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Abstract: In order to increase the accuracy of microscopic
traffic flow simulation, two acceleration models are presented
to simulate car-following behaviors of the lane-changing
vehicle and following putative vehicle during the discretionary
lane-changing preparation (DLCP) process, respectively. The
proposed acceleration models can reflect vehicle interaction
characteristics. Samples used for describing the starting point
and the ending point of DLCP are extracted from a real
NGSIM vehicle trajectory data set. The acceleration model for
a lane-changing vehicle is supposed to be a linear acceleration
model. The acceleration model for the following putative
vehicle is constructed by referring to the optimal velocity
model, in which optimal velocity is defined as a linear
function of the velocity of putative leading vehicle. Similar
calibration, a hypothesis test and parameter sensitivity analysis
were conducted on the acceleration model of the lane-changing
vehicle and following putative vehicle, respectively. The
validation results of the two proposed models suggest that the
training and testing errors are acceptable compared with similar
works on calibrations for car following models. The parameter
sensitivity analysis shows that the subtle observed error does
not lead to severe variations of car-following behaviors of the
lane-changing vehicle and following putative vehicle.
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process;

he lane-changing behaviors of vehicles are complex,
T which play a fundamental role in the microscopic
traffic flow theory. According to the intention of lane
change, lane-changing behaviors are commonly catego-
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rized into two types: mandatory lane change (MLC) and
discretionary lane change (DLC). The MLC describes
the behavior that the vehicle must leave the current lane
while the DLC is performed to improve the driving condi-
tions. The effect of the DLC on traffic flow is scattered
and global while that of the MLC is focused and local.
The complete lane-changing process is composed of a
lane-changing decision (LCD), lane-changing prepara-
tion (LCP) and lane-changing execution (LCE). LCD
includes the following four successive decisions: Genera-
tion of the lane-changing requirement, choice of the tar-
get lane, choice of the target gap and acceptance of the
target gap. The target lane is selected from the adjacent
lanes and drivers seek an appropriate target gap in the tar-
get lane. According to the characteristics of driving be-
havior, the first two decisions have few significant effects
on vehicle’s current car-following motion. After choosing
a target gap, an LCP process will be executed until the
target gap is acceptable for lane change. During the LCP
process, especially in a congested traffic situation, the
lane-changing vehicle usually has to deliberately slow
down first to wait for the target gap or to speed up to
squeeze into the target gap. In this process, the following
putative vehicle may slow down or switch to the other
lane to let the lane-changing vehicle in. Thus, a lane-
changing vehicle interacts with surrounding vehicles in its
current lane and target lane during the LCP process. The
LCE process is the period from the time that the lane-
changing vehicle accepts the target gap to the time that
the lane-changing vehicle inserts itself into the target gap
successfully. The LCE process occurs right after the LCP
process.

LCD has been studied adequately. A comprehensive re-
view about LCD modelling can be referred to in Refs. [ 1
—2]. The LCD models can be classified into four groups:
Rule-based models, discrete-choice models, artificial in-
telligence models, and incentive-based models. Rule-
based models include the Gipps model”™, CORSIM mod-
el™, SITRAS model™, cellular automata model' and
game theory model'”. Discrete-choice models include
Ahmed’s model'™ and Toledo et al. ’s model . Artificial
intelligence models include the artificial neural network

][10*11]

mode and fuzzy-logic based model'”. Incentive-
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based models include MOBIL'" and LMRS.

Recently, the research on LCE modelling has been in-
creasing. Moridpour et al. """ studied LCE modelling un-
der heavy traffic conditions, and proposed the longitudi-
nal acceleration models for both heavy vehicles and pas-
senger cars. Papadimitriou and Tomizuka'"”' proposed a
polynomial model to make automated vehicles move in
both longitudinal and latitudinal directions. In the manual
LCE process, the lane-changing vehicle must dynamically
interact with its putative leader and follower in the target
lane in the longitudinal direction accompanying a lateral
movement. Kou and Machemehl'"!
locity that contained the lateral motion features to build an
acceleration-deceleration model for lane-changing vehi-
1. """ introduced visual angle information to
capture the vehicle interaction behavior during the LCE
process. Wang et al. ""*! proposed a behavioral-based gen-
eral framework for the LCE model.

