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Abstract ; The descriptor Markovian jump systems ( DMJSs)
with partially unknown transition probabilities ( PUTPs) are
studied by means of variable structure control. First, by virtue
of the strictly linear matrix inequality ( LMI) technique, a
sufficient condition is presented, under which the DMIJSs
subject to PUTPs are stochastically admissible. Secondly, a
novel sliding surface function based on the system state and
input is constructed for DMIJSs subject to PUTPs; and a
dynamic sliding mode controller is which
guarantees that state trajectories will reach the pre-specified
sliding surface in finite time despite uncertainties and
disturbances.

synthesized

The results indicate that by checking the
feasibility of a series of LMIs, the stochastic admissibility of
the overall closed loop system is determined. Finally, the
validity of the theoretical results is illustrated with the example
of the direct-current motor. Furthermore, compared with the
existing literature, the state convergence rate, buffeting
reduction and overshoot reduction are obviously optimized.
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variable structure control ( VSC) ; partially unknown transition
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escriptor systems, which are also known as singular
D systems, implicit systems, semi-state systems, dif-
ferential algebraic systems, generalized state space sys-
tems, have been extensively studied over the past decades
due to the fact that they can describe a great many natural
phenomena compared to standard state-space systems' '
Zhang et al. ¥ explored the stability and stabilization of
descriptor systems. More recently, Gao et al. *' proposed
stability criteria for descriptor Markovian jump systems
(DMIJSs) with fully known transition probabilities. How-
ever, variable structure control ( VSC) for DMIJSs subject
to partially unknown transition probabilities (PUTPs) has
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been seldom investigated thoroughly'®™ .

VSC also refers to sliding mode control ( SMC) ,
which is an efficient robust control method to deal with
uncertain systems, delay time systems and nonlinear sys-
tems. Due to its insensitive features to the variation of
system parameters and external disturbance during the
sliding phase, it has been extensively applied to a variety
of practical engineering systems'’’. Utilizing a discontin-
uous control to drive the state trajectory to the pre-speci-
fied sliding surface and remain there for all subsequent
time is the essence of VSC'®'. Over the past few dec-
ades, VSC has successfully been applied to problems
such as automatic flight control, control of electric mo-
tors, chemical processes, helicopter stability augmenta-

tion systems, space systems and robots''''. Recently,
stochastic  sys-

VSC has

tems' "> and MJSs" "™
However, only a little literature focuses on the VSC of
DMISs"*’. Li et al. "' investigated the VSC problems
for continuous-time DMJSs with a mode dependent deriv-
ative term coefficient. As far as we know, VSC for DM-
JSs subject to PUTPs has not been researched thoroughly.

also been investigated in

, time-delay systems """

It must be mentioned that the entire information on transi-
tion probabilities is known, which is a common hypothe-
sis for simplifying the analysis and synthesis of DMJSs in
most of the studies. However, in practice, getting access
to available transition probabilities sometimes seems un-
likely, and the expenditure is possibly exorbitant or time-
consuming. Hence, instead of having great complexity
when surveying and estimating all the transition probabili-
ties, it is necessary and important to further investigate
more general DMJSs subject to PUTPs.

Motivated by the aforementioned facts, the dynamic
sliding mode controller design problem for continuous-
time DMJSs with PUTPs is studied. First, a sufficient
condition, which guarantees that the DMIJSs subject to
PUTPS are stochastically admissible, is derived in the
light of precise LMIs. Then, we construct a novel and
high-performance sliding surface function for DMJSs sub-
ject to PUTPS and design an expeditious sliding mode
controller to study the pre-specified sliding surface in fi-
nite time. The sliding surface function has two parameters
which can be adjusted according to actual demand. The
sliding mode controller is efficient and agile, which can
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drive systems’ steady operations. A standard is proposed Ay * Ay
to ensure the stochastic admissibility of the sliding mode Ay A, Aoy
dynamics according to the result of stochastic admissibili- A= : : (7)
ty. Finally, the effectiveness and practicability of the ac- N, * X

quired results are illustrated by a practical example.
1 Problem Formulation and Preliminaries

Fix the probability space (&2, F,P) and consider the
following DMJSs ;

E(r)x(1) =[A(r,) +AA(r,,0) Jx(1) +
B(r)[u(t) +F(row(t)] (1)

where x(7) e R", u(tr) e R™ are the state vector and in-
put vector, respectively. {r,,t=0} is the continuous-
time discrete-state Markovian process taking values in /=
{1,2,---,N}. AA(r,,1r) e R""" is the uncertain matrix,
and w(t) e R'is the disturbance. The switching behavior
between different modes is described by the following
transition probabilities ;

