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Abstract: To deal with Byzantine attacks in 5G cognitive radio
networks, a bilateral threshold selection-based algorithm is
proposed in the spectrum sensing process. In each round,
secondary uses ( SUs) first submit the energy values and
instantaneous detection signal-to-noise ratios ( SNRs) to the
fusion center (FC). According to detection SNRs, the FC
conducts normalization calculations on the energy values.
Then, the FC makes a sort operation for these normalized
energy values and traverses all the possible mid-points between
these sorted normalized energy values to maximize the
classification accuracy of each SU. Finally, by introducing the
recognition probability and misclassification probability, the
distributions of the normalized energy values are analyzed and
the bilateral threshold of classification accuracy is obtained via
a target misclassification probability. Hence, the blacklist of
malicious secondary users ( MSUs) is obtained. Simulation
results show that the proposed scheme outperforms the current
mainstream schemes in correct sensing probability, false alarm
probability and detection probability.
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ecently, cognitive radio (CR) has been proposed to
R overcome the problem of limited available spec-
trum'"'. CR enables secondary users (SUs) to randomly
access the spectrum. Due to the time-varying of the wire-
less channel, the signal-to-noise ratio (SNR) may be-
come too low to obtain a reliable spectrum sensing.
Hence, cooperative spectrum sensing ( CSS) is proposed
In existing CSS, SUs need to
send their local sensing information to the fusion center
(FC), and then the FC makes a global decision” . How-
ever, this fusion scheme provides more opportunities for
malicious secondary users ( MSUs) to launch Byzantine

to deal with this issue'” .
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attacks'' .

Nowadays, a series of solutions have been made to rec-
ognize MSUs. A reliable reference algorithm was pro-
posed to reduce the influence of MSUs on spectrum sens-
ing"”. A trust node-assisted reference algorithm was put
forward, in which the trust node was applied to screen out
MSUs'".

The traditional MSU detection scheme usually achieves
a poor detection performance in a massive MSU and the
low-SNR region. To enhance the performance in a rela-
tively hash environment, a bilateral threshold detection
scheme is put forward to resist Byzantine attacks.

1 System Model
1.1 Cooperative spectrum sensing

In this paper, an IEEE 802.22 wireless access network
is considered, as shown in Fig. 1. It consists of a CRN
with one PU, one FC, and N SUs. Each SU performs the
estimation of the energy value from the PU and sends it to
the FC. Then, the FC decides the availability/unavail-
ability of the PU. Therefore, each SU performs the ener-
gy detection for a time duration 7,. If we denote the sam-
pling rate by f,, the energy value of SU, is given by

2 fro )
y[ = 2 fro
S Y hSG) + ()]

g, j=1

PU is available

PU is unavailable

(D

where £, denotes the channel gain from PU to SU,; S(j)
and n,(j) represent the signal of PU and background noise
around SU,,
E[ | n,(j) |*]. For a large f,7,, the energy value that
SU, received approximates the Gaussian distribution,

respectively. The noise power o) =

PU transmitter

Fusion center

Fig.1 Wireless access network
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PU is unavailable
PU is available
(2)

where vy, = E[ \ h.S(j) \ & represents the SNR from PU
to SU,. We assume that the FC has acquired the detec-
tion SNR vy, and this can be realized by contacting the
Sus'™.

~ NQ2f.7y,4f. 1))
' {N(Zfs’To(l +y.),4f7(1 +2y)))

1.2 Attack model

In order to efficiently carry out attacks, MSUs need to
predict their own local decisions. By comparing the en-
ergy value y, with a local threshold ¢,, the local deci-
sion of MSU, can be reached. A PU is considered
available if y, > ¢, ; otherwise, PU is considered una-
vailable.

After spectrum sensing, the individual sensing report
d, of each MSU is generated as

o=l I (3)
0 y.<e,

In this paper, the following Byzantine attack model is
employed. Here, MSUs use their local decisions to per-
form attacks. It first makes a local decision. Then, it
generates an abnormal Gaussian distribution value with
the attack probability 3,,.

When the MSU,, does not launch an attack, the energy
y,,- That is, he/she submits
the energy value received in the energy detection phase.
However, when the MSU,, launches the attack, the By-
zantine attack model is denoted as follows:

value he/she submits is Y

m =

Y N(2.fsTO +A’4f97-0) dm =O
" {N(2ﬂ70(1 +v,) —A4fr,(1+2y,)) d, =1
(4)

where A is a deviation resulting in a falsification of data.

2 Bilateral Threshold Selection Scheme

2.1 Data collection

The FC first picks up the energy values submitted by
SUs in the history rounds. Hence, the FC can obtain
the actual availability states of PU during the end of
these history rounds' (e. g. by interacting with the PU
station) . The energy values submitted by SUs and PU
states are listed in Tab. 1. After the pretreatment of en-
ergy values, the normalized energy values are shown in
Tab. 2.