The drivers’ behaviors related to the LCP have been sel-
dom paid attention to for a long time. Hidas'" developed a
new cooperative lane-changing model incorporating explic-
it modelling of vehicle interactions during the LCP process
using intelligent agent concepts, but the model is only a
concept, not yet validated by field data. Sun and Kondy-
1i"”" quantified the vehicle interactions during the LCP
process. Schakel and Knoop"" introduced a concept of
synchronized lane change which means that a potential
lane-changing vehicle intends to synchronize velocity with
the vehicles in the target lane. Empirical analysis based on
field trajectory data was presented to support such a con-
cept by Wan et al. * and Park et al. ™, but the field data
was limited to the freeway merging area.

In summary, existing research about lane-changing be-
havior focused on LCD and LCE. Research on LCP is
rare, and the research about LCP for DLC on freeways is
almost ignored. Hereafter, the LCP for DLC is called dis-
cretionary lane-changing preparation (DLCP), and similar-
ly, the LCE for DLC is called discretionary lane-changing
execution (DLCE). However, the DLCP process on a
freeway plays an important role in simulating and predic-
ting the lane-changing behavior more completely and accu-
rately. The aim of this study is to put forward two acceler-
ation models to simulate the longitudinal driving behaviors

used the angular ve-

cles. Wan et a

of the lane-changing vehicle and the following putative ve-
hicle during the DLCP process on freeway.

1 Data Description

This study used the published dataset, collected at US
Highway 101 ( US-101) in Los Angeles, California,
USA. The entire segment of US-101 is 630 m long with
five freeway lanes and an auxiliary. Starting with 1, lane
numbers are incremented from the left-most lane. The
US-101 data was collected from 07: 50 to 08:35 on June
15, 2005. The time interval for vehicle location update is

0.1 s, and each measured sample from this data set has
18 features, such as longitudinal position, lateral posi-
tion, velocity, acceleration, time, vehicle class, front
vehicle number, and following vehicle number. Lane 5
and 6 are excluded from the study since lane-changing be-
haviors in these lanes are likely affected by the on and off
ramps, but not likely to be discretionary lane changes. To
obtain a homogeneous model, four additional criteria are
applied for the selection of the discretionary lane-chan-
ging behavior sample:

1) The lane-changing vehicles which are trucks or mo-
torcycles are not considered.

2) The lane-changing vehicles whose interacting vehi-
cles include trucks or motorcycles are not considered.

3) Successive lane-changing processes are not considered.

4) The failed lane-changing processes are not considered.

5) The lane-changing vehicles whose leading vehicle
(in original lane) or putative leading and following vehi-
cle (in the target lane) changes lane at the same time are
not considered.

By using the above criteria, 146 discretionary lane-
changing behavior samples are selected. The correspond-
ing data set is smoothed by the locally weighted scatter-
plot smoother algorithm( LOWESS) **'.

2 Identification of DLCP

Fig. 1 shows the layout of a lane-changing vehicle and
its interacting vehicles during DLCP process, in which
the lane-changing vehicle is named as a subject vehicle
and marked as“SV”. Its interacting vehicles include the
leading vehicle and following vehicle on the current lane
as well as the putative leading vehicle and the following
putative vehicle on the target lane. They are denoted as
CLV, CFV, PLV and PFV, respectively, in Fig. 1. The
distance between SV and real CLV, CFV, PLV or PFV is
beyond 135 m. If CLV (CFV, PLV or PFV) is absent
within 135 m, then a corresponding virtual vehicle
(CLV, CFV, PLV or PFV) is set to be located at the po-
sition where the distance to SV is 135 m. The speed of
the following virtual vehicle (CFV and PFV) is set to be
0 m/s and that of leading virtual vehicle (CLV and PLV)
is set to be 30 m/s. The gap between PLV and PFV is
known as the target gap of subject vehicle and denoted as
g;. The piece-wise line with an arrow in Fig. 1 illustrates
the sketch of the whole lane-changing trajectory, where the
first segment represents the trajectory during the DLCP
process and the second segment represents the trajectory
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Fig. 1  Sketch of lane-changing vehicle and its interacting
vehicles’ layout during DLCP process
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during the DLCE process. To systematically identify the
DLCP process, the starting point and the ending point of
the DLCP process should be determined.