Pr( 1 . {)\Uh+0(h) i#j (2
v(r,,,=j|r=1i)= .
! 1L+A,h+0(h) i=j
N
Ao == D2 A, A, =05Vijesi#j (3)
ST
e e . o(h)

where 1 >0, o(h) is infinitesimal such that lllng =

0; and A, =0 (Vi,je/ i#j) denotes the switching rate

from mode i at time ¢ to mode j at time ¢ + h. The set /

contains N modes of system (1) and for simplicity, for
each possible value r, =i e 7, the system matrices of the
i-th mode are denoted by E(r,) = E,, A(r,) =A,,
AA(r,) =AA,, B(r,) =B,. Without loss of generality,
the matrix E, e R"*" may be singular, that is rankE, = r<
n. A, and B, describe the nominal systems, which are
known constant matrices with appropriate dimensions.
Matrices D, and V, are defined as known constant matrices
of appropriate dimensions. For the simplification of pres-
entation, the following matrix is given:

AA:‘([> :DiHi(t>Vi (4)

Thus, we can rewrite the linear singular system as
Ex(t)={DH (t)V,+A,|x(t) +B,(u(t) +Fw(t))
(5)
where D,, V, are the constant matrices and H; (t)H,(t)
<I. Thus, we have the presentation of singular system as
Ex(t) ={A, +AA,}x(t) +B,(u(t) +Fw(t)) (6)

Furthermore, the transition probabilities of the jumping
process in this paper are considered to be partially una-
vailable, that is, some elements in matrix A is unknown.
For example, for system (6) with N operation modes,
the Markovian process transition probabilities matrix A
can be defined as

where =* represents the unavailable elements. For con-
venience, Yies, /=4 +/7, is denoted as

A'=1j:A,is known|, /i =1{j:A,is unknown |
(8)
Then, if /k #J, it is further depicted as
A=k ky ek

Y/ <m<N (9)

where k., e N* stands for the m-th known element subject
to the index k! in the i-th row of matrix A. As well,

throughout this paper, we denote A, = z A, - To facili-
ek
tate the later discussion, two sets are defined as follows:
ki ={m|me4 and m#i}
uk!, = {m | me/; and m#i}
Note that k', and uk!, may be different for each i e #
Remark 1

t=0} in the existing literature is commonly hypothesized
to be completely known (4, = &, £’ =/") or completely

The validity of the jumping process {r

t

unknown (/; =/, /' = ). Furthermore, the transition
probabilities with norm-bounded or polytypic uncertainties
require the knowledge of structure or bounds of uncertain-
ties, which can still be viewed as accessible in the sense
of this paper. Hence, our transition probabilities matrix
considered in the sequel is a more natural assumption for
the DMIJSs and covers the existing ones.

In this paper, our aim is to develop a sufficient condi-
tion such that the unforced continuous-time DMIJSs (6)
with PUTPs (8) is stochastically admissible and to design
a sliding mode controller for system (6) with PUTPs (8)
such that the resulting closed-loop system is stochastically
admissible.

Lemma 1’ Let X,Y,F be the real matrices of ap-
propriate dimensions with F" () F(t) <I then

XFY+Y'F'X'<XX"+Y'Y (10)

Lemma 2 ( Schur complement™™’ )  Given constant
matrices £2, ,42,,4,, where 2, =/ and 0 <2, = 2, ,
then 2, + 2,02, ' 2, <0 if and only if

o -2, O,
<0 or

T <0
'Qs - 'Qz Q} 91

2 Main Results

In this section, the stability will be studied and the
sliding mode controller will be designed based on Lemma
1 and the VSC theory, respectively.

2.1 Sliding mode function design

A novel sliding surface function is designed as follows .
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S(1) = B'G.E,(x(1) —x(0)) —fthGiEiﬁix(T)dT
(11)

Note that the sliding surface function of our design is a
dynamic sliding surface. B, e R"*", E, e R"*", x(t) e
R", and G, e R"" can be regarded as an adjustable pa-
rameter matrix and 8, € R"" is a constant matrix which
can be chosen arbitrarily.

