG model about dependencies between tasks, the

fitness value is defined as

F.(X',G)=-K(X',G)

i (12)

The velocity of particle i is denoted as V, = (v} ,v7,---,
v!") and this paper uses the traditional PSO method,

) +c,r, (g0 —x") (13)

where v!" is the velocity of the particle i for task w; w' is
the inertial weight, which affects the search accuracy and
convergence speed. x"" is the current position of the par-

id,w

wo_ row w R
Vi =wy,; +C1}’1(p1 - X

ticle i for task w; p, and g" are the personal best position
and group best position of the particle i for task w; r, and
r, are the random numbers between (0,1) ; and ¢, and c,
are the learning factors. Eq. (13) allows the velocity to
be updated according to the personal best solution P, =
(p!.,p:,--,p") and group best solution G = (g ,g;, -,
g!'), which record the optimal decision of the individual
and the swarms, respectively.

In population-based search optimization methods, dur-
ing the early part of the search, considerably high diversi-
ty is necessary to allow the use of the full range of the
search space. On the other hand, during the latter part of
the search, when the algorithm is close to the optimal so-
lution, micro-tuning of the current solutions is an impor-
tant method to help us find the global optimal solution ef-
ficiently. Based on the above discussion, w is denoted as

W= (wy = wy) (14)

max

where w, and w, are the initial and final values of the in-
ertia weight, respectively; [ is the current iteration num-
ber; and 7, is the maximum number of allowable itera-
tions.

As mentioned in Section 1, a major disadvantage of the
traditional PSO is that it is easy to obtain local optimal
solutions. In order to avoid this shortcoming, when selec-
ting the optimal solution of the population, the minimum
fitness value is not directly selected, but the probability of
particle i being selected as the population is calculated as

b —F,.(Xi.d,G)

p. = : (15)
D exp( - F(X!,G))
A position is updated as follows: First, by
xi"j‘kﬂ :xi'{,ik-}_vjf-v-l (16)

a new coding sequence containing illegal coding can be
obtained. Then, legalize the illegal coding. The main
processing methods include taking absolute values, taking

integers upwardly, taking remainders, etc. Specific
methods are described as
id id
4 _ I:‘xi ‘] } x el[0,N] (17)
' mod([ | x*]7],N) else

By the legalization processing method, legal and valid
position vectors can be obtained.
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2.2 Simulated annealing

Simulated annealing is used to do further processing of
the result of PSO to avoid falling into local optimal solu-
tions. When the particle’s current fitness is better than be-
fore, the update of the particle’s position will be accepted
with probability 1. When the particle’s current fitness is
worse than before, the update will be accepted with a cer-
tain probability p, calculated by

1 Fi<F"'

i i

;= Fk _FI_H'] X 18
P {exp( —%) Fi>F! (18)

where F! represents the previous fitness of particle i; F. '
represents the current fitness of particle i; T represents the
annealing temperature which controls the process to opti-
mize the direction of searching for the optimal value.

The cooling process of T will ensure the convergence to
the optimal solution. In this paper, the cooling process is
denoted as

TO
) (19)
where T, represents the initial temperature. As can be
seen from Eq. (19), when the number of iterations in-
creases, the value of T decreases gradually.

Updated selection for the particle’s position based on
simulated annealing is given as follows

Step 1 Calculate the fitness value of particle i accord-
ing to Eq. (12).

Step 2 If the new fitness value is better than the pre-
vious fitness value, then the position of particle i will be
updated, otherwise jump to Step 3.

Step 3 Generate a random number between 0 and 1,
which is denoted as r.

Step 4 Calculate the probability p, of particle i by
Eq. (18).

Step 5
particle i will be updated, otherwise it will be rejected.

Step 6 Repeat Steps 1 to 5 until all the particles have
been calculated once.

Step 7 Update the annealing temperature by Eq.
(19).