Tab.1 Collected energy values and PU states

Round SU, SU, SUy PU state
1 Y (1) Y, (1) Yy(1) PU(1) =0
R Y, (R) Y,(R) Yy(R) PU(R) =0

Tab.2 Normalized energy values

Round SU, SU, SUy PU state
1 Z,(1) Z,(1) Zy(1) PU(1) =0
R Z,(R) Z,(R) Zy(R) PU(R) =0

0 PU is inactive in the k-th round

Note: PU(k) = { .
1 otherwise

2.2 Pretreatment of energy values

The distributions of energy values submitted by SU,
may change with the rounds. Therefore, formula (2) is
revised as follows:

NQ2f .7y, 4f7)
Yi(k) ~ N7 (1 +y,(K)),
Af.ro(1 +2y,(k)))

PU is unavailable

PU is available
(5)

Drawing on the reference of standard normal distribu-
tion, the energy values are pretreated as

(Y,(k) =2f7)

PU(k) =0
Z (k) _ vV 4fsTO ( )
ST LR = 2f7 (1 +y,(K)) .
+& otherwise
4f.ro(1+2y,(k) ]
(6)

where ¢ is a positive data bias. Therefore, for NSU,
N(O, 1)
N(e, 1)

PU is unavailable

PU is available 7

z, ~{
Formula (7) describes the distributions of the normal-
ized energy values of NSUs. However, due to the exist-
ence of the attack rounds, the normalized distributions of
MSUs under two hypotheses will generate additional
changes. The variations of the normalized distributions
between NSUs and MSUs will be identified by our bilat-
eral threshold selection scheme.

2.3 C(Classification accuracy for normalized energy

values

After treatment, Tab. 2 can be obtained, and then the
FC needs to analyze the normalized energy values in R
rounds. The FC uses a rated value evaluation method to
obtain the decision results of SU, in R rounds:

H(k,S!) = U(Z,(k) - S)) (8)

where H,(k, S}) represents a decision result of SU, in the
k-th round. S denotes the rated value of SU, in R rounds.
U( - ) is the step function. For SU,, the selection of the
rated value S} is shown in Definition 1.

Definition 1  The selection of the rated value S}
should minimize the deviation between the result vector
{H.(k,S') 1} ,. xand PU state vector {PU(k)}, =1,
2,---,R in R rounds.
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Hence, S; is calculated as

S = argfninzk“ [PU(k) @ H,(k,s) ] (9)

where @ denotes exclusive-or logic. Therefore, the clas-
sification accuracy of SU, is

Z, [PU(K) @ H,(k,S]) ]

C\-/=1—kl
! R

(10)

Owing to the fact that there are only R rounds used in
Egs. (8) and (9), a traversal algorithm is presented to
find the rated value S] and classification accuracy C;,
which is described as follows:

Step 1  Conduct an ascending sort to the normalized

sort

energy values. Thatis, {Z,(1),Z,(2),-,Z(R)}|—
{Z,(1),Z,(L,),,Z(l )}, where Z,(1,) <Z,(l,) <
...sZi(lR)'

Step 2 Construct a candidate set of the rated value
187(1),87(2),,S/(R+1)}, where S; (1) =Z,(1,)
-1 SR+ 1) =Z,(1;) +1; §(k) =(Z,(l,_,) +
Z(1,))/2(k=2,3,---,R).

Step 3  Traverse all the values of the candidate set,
and select a value S) (k) (k=1,2,---,R + 1) which mini-
mizes Eq. (9). Therefore, the rated value S} = S; (k)
and the classification accuracy C; of SU, can be calculated
by Eq. (10).

2.4 Bilateral threshold for normalized energy values

Here, two probabilities are introduced; recognition
probability and misclassification probability. Recognition
probability is the probability that MSUs are correctly rec-
ognized, while misclassification probability is the proba-
bility that a NSU is mistaken for a MSU.

For SU,, the distributions of the normalized energy
values obtained by the FC satisfy (7). According to the
law of large numbers, the theoretical rated value S of
SU, is calculated as

P,P(z=S8; |H)) =P P (z=S; |H;e) (11)

where P,(z | H,) and P,(z | H, ;&) are the distributions
under H, and H, in (7). P, and P, denote the probabili-
ties that PU is present and absent, respectively. Solving
the above gives

(12)

Hence, the theoretical classification probability p (&)
of SU, is

p(e)=1-PP,(z>S |H) -P,P,(z<S' | H, ;&)
(13)

Then, a random variable is introduced :

0 The k-th sample is misclassified
1 Otherwise

WM{
(14)

It is clear that P(Q} (k) =1) =p(&). Therefore, the
theoretical classification accuracy C; of SU, is

@=idmm (15)

Given the misclassification probability 7, the fluctua-
ting range A can be calculated as
P(p(e) —A<C,.F<p(8) +A)=1-71 (16)

According to the central limit theorem, we can derive
from the above expression that

A= /2p(e) (1 -p(e))/R erfc™' (1) (17)

Clearly, the recognition probability is a monotone de-
creasing function of A. To maximize the recognition
probability, we write formula (17 ) as an equation.
Therefore,

u, =p(e) —~A=p(e) - (18)
2p(e) (1 -p(e))/R erfc™ (1)
uy =p(e) +A=p(e) + (19)