Remark 2  Enlightened by the sliding surface func-
tion'”’ | dynamic VSC for the T-S fuzzy system is consid-
ered. We design a novel sliding surface function (11) on
account of system states and inputs for DMJSs (6) with
PUTPs (8). It is worth mentioning that the sliding sur-
face function in Ref. [5] cannot be applied to the DMJSs
(6) with PUTPs (8) directly. Hence, referring to Ref.
[5], it is necessary to design a novel sliding surface
function (11), which is suitable for the DMJSs (6) with
PUTPs (8).

While the trajectories reach the sliding surface, we can
derive S(7) =0. Then, we can derive the derivation of
the sliding surface as follows

$(1) =B'GE¥(1) -BIGEBx(1)  (12)

Substituting Eq. (6) into Eq. (12), we can derive

S(t) =B'G,{ (A, +AA,(1))x(t) +B,[u(t) +

Fw(1)]| -B/GEBx(1) (13)

Let u(t) =u,(t), and we can obtain the equivalent con-
trol ueq(t) as

u, (1) = - (B'GB,) '[BG,(A, +AA,(1) -

EB,)x(t) +B;GB.Fw(t)] (14)

Substituting the equivalent control u . () into Eq. (6),
we can obtain the equivalent dynamic system of the origi-
nal system as

x(t) = [A; +AAi(t) _B[ (B;FGzB,) 7IB?G;(A1 +
AA (1) ~EB;) ]x(1) (15)

Theorem 1 The equivalent dynamic unforced nomi-
nal system (15) is stochastically admissible if the follow-
ing LMI has a solution P,, which satisfies that E; P, is

semi-positive definite.

A, A, V,
A, 1 0 <0 (16)
vi 0 -I
where
All = { P - [A;FG;’FBI' _ﬁxTE,T] (B;FGI'Bi) _TBI'T%PI' +

P;F{Ai _Bi (B;rGiBi) - [B}-GiAi _Eiﬂi] }

A12 :PT[D,' _Bi (B,’TGiBi> _IB"TG"D"]
A, =[D,-B, (B/GB) 'B/GD]'P,

Proof The following candidate of the Lyapunov
function is chosen to analyze the stability of the equiva-

lent dynamic system (15) :

V(t) =x"(1)EIPx(t) (17)

Then, taking the time derivative along the state trajectory
of system (15), we obtain

V(t) =x()EIPx(t) +x"(t)P]Ex (1) =
x"(t){[A, +AA,(t) -B,(G.B,) 'G,(A, +
AA(t) —EB)]1"Px(t) +x"(t)P]{[A, +
AAi(t) _Bi<GiBi) _]B,TG,‘(AI' +AA,.(I) -
EB)]1ix(1) =x"(1){A]P,+V/H(1)D/P, -
AiTGiTBi(GiBi) _TBiTPi -
VIH!(1)D!G!B,(G.B,) "B/P, +
B;TE,'T(G,'BI') _TB:TP:' +PzTAi +P;rDiHi(t) Vi -
PfTBi(GiB,') 7IB:‘TG,‘A; -

P'B,(GB, 'B/GDH,(1)V, +

P/B(GB, 'Ep,ix(1) (18)

By using Lemma 1, the following inequality can be ob-
tained :

VIH](t){D! -D/G/B,(G,B,) 'B/|P,+P"|D, -
B[<GiBi) 7IB}-G[D['}H;(I) VigviTVi +P;F[D1 -
B.(GB, 'B/GD,|[D/ -D;G/B,(G,B, "B!]P,

(19)

Substituting inequality (19) into Eq. (18), it can be de-
rived that

V(t)<x'(t){[A] +B/E;(G.B,) "B} -
A'G'B,(G,B,) "B |P,+P/[A,+B,(GB, 'EB, -
Bi(G,-B,-> 7IB’:‘FGIA:‘J + ViTVi +P,-T[Di -

Bi(G,-B,-> 71BTGID[J [D,T -

D/G!B,(GB, 'B] P, }x(1) (20)

By applying Schur complement Lemma 2 to (20), it can
be obtained that

{ [AT +B3-E?-(GiBi) _TB:T _AI'TGI'TBi(GiBi) _TBT]Pi +
PET[A[ +B,(G.B,) ’IE,ﬁ,. -B,(G,B,) ’IB,.TG[Ai] +
V;'rVi +P?[Di _Bi(GiBi) _IB;rGiDiJ [DxT -

DIGB,(GB,) "B!IP,| <0 (21)

which is equivalent to (16).

Hence, if the LMI has a solution P, satisfying that
E!P, is semi-positive definite, it can be determined that
V(t) <0. This means that not only the equivalent dy-
namic system (6) is stochastically admissible but also the
state trajectories can be constrained to the sliding surface.
The proof is completed.