2.1 Identification of the starting point of DLCP process

In this study, it is assumed that once SV’s DLCP be-
havior is initiated and PFV obtains the signal, it will start
to slow down to provide a sufficient spacing with PLV for
SV inserting into target lane, which is called anticipation

. 25
behavior'™”

. Thus, the identification of the starting point
of SV’s DLCP process can be transformed into the identi-
fication of the starting point of PFV’s anticipation behav-
ior.

So far, two ways to identify the starting point of PFV’s
anticipation behavior have been presented, but both of
them have their limitations in practical applications.
Zheng et al. ™' used the Newell simplified car-following
theory to specify the starting point of anticipation. The
starting point of anticipation is identified by intersecting
the theoretical time-space trajectory of the PFV with its
actual trajectory before SV inserts into the target lane.
The method is based on the hypothesis that the spacing-
speed relationship for a given vehicle is linear before the
anticipation period, which is not consistent with real data
1. ' proposed another method
for the identification of the starting point of the anticipa-
tion period. In this method, the time when PFV’s accel-
eration reaches the maximum before SV inserts into target
lane is determined as the start of anticipation behavior. In
fact, this method cannot guarantee that the target gap will
become more suitable for SV inserting into the target lane
after the determined starting point of the anticipation peri-
od.

Thus, a simple but practical way is employed to identi-
fy the start of anticipation behavior by referring to the two
methods mentioned above. In the new method, the time
when the spacing between PFV and PLV starts to approxi-
mately enlarge significantly and continuously until SV
gets into target lane, is taken as the start of the anticipa-
tion period. At the same time, another condition that the
SV’s longitudinal position is close to the target gap should
be satisfied. In this study, both the relative space be-
tween SV and PLV and the relative space between PFV
and SV are constrained to range from - 1.5 to 30 m.
Taking the real SV with the vehicle ID of 410 for exam-
ple, Fig. 2 shows the identification results of the starting
point of DLCP process. The perpendicular black line in
Fig. 2 represents the starting point of the anticipation peri-

in most cases. Ghaffari et a

od, which is captured accurately from an intuitive view.
2.2 Identification of ending point of DLCP process

DLCP occurs before DLCE, and the ending point of
DLCP is the starting point of DLCE. Similarly, the iden-
tification of the ending point of SV’s DLCP process is

transformed into the identification of the starting point of
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Fig.2 Identification of the starting point of DLCP process for

SV with the vehicle ID of 410. (a) Change of longitudinal distance
between PFV and PLV; (b) Change of longitudinal distance between SV
and PFV, PLV

the DLCE process. The start of the lane-changing vehicle’s
lateral movements toward the adjacent target lane without
being interrupted is defined as the starting point of the
DLCE by several researchers'” ¥ . However, this method
ignores the significant change of lateral velocity when SV
starts DLCE. In reality, the magnitude of lateral accelera-
tion at this time slot often corresponds to a local maxi-
mum. Thus, in this study, when the SV moves from the
original lane towards the target lane without interruption,
the maximum of its lateral acceleration is denoted as the
starting point of DLCE, i.e. the ending point of DLCP.
Taking the real SV with the vehicle ID of 410 for example
as well, the identified results of the ending point of
DCLP are shown in Fig. 3. The rendered black circle in
Fig.3(a) and Fig. 3(b) represent the identified starting
point of DLCE with the traditional method and the new
proposed method. In the next section, we employ the
proposed method to identify the starting point of DLCE.
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3 Acceleration Model of Lane-Changing Vehicle
during the DLCP Process