2p(e) (1 -p(&))/R erfe™ (1)

Egs. (18) and (19) describe the relationship between
the misclassification probability and the bilateral threshold
of classification accuracy C.. As can be seen from the
above expressions and (15), with the increase of R, the
bilateral threshold {u, ,u, ! and the theoretical classifica-
tion accuracy C; both converge to p( &) and the conver-
gence rate of {u, ,u, | is geometric. In addition, owing
to the pretreatment of the energy values, each SU has the
same bilateral threshold in the FC. With the increase of
R, for NSU, , its classification accuracy C, is coincident
with C. Therefore, it will fall into the [u, ,u,,]. How-
ever, for MSU
cation accuracy C', is not consistent with C'. Therefore,
it will fall outside [ u,, ,u,, | as the number of samples R

owing to the attack rounds, its classifi-

m?

increases.

3 Description of the Bilateral Threshold Selec-
tion Scheme

In this part, the steps of the selection algorithm are in-
troduced.

;(PU(k)@l)
R

Step 1  Initialize P, = , P, =

; (PU(Kk) ®0)
7 :
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Step 2 For each SU,, the FC converts the energy val-
ues Y, (k) into Z,(k) via (6).

Step 3 FC calculates p(&) and {u, ,u,} by (17),
(22) and (23).

Step 4 Calculate C; through the traversal algorithm

Step5 If C] ¢ [u, ,uy], then add SU, to the black-
list.

In order to demonstrate the effectiveness of the selec-
tion scheme, a simple likelihood ratio scheme is adopted
to achieve the PU state as follows:

Step 1  Pick out the energy values Y, (k) of the SUs
not included in the blacklist.

Step 2 Calculate likelihood ratio

Y, (k) | H,)
Y, (k) [ H,)

L= Py (y
! =l Pu,(y

Step3 If L >1, then PU is available. Otherwise PU
is unavailable.

As is shown from the scheme, P, and P, are counted
by the actual state of the PU from Tab. 2. PUj(y \ H,)(v
=0,1) are the original distributions of the energy values
in (5). {U,{,.,,. ., are the SU indices not belonging to
the blacklist in the selection algorithm.

4 Simulation Results

If the parameters are not listed explicitly in the figures,
parameters are set by default as follows. The number of
SUs is 50. The number of samples R is 100. The sam-
pling frequency f, is 10 kHz. The sensing duration 7, is 5
ms, the noise power o; = ¢~ = 1. The misclassification
probability 7 is 0.05, and the signal to noise ratio y,( k)
fluctuates between —10 and -5 dB. The data bias ¢ is
1, and the deviation A is 2f,7,y,,.

Fig. 2 shows the MSUs screened out by our selection
algorithm. Owing to the normalization of the energy val-
ues, SUs with different SNRs have the same bilateral
thresholds. In Fig.2, a NSU is misclassified as a MSU
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Fig.2 The filter result of MSUs in selection algorithm (8,
[0.2,0.4])

(Its index is 7), and two MSUs are not screened out
( Their indices are 20 and 21).

Fig. 3 describes the correct sensing probabilities of our
selection algorithm and the SVDD algorithm"’ with the
rounds increasing. Due to the users’ mobility, the propor-
tion of MSUs will change. The variations of the percent-
age of MSUs are marked with red circles. From Fig. 3,
our scheme achieves better performance than the SVDD al-
gorithm. Besides, a large R has a positive impact on sensing
performance, which is coincident with Eqgs. (18) and (19).
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Fig.3 The variation of correct sensing probability with rounds
(B, €[0.1,0.3])

Fig. 4 shows the detection probability with the increase
in the percentage of MSUs. In this figure, the traditional

! are the

trust scheme'"”’ and the critical learning scheme'"
worst, while the sensing guard scheme' ' is better than
them. This is due to the fact that the sensing guard scheme
will impose severe punishments on the SUs who submit
false sensing energy values frequently. However, our pro-
posed scheme screens out most MSUs, which ensures excel-

lent detection probability in scenarios with massive MSUs.
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Fig.4 The variation of detection probability with percentage of
MSUs(B,, €[0.2,0.4])

Fig.5 describes the impact of the percentage of MSUs
on false alarm probability. We compare our selection
scheme with the above algorithms. From Fig. 5, we can
see that the data bias £ has a modest impact on the sens-
ing performance of the selection algorithm. Hence, the
appropriate value of all data bias is allowed in our scheme.
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Fig.5 The variation of false alarm probability with percentage
of MSUs(B,, €[0.2,0.4])

5 Conclusion

In this paper, we design a bilateral threshold selection
scheme for MSU detection. Besides, we analyze the rela-
tionship between misclassification probability and the bi-
lateral threshold. In simulation, we verify the perform-
ance of the algorithm in terms of a series of parameters.
Hence, the proposed scheme can deal with the byzantine
attacks in CSS to improve the robustness of the system.
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