Remark 3 During the design of the novel nonlinear
sliding surface function, the adjustable parameter matrix
G, and adjustable constant matrix 3, are introduced into
the switching function; furthermore, these two adjustable
variables are introduced into the LMI (16). The conser-
vatism of the LMI condition can be decreased due to the
existence of these two adjustable variables.
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2.2 Dynamic sliding mode controller

The VSC problem for DMJSs (6) with PUTPs (8)
will be investigated in this subsection. Next, the dynamic
sliding mode controller will be designed, which can make
the system state trajectory converge to the predefined slid-
ing surface in finite time and thereafter remain on there.
In what follows, a dynamic sliding mode controller based
on the system states and inputs will be designed, which
assures the reachability of predefined sliding surface (14)
in finite time. Thus, the following result can be ob-
tained.

Theorem 2
(6). Hypothesize that the sliding surface function is de-

Consider the descriptor system in Eq.

signed in Theorem 1, and there are definite positive ma-
trices @,, ie /and H, = H; , i e /, which satisfy the fol-
lowing inequalities

D -H <0 je/,j#i (22)
D -H=0 jei j*i (23)

and the sliding mode controller is constructed by
~(BIGB,) "
I SCe) 1 +&
T
yIB:G | DIV (o) | -
BEx(1) +psign(S(1)) -

T A —H) S |

jeq

u(r) = LIBIGA, || [ x(0) || +

(24)

where p is a positive constant which is adjustable, and ¢
is a very small constant.

Then, the state trajectories of the DMJSs (6) subject
to PUTPs (8) are converged to the sliding surface S(t)
=0 in finite time and maintained there for all subsequent
time.

Proof Choose the Lyapunov functional candidate as

V(x(1).i) =3 8" (D @S(1) (25)
Taking the weak infinitesimal generator of V(x(t),i)
and considering (13), we have

vV aV.

N
LV(x(1),i) = S0+ |+ X A,V(xn)) =
J=1

S ()DS(t) +S" (1)D;S(1) +8 (1) Y A, @,S(1)

jes

then

E[LV(x(1),i)] = {B/G,[ (A, +AA,(1))x(1) +
B (u(t) +Fw(t)) —EBx(1)]|"®S(1) +
S'"(1)®D; {B;G,[ (A, +AA,(1))x(1) +B,(u(1) +
Fw(t)) —~EBx(1) ]} +S'(1) Y A,®S(1) <
21 8() [ CIBIGA, || [ x(2) || +
yIBiG N IID | |V, IIllx(t) || —EBx(1) +
BIGBu(1)) +8" (1) Y A, ®5(1) (26)

jes

Considering (24 ) and after collating (26), we can ob-
tain
E[LV(x(1),i)] < -22p | S(0) || +

ST Y A, 8(1) -

ST™(1) Y A, (@, —H,)S(1)

jeq!

(27)

Since z A; =0, the following equation holds for arbi-
Jes
trary matrices H, = H, ,

ST (1) Y AHS(1) =0

jer

(28)
By adding the left side of (22) into (21), we obtain

E[LV(x(1),i)] <-22p | S(1) | +
ST XA, @,8(1) =S (1) Y A, (@, —H,)S(1) -
S'(1) Y AHS(1) <-242p | 8"(1) || -
ST(t) Z/\U(dj, _Hi)ST(t) +

S' (1) Y A, (b, —H)S" (1) +

ST(1) z’/\,.j(zpj -H)S"(1) <
=22p|IS"(1) || =S"(1) Y A, (@, —H,)S" (1)

jedi

Note that, the set of LMIs (22) and (23) are equivalent
to the following inequality :

ST(I)C,Z)\U((D,, -H,)C'S"(1) <0 (29)
jedl
Hence, one can acquire
LV(x(t),i) <0 (30)

which yields that the state trajectories converge to the pre-
specified sliding surface in finite time. The proof is com-
pleted.

3 Simulation and Result Analysis

In this section, we provide a practical example to testi-
fy the advancement and superiority of the proposed meth-
od.