By applying the identification procedure for the trajec-
tory of DLCP process described in Section 2 on the select-
ed NGSIM dataset, 100 groups of samples are extracted
in all. The empirical observations indicate that DLCP pe-
riod persists for 4 to 8 s on average with variations across
sites and lanes, which suggests that the DLCP behavior is
significant and should not be ignored in modelling the
lane-changing behavior. The 100 selected groups of sam-
ples are randomly divided into two equal parts (50 groups
each). One is employed to calibrate the proposed model
and the other is applied to validate the model perform-
ance. This section focuses on modelling the longitudinal
driving behavior of lane-changing vehicles during the DL-
CP period.

3.1 Model formulation

For the longitudinal movement during the DLCP peri-
od, SV behaves in a similar manner as it does under the
normal car following situations. The difference is that SV
behaves in response to CLV, PLV, and PFV simultane-
ously. Thus, the longitudinal governing equation of SV
during DLCP period is given as

Yoo (D) =axgy (t=T) +PBAxg, (t=T) +yAxgy' (1 =T) +
pAXG (1 =T) + wAxgy (1 -T) +
SAXY (1=T) +7AXL (1= T) (1)

where X, () are the longitudinal acceleration of vehicle
SV at time ¢ and xg, (¢ - T) are the longitudinal speed of
vehicle SV at time ¢ — T, respectively; Ax§y' (¢t - T),
AxZ\L,V( t—-T) and Axgiv(t — T) denotes the spatial head-
way with CLV, PLV and PFV of SV at r - T, respective-
ly; Axg,' (t=T), Axey (t—T) and Axs, (¢t - T) denote
the relative velocity with CLV, PLV and PFV of SV at ¢
- T, respectively. o, 8, v, p, w, 8, and 7 are the sensi-
tivities of drivers; T represents the driver reaction time.

By employing the least-squares estimation method, the
sensitivity parameters are calibrated with different drivers’
reaction times ranging from 0.1 to 1 s. Tab. 1 summari-
zes the estimated optimal values of parameters and corre-
sponding supporting statistics indicators. Notably, the
linear model is statistically significant at the 99% confi-
dence level (P <0.01). Considering that the individual
driving behavior is modelled, R’ value is reasonable.
Based on the supporting statistics indicators, the impact
of xs,, Axg, and Axe, on the SV’s longitudinal accelera-
tion during the DLCP process is insignificant and can be
ignored. This can account for these input variables having
strong correlations with remaining input variables. There-
fore, original model Eq. (1) is simplified into

)'c'sv(t) =BAx§$V(I—T) +yA)&§§V(t—T) +
wAXy (1= T) +8AxG, (1= 1) (2)

The estimated parameters and supporting statistics indi-
cators for the simplified model are also summarized in
Tab. 1.

Tab.1 Summary of original and simplified modelling
results for SV

Dependent Input

variable variable Coefficient P value R?
Xgy(1-0.4) 0.002 84 0.495
AxgyV(1-0.4) -0.009 17 0
AXGYY (1-0.4) -0.391 55 0
AxgyY (1-0.4) -0.001 47 0.051  0.683
AxyY (1-0.4) ~0.056 33 0

() AxEY(1-0.4) -0.004 66 0
AXEYY (1-0.4) 0.004 67 0.509
AxQY(1-0.4) -0.01323 0
A&gfvv(t—OA) ~0.389 89 0 0. 684
ALY (£1-0.4) ~0.053 35 0
Axgy (1-0.4) ~0.005 87 0

3.2 Model validation

The effectiveness of the above-proposed model in repli-
cating real longitudinal driving behavior during DLCP pe-
riod is validated using the MOE (model of effectiveness)
indices: MAE (mean absolute error) and RMSE ( root
mean square error). Their formulations are

M m,
2 ( z ‘x:'eal _ x:‘im )/m]
MAE = == M (3)

M
2)/ m,

IRV ]

RMSE = = i (4)

real sim
. - X.

where M represents the number of all samples; m repre-
sents the observation instant number of sample subset; the
superscript “real” and “sim” denote the values from the
real dataset and the proposed model, respectively; x can
be position p, velocity v and acceleration a.