2.3 PSO-SA

If p, is larger than r, then the position of the

The specific process of the proposed PSO-SA algorithm
is described as follows:

1) Before the PSO-SA starts, the maximum iteration
. » the population size inertia weight, learning
factors c,, c, and other parameters will be set. Then, the
initial positions and velocities of the population are set
randomly. In each iteration, PSO is adopted before SA.
In the PSO, each particle will be updated based on the in-
dividual optimal solution and swarm optimal solution.

number /

2) After the PSO is finished, the update selection is
used based on SA for all particles in the swarm to do fur-
ther processing to avoid falling into local optimal solu-
tions.

3) Finally, judge whether the iteration number reaches
the maximum value. If not, update the inertia weight and
annealing temperature by Eq.(14) and Eq.(19), respec-
tively, then return to PSO for the next iteration. Other-
wise, output the optimal result, and end the algorithm.

Algorithm 1 PSO-SA

Input: 7,, N, M, F, w,, w,, ¢,, ¢,, I
H, G;

Output; K.

Set iteration number index /=0

Get the total number of task m

Get the total number of node n

for each particle k=1,2,---,p

Initialize the particle with X, and V,
end for

while I <1,

I=1+1
for each particle k=1,2,---,p
Calculate T by time calculation and Eq. (10)
if T, >T,
rejected this update
Calculate fitness value F, by Eq. (12)
if the fitness value is better than P,
PX;
P;«F,
end if
end for
for each particle k=1,2,---,p
Calculate p® by Eq. (15)

end for
Select the optimal solution of population G

for each particle k=1,2,---,p

Calculate particle velocity by Eq. (13)
Update particle position by Egs. (16) and (17)
if F{ >F"'
Calculate acceptance probability p, by Eq. (18)

Generate a random number 7 between 0 and 1

if r <p,

Accept the update
end if
end if

end for
Update inertia weight by Eq. (14)
Update annealing temperature by Eq. (19)
end while

TO’ P’

max ?

3 Simulation Results

In this section, the performance of the proposed PSO-
SA algorithm will be evaluated. The AMC scenario con-
siders that all mobile devices are randomly scattered over
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a 100 m x 100 m region, and the specific location is
shown in Tab. 1. The data size of each task is in the in-
tervals [ 5,10 ] MB and the computing load in [ 100,
200] instructions, and the speed of each task being pro-
cessed by each slave is in [5 000,7 000 ] instruction/s.
The dependencies between tasks are shown in Fig. 3.

Fig.3 The dependencies between tasks

For simplicity, task 1 is denoted as the entry task and
task 128 is denoted as the exit task. Except for the exit
task, each task has two succeeding tasks, and the total
number of tasks is 128.

The parameters for the PSO-SA are given as follows:
The number of particles is Z =20; initial weights are set
to be § = =0. 4; learning factors are denoted as ¢, =
1.8, ¢, =1.3; the maximum number of iterations [, =
100; the initial inertia weight and final inertia weight are
w, =0.7, w, =0.3; the initial temperature is set to be T,
=150; the maximum delay 7, =80 s. In order to reduce
the impact of the randomness of the heuristic algorithm on
the simulation results, all data in this paper is run 50
times under the same parameters, and the average results
are obtained.

Tab.1 The location of all devices

. Location/ . Location/
Device Device

(m,m) (m,m)
1 38,17 6 19,75
2 24,67 7 45,85
3 58,12 8 14,82
4 74,26 9 18,49
5 25,61 10 62,39

3.1 Performance of PSO-SA algorithm

In this part, the simulation results of the PSO-SA will
be compared with those of the optimal solution to prove
the performance of the PSO-SA. Device 10 is denoted as
the master, devices 1-9 are denoted as slave nodes 1-9,
respectively. The number of tasks is 128. To be specific,
the total size of computation input data is 12 MB, and the
total number of CPU cycles is 1.2 x 10*.

The result of the optimal decision is generated by the
enumeration method of which the time complexity is
O(M"), and the time complexity of the PSO-SA is

O(MXxNxI, xZ).

As shown in Tab. 2 and Tab. 3, the PSO-SA produces
a little more energy consumption and results in a longer
time delay, but the results of the PSO-SA can be very
close to that of the enumeration method, which proves the
accuracy of the PSO-SA.