We consider the DC motor' >, which represents the
actuator that is usually encountered in the position control
servo-mechanism. As shown in Fig. 1, a load is driven
by the DC motor. In Ref. [23], the author ignored the
influence of the inductance L,, i =1,2,3, while in this
example, the inductance will be taken into consideration.
The switch composed of three positions is also observed,
and we hypothesize that the switches from one position to
the other are dominated by a continuous-time Markovian
chain {r,,t=0}| with r,e /= {1,2,3} as shown in (2).
For each r, =i e/, R, and L, are adopted to represent the
active resistances and the inductances, where the active
resistance can be implemented by a differential amplifier.
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The voltage of the inductance, current, the voltage of the
source and the speed of the shaft at time ¢ are denoted by
u (t),i(t), u(t) and w(t), respectively. According
to the electrical and mechanical law, we obtain

di(t) _
L, s =u, (1)
7D < ki) ~bw(n) (31)

u(t) =u, (1) —i(t)R, +K w(t)

where K, and K, are the electromotive force constant and
the torque constant; J_ and J_ are the moments of inertia
of the motor and load; b and b_ are the damping ratios of
the motor and load, respectively ;n is the gear ratio, and

(32)

(e b e v b,

Fig.1 Block diagram of a DC motor

Additionally, let x, (t) =i(t), x,(t) =w(t), and
x,(t) =u, (t). System (31) can be rearranged in the
following form

L 0 07x (1) 0 0 1 rx, (1)
{0 J 0}[)&2(0}:[[(, -b 0 ]{,\;2(1)]+
0 0 0llx,(r) R -K, -1lx,(1n

0
0
1

If we choose K, =4, K, =2.5,J,=1,J,=8, b, =
1.5,b.=2,n=3,R =5,R,=4,R,=3,L =2,L,=
3, L, =4, then, from (31) and (32), we can obtain

Eq. (6) with the following parameters

u(t) (33)

2.0 0 0o 0 1 0
E,:[O 3 0],Al:[2.5 ) o],s,:[o]
00 0 5 -4 -1 1
3.0 0 0o 0 1 0
EZ:[O 3 o],Azz[z.s ) O],BZ:[O]
00 0 4 -4 - 1
4.0 0 0 0 1 0
E3=[0 3 0],A3=[2.5 -2 0 ,B3=[0]
00 0 3 -4 -] 1

Hypothesize that the mismatched uncertainties in system
(6) are depicted by

D =(-0.5 0.5 0)"
V,=(-0.2 0.2 0), H, =sin(1)
D,=(0 0.5 -0.5)"
V,=(-0.2 0.2 0), H,=cos(t)

D,=(-0.5 0 0.5)7
V,=(-0.2 0.2 0), H,=sin(r)

The transition probabilities matrix is given by

-0.6 * #
A= * * -0.8
-0.3 -0.6 0.9

Now, solving LMIs (22) and (23) in Theorem 2 to
design a sliding mode controller of the form (24) yields

&, =2.43, &,=1.76, &, =234
H =1.38, H,=1.51, H,=1.68

A feasible solution cannot be found by checking the
conditions (15) for system (33), and according to Fig.2,
system (33) cannot be stochastically admissible. As for
the model shown in Fig. 1, its performance can be dam-
aged by instability or impulse or even destroyed. Thus, it
is necessary to design a controller to guarantee that the re-
sultant closed loop system is stochastically admissible.

3.0r .
—

2.5F

2.0 TR
L.5¢ !
1.0F Y
0.5F /I

0
—0.5F \

—1.07—10 20 30 40 30 60 70 80 90 100

i

Open state response/10®

(a)

S

n

=

[5)

= 1.5F

Z

S 10k

21.0

0.5r
0 1 1 1 1 1 1 1 1 1 ]
0 10 20 30 40 50 60 70 80 90 10

Time/s

(b)
Fig.2 State responses. (a) Open loop system;(b) Markov chain

Next, to verify the effectiveness of the proposed results
in this paper, a sliding mode controller in the form of
(24) will be constructed such that the resultant closed
loop system is stochastically admissible. Hypothesize that

the initial states x (0) = (0.2 0.1 0.6)7, u(0) =
. . ST (1)

0.1, ST (¢ laced b )
sign (S (7)) is replaced by 0.02+ | 87(0) |

Fig. 2 shows the state response curve of the open loop
system, and the simulation results in Ref. [ 10] is shown
in Fig.3. The state response curve of the closed loop sys-
tem is shown in Fig.4. The dynamics of the sliding sur-
face function is depicted in Fig.5, and the dynamics of
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the dynamic sliding mode controller is displayed in Fig.
6. It can be observed that by applying the dynamic slid-
ing mode controller, the closed loop system is piecewise
regular, impulse free and stochastically stable, which ef-
fectively improves the performance of the model in
Fig.1. Compared with the method proposed in Ref.
[10], the four advantages of our method are obtained as
follows ;

1) Considering the convergence speed of the state traj-
ectories, it clearly shows that the speed of convergence
by our method is faster than that of the method given in
Ref. [10].