Tab. 2 exhibits the validation results of SV. Both mod-
el errors using the calibration and validation samples are
within an acceptable range based on the table. Therefore,
the proposed acceleration model can replicate the longitu-
dinal driving behavior of SV during DLCP period with
good performance. From Tab. 2, it can be found that the
MAE and RMSE of p, v and a have great differences.
This can be explained by the fact that the variation range
of positions, velocity and acceleration differ greatly dur-
ing the DLCP period.

Meanwhile, we used the simplified proposed model to
simulate three real DLCP trajectories selected from the
aforementioned dataset. One trajectory of SV with a lon-
gitudinal speed of 7.455 m/s at the beginning of the DLCP
period is selected randomly. The actual observed DLCP
trajectory is used as a reference trajectory for the compari-
son. Fig.4 presents the simulation results of acceleration,
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Tab.2 Summary of validation results for SV

Calibration Validation
Model p/ v/ a/ p/ v/ a/
m (m-s)(m-s?) m (m-s ")(m-s7?)

. MAE 4.937 1.346 0.852 5.834 1.370 0.902
Original

RMSE 6.513 1.599 1.178 7.487 1.625 1.244

L MAE 5.218 1.402 0.859 6.175 1.436  0.909
Simplified

RMSE 6.924 1.663 1.178 7.950 1.693 1.244

velocity and position trajectory for the simplified pro-
posed model. From Fig. 4, errors are acceptable com-
pared with the similar work on validations for car follow-

ing models"™* .
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Fig.4  Simulated acceleration trajectory of SV with an initial

velocity of 7.455 m/s. (a) Acceleration trajectory; (b) Velocity traj-
ectory; (c) Position trajectory

The following analysis focuses on the change of one of
the MOEs, i.e. RMSE, with a subtle variation of cali-
brated parameters for the simplified model, since it can
be seen as an indicator of the robustness of the calibration
results. In Fig.5, the variations of parameters 8 in rela-
tion with the other three parameters y, w and § for the av-
erage of all SV samples are analyzed. Here, @ is restrict-
ed to the interval [ -0.1, 0.1], yto[ -1 1],wto [ -
0.10.1], §to [ —=0.01 0.01]. Note the symmetry in
each sub-figure, which is due to the linear effect of the
model. The visual relationships between 8 and the other
three parameters are sufficient to suggest that the calibra-

tions for y, w and § are robust, except .
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Fig.5  Sensitivity of parameters around the found minimum
RMSE of the simulated acceleration for SV. (a) Change of y with
B; (b) Change of w with B; (c¢) Change of § with 8

4 Acceleration Model of following putative
Vehicle during DLCP Process

In Section 3, it is mentioned that the target gap will en-
large the continuity during the DLCP period. In this sec-
tion, how the target gap changes in detail will be dis-
cussed. First, the velocities of PFV versus PLV from all
the observations are plotted in Fig. 6. These plots reveal a
obvious linear trend with a positive slope and a negative
intercept. The relationship between the optimal velocity
of PFV and PLV is assumed to be a linear model, which
is represented by

X;)Fpi,(t) =Do TP )'CPLV(I) (5)
where x% () represents the optimal velocity of PFV dur-
ing DLCP period. Based on the least-squares estimation
method, p, and p, are estimated to be —3.708 0 and
0.933 2, respectively. Supporting statistics R* for the
linear model is 0. 77, which is quite reasonable.