Tab.2 The result of time delay

Time delay/s Percentage of

Device PSO-SA EM differences/ %
Slave 1 10.22 9.96 2.61
Slave 2 2.78 2.62 6.11
Slave 3 5.01 4.74 5.70
Slave 4 5.79 6.32 8.39
Slave 5 5.12 4.71 8.70
Slave 6 8.52 8.14 4.67
Slave 7 10.07 9.82 2.55
Slave 8 9.44 9.13 3.40
Slave 9 8.64 9.28 6.90
Master 8.12 7.55 7.55
Total 73.71 72.27 1.99

Tab.3 The result of energy consumption

Energy consumption/J Percentage of

Device PSO-SA EM differences/ %
Stave 1 8.99 8.76 2.63
Slave 2 5.61 5.12 9.57
Slave 3 3.28 3.29 0.30
Slave 4 1.24 1.30 4.62
Slave 5 4.01 3.79 5.80
Slave 6 9.08 8.58 5.83
Slave 7 0.23 0.21 9.52
Slave 8 8.90 8.60 3.49
Slave 9 5.51 5.80 5.00
Master 9.37 8.54 9.72
Total 56.22 53.99 413

The enumeration method will take much more time
than the PSO-SA when it comes to a great number of
tasks or the number of nodes. For example, when N =10
and M = 128, the enumeration method will take 10"*
times operations to generate a result. While the PSO-SA
takes only 4 x 10’ times operations, the time complexity
of which is much lower than that of the enumeration
method.

3.2 Comparison with heuristic algorithms

In this part, the performance of the PSO-SA and other
heuristic algorithms are compared. Binary particle swarm
optimization ( BPSO )'*’ and the genetic algorithm
(GA)"™ | which are frequently used in task assignments,
are chosen as a comparison. In a GA, a population of
candidate solutions to an optimization problem is evolved
toward better solutions. Each candidate solution has a set
of properties which can be mutated and altered. BPSO is
a computational method that optimizes the objective func-
tion by iteratively trying to improve a candidate solution
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with regard to a given degree of quality and the position
of each particle is binary. In order to guarantee the same
time complexity, the number of particles and the maxi-
mum number of iterations for three algorithms are the
same.

The parameters of the scene and the ones of the PSO-
SA are consistent with the above.

The parameters for BPSO are given as follows: The
number of particles is 20 ; initial weights are set to be § =
u =0.4; learning factors are denoted as ¢, =1.8, ¢, =
1.3; the maximum number of iterations I, = 100; the
initial inertia weight and final inertia weight are w, =0.7,
w, =0.3; the maximum delay 7, =80 s.

The parameters for the GA are given as follows: The
number of particles is 20 ; initial weights are set to be § =
m =0.4; the maximum number of iterations I, =100;
the maximum delay 7, =80 s. The crossover probability
and mutation probability are set to be 0.7 and 0. 005, re-
spectively.

In this part of the simulation, device 1 is denoted as
master, device 2-10 are denoted as slaves 1-9, respective-
ly. The number of tasks is 128. To be specific, the total
size of computation input data is 20 MB, and the total
number of CPU cycles is 2.0 x 10*.

Cost in this simulation is the optimization goal K in
Eq. (11). As can be seen from Fig. 4 ,all these three al-
gorithms in the simulation can effectively decrease the
cost. In addition, in the case of the same number of itera-
tions, the PSO-SA can reduce more costs than the other
two. Fig.5 shows that when the number of tasks is small,

300
——PSO-SA
——GA
250 ——BPSO
200
8
@]

150

100

50

1 1 1 7N VN 'y
10 20 30 40 50 60 70 80 90 100
Number of iterations

Fig.4 A comparison of cost as the number of iterations changes
201 _—pso-sA

——GA

200 L ——BPSO

150

Cost

100

50

1 1 1 1 1 1 1 1 J
50 100 150 200 250 300 350 400 450 S50
Number of tasks

Fig.5 A comparison of cost as the number of tasks changes

the performance of the three algorithms is almost the
same. However with the increase of the tasks, the per-
formance of the PSO-SA will be better than that of the
other two heuristic algorithms.