2) As for VSC, the chattering effect is an important
aspect that needs concern. In the simulation results, we
can confirm that compared with the sliding surface''"’ |
the evolution of the sliding surface in this paper shows
that the chattering effect is better suppressed.

1.0r
0.8F
0.6 %
0.4
02
0
02
11620 30 40 30 60 70
Time/s

(a)

T ——F--

<

Closed state response

o =

1 1 J
80 90 100

Lt R o A
o> o o
F ¥ T 1

Markov chain

e
15
T

10 20 30

70 80 90 100

=

1 1 1
40 50 60
Time/s

(b)
Fig.3 State responses. (a) Closed loop system; (b) Markov chain

—X
7x2
— X

o
N
T

o o
N £
T

(=

Closed state response

| |
S o
EN [\S)

S 10 15 20 25 30 35 40 45 50
Time/s

|
o
o)

Fig.4 Simulation results of the example by using the method
proposed in Ref. [ 10]

0.6
0.5
0.4y
0.3
0.2
0.11

(=

Sliding surface function

L
S o o
W N =

1 1 1 1 1 1 1 1 1 J
10 20 30 40 50 60 70 80 90 100
Time/s

(=)

Fig.5 Sliding surface function

° o o
NS =)
T

|
<
N o

-0.4

Sliding surface function

|
o
o

S
o

o 1 1 1 1 1 1 1 1 1 J
"0 10 20 30 40 50 60 70 80 90 100
Time/s

Fig.6 Dynamic sliding mode controller

3) From Fig.4, we can see that the fluctuation of the
state trajectories seems acute, but from Fig. 3, we can see
that the state trajectories are smoother than the results in
Ref. [10]. This point deserves mentioning in the process
of practical application, and the systems may be damaged
if the convergence is too steep.

4) From Fig. 4, we can see that the overshoots of the
state trajectories are large, but from Fig. 3, we can see
that the overshoots of state trajectories are smaller than
the results in Ref. [ 10 ].

From the simulation results, it is clear to see that the
state trajectories of the resultant closed-loop system are
driven onto the desired sliding surface in finite time,
which confirms our proposed method. Also, the simula-
tions sufficiently illustrate that our methods are advanced
and correct. As is known to all, in the actual engineering
system, stability, convergence speed and overshoot must
be considered. In this paper, the sliding surface function
and controller are improved in the above aspects.

4 Conclusion

This paper investigates the dynamic VSC problems for
DMJSs with PUTPs. We propose a sufficient condition
according to precise LMIs to ensure the stochastic admis-
sibility of DMJSs with PUTPs and to construct a dynamic
sliding mode controller, which can guarantee the reach-
ability of the state trajectories to the pre-specified sliding
surface in finite time despite of the uncertainties and dis-
turbances. Finally, a practical example of a DC motor is
provided to demonstrate the effectiveness of the acquired
results.
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In the existing literature, time delay and packet loss in
the network control systems are modeled as a process of
using time stamp technology, but for the convenience of
research, the existing literature is still based on the hy-
pothesis that the transition probability is completely

known. Due to the common existence of network in prac-
tical engineering, it is a meaningful topic to combine the
DMISs with PUTPs and network control.
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BEEHORANEBMEBENT XSRAXBERFENTEHHEH

Eaik  INEAR R

(BFRFAIFEFRE, K& 300350)
(BAFRFHRWEARRKE L LT, X E 300350)

WE AT EANRS KRB EN ) LD RT AT R4 T EMIZR P 40, A0 ® X4 E
REXBA, LB TIRAIF S KBRS RTRRE ZAAMAEH G LT LR, A EA
Ay RBEBMENT XL RTRARLLZAMET —FIHOETRARSFHAGD SRS I,
I T HERAEH R RAE RS I ARIE T R St A2 A PR B ) A B A 35 T 690 B @ a8t
Ml — 7 ) R AR TR R A X9 TTAT M, 7T A0 T AN T 3R 2 L0 AL T 3 M. SRJE , VA BLIR B S AL A 1) 35t
BT bR AL 5 T AR A ARAR G, K SR B ) 35 R AR ) AR B R A PR Bag AL,
KRS LD RTRE A% TEMIEH ;35 KRB ME ALEH 1

E 55 TP273