Fig. 6 and Fig. 7 show different performances of differ-
ent heuristic algorithms in energy consumption and time
delay, respectively. In this part of the simulation, device
1 is denoted as the master, device 2-10 are denoted as
slave nodes. The relevant parameters are consistent with
the previous simulation.
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Fig.7 Comparison of the energy consumption

As can be seen from Fig. 6 and Fig.7, when the num-
ber of slave nodes is small, the performance of the three
algorithms is almost the same. But, with the increase in
the number of slave nodes, the performance of the PSO-
SA is better than that of the other two heuristic algo-
rithms. When the number of slave nodes continues to in-
crease, the results of the three algorithms tend to be sta-
ble. This is because in the case of the small number of
salve nodes, the probability of the new candidate solution
result being better than that of previous optimal solution is
great. However, as the slave node continues to increase,
this probability will drop, which leads to the gradual sta-
bilization of the value. In order to compare the perform-
ances of the PSO-SA with other heuristics algorithms
more clearly, Tab. 4 shows the improved ratio of the
PSO-SA in terms of average energy consumption and time
delay. In Tab. 4, the average energy consumption of BP-
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SO, GA, PSO-SA algorithms is the average energy con-
sumption of all devices in AMC when the number of slave
nodes changes from 1 to 10, and the average time delay is
the average energy time delay produced by different algo-
rithms when the number of slave nodes changes from 1 to
10. Energy consumption improved by PSO-SA represents
the ratio of the reduced average energy consumption of
PSO-SA to that of BPSO or GA(R,). The time delay
improved by PSO-SA represents the ratio of the reduced
average time delay of PSO-SA to that of BPSO or GA
(R,). It can be seen from Tab. 4 that compared to the
BPSO and GA, the performance of the PSO-SA has been
greatly improved in terms of energy consumption and
time delay.

Tab.4 The improved ratio of PSO-SA

Algorithm
Parameter
BPSO GA PSO-SA
A
verage enerey 207.82  195.47  175.72
consumption/J
Average time delay/s 79.93 73.85 64.78
R, 15.41 10.10 0
R, 17.93 12.28 0

4 Conclusion

In this paper, for the task assignment problem ,time de-
lay and total energy consumption of all devices under the
constraint of certain time delay are considered as costs at
the same time. The dependencies of tasks are converted
into a DAG model, and PSO and SA are combined to
make the decision for the task assignment problem. The
simulation results indicate that compared with other popu-
lation-based optimization algorithms, the PSO-SA has a
small cost and the result of the PSO-SA is close to the op-
timal solution. In our future work, the mobility of MDs
is going to be considered. This will make our approach
more practical and effective.
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Ad-hoc BENxaPE TR FEMUFIEIIE NEUX N ERS S EHEE
Fid AHH TR OK #H O F KR # hEF

(ABXFHHEEERELEEET, d¥w 210096)

WE: AT £ ad-hoc BHREZFTHHERBRES SREX —ZOCFM,RBET —FATRBAKXF E09ES
B k. AT BEEAC A AL BB KAEAL 09 1E 5 2 B2 L 7% (PSO-SA ) H 45 42 18] 49 1& #1 % & 354K A A ) L3R
A (DAG) BA, L B A & Lo B AE & TAE 5~ A 69 0 3, DAG 69 &A1 69 8k 15 3 7= 4 69 71 3K
T AL ad-hoc #3h e = 094E S BRIRIL, 1 5 T MF A R BN TSR AR K R IR LEA
FAE 509 F B R A PSO-SA A TAE 45 Bt ik R It s MU PIT A # 3 X & 09 s, B AL Fo B 8] 22 3R 5] B 4 4 7
HRA. PSO-SA 44 T ¥ F BERAL Ao BEPUAR KA AL 69 40 H, 38 3T A — 2 MR R S B AR 0y o7 X, 8 %0 F ok
EF BN SR, B PRAE ST M SGR L A5 S R 5 AR IUA STk AR PSO-SA JLik = A 69 37
FRABARIF B 25 R 7T vl 3 F B AR

F4#i7 :ad-hoc # 3 & 1 4o B Sk s A @) RIR A ;4 F ARG B IAR KAk

HE 4 %S TN929. 5