Considering the slope of fitted straight line p, is close
to 1 (see Fig.6), the slope value presumably should be
1, and Eq. (5) is simplified into

* Opt

Xy (1) :).CPLV(t) + D, (6)

. S—l)

Velocity of PFV/(m

0 10 20 30 40 50 60 70
Velocity of PLV/(m - s7")
Fig.6 Velocity of PFV versus PLV
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It implies that the optimal velocity of PFV relative to
PLV remains stable and is equal to p, during the DLCP
period. Then, the next work is to estimate constant term
p, more accurately again. From Eq. (6), the value of p,
is equivalent to the relative velocity with PLV of PFV.
The frequency histogram for the distribution of the opti-
mal velocity of PFV relative to PLV from all observation
samples is shown in Fig. 7, which is consistent with the
normal distribution curve obviously. Thus, the assump-
tion that the velocity of PFV relative to PLV obeys the
normal distribution is made, and the estimation of p, with
the expectation of the fitted normal distribution, i.e.
N( -6.006,37.283) is also made based on the selected
samples. Therefore, Eq.(6) can be rewritten as

x:’)]gi/(t) _xpL\/(t) = _6.006 (7)

0=6.106
1=—6.006 m/s
N, 6,)

-40  -30 =20 -10 0 10 20
Velocity of PFV relative to PLV/(m -« s7)

Fig.7 Distribution of velocity of PFV relative to PLV

According to Eq. (7), it can be validated that the opti-
mal velocity of PFV is to guarantee that the target gap
will be increased continuously with a stable velocity dur-
ing the DLCP period.

Moreover, referring to the optimal velocity model™ and
the above-mentioned study results for lane-changing vehi-
cle, an acceleration model is constructed to simulate the
longitudinal driving behavior of PFV during the DLCP
process, as follows:

Koy (1) = ol Xpy (£ = T) =X (1 =T)] +
BAXp e, (1 =T) +yAxp, (1) (1= T) (8)

By substituting xpi, (¢ — 7) with Eq. (7), Eq.(8) can
be simplified into

Ko (1) = a[ AP (£ = T) +6.006] +
BA (1 =T) + YA (D (1=T) (9

By using the similar calibration method with SV’s ac-
celeration model, the values of parameters «, B, y and T
are estimated to be - 0. 144 14, - 0. 012 50,
—-0.101 41, and 0.4, respectively.

Tab. 3 exhibits the validation results of PFV, which
suggests that the proposed model has good performance in
simulating the longitudinal driving behavior of PFV during
the DLCP period. In Fig.8, likewise, the proposed model
is used for PFV to simulate one real DLCP trajectory, with

529
Tab.3 Summary of validation results of PFV
Samples MOE MAE RMSE
p/m 6.054 6 7.778 7
Calibration v/(m-s™) 1.518 1.753
a/(m-s2) 0.883 1.177
p/m 6. 180 7.956
Validation v/(m-s~) 1.559 1.803
a/(m-s2) 0.881 1.183
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Fig.8 Simulated trajectory of PFV with an initial velocity of
7.146 m/s. (a) Acceleration trajectory; (b) Velocity trajectory;
(c) Position trajectory

an initial longitudinal speed of 7. 146 m/s. The simula-
tion results are acceptable as well. In Fig.9, the variation
of parameters « in relation with the other two parameters 8
and vy for the average of all PFV samples are analyzed. «
is restricted to the interval [ -0.2, 0.2], Bto[ -0.1, 0.
1],yto[ -1, 1].
stricted interval, while 8 and vy appear to be robust only
in the smaller intervals [ —=0.04, 0.02] and [ —=0.4, O.
2], respectively.

Here, a seems to be robust in the re-

5 Conclusions

1) Two acceleration models are proposed to simulate
the car-following behavior of SV and PFV during the DL-
CP period. Besides, two simple but practical methods are
employed to identify both the starting and ending point of
DLCP process, respectively. The validation results of the
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Fig.9 Sensitivity of parameters around the found minimum

RMSE of the simulated acceleration for PFV. (a) Change of 8
with a; (b) Change of y with

linear acceleration models for SV are very close and quite
acceptable compared with similar calibrations of car-fol-
lowing models. Moreover, the parameter sensitivity anal-
ysis suggests that the calibrated model is robust with sub-
tle input variable observation errors.

2) The PFV acceleration model by referring to the opti-
mal velocity model is proven to have good performance in
simulating car-following behavior during the DLCP period
as well. The calibrated optimal velocity function for PFV
acceleration model suggests that PFV is expected to in-
crease the target gap continuously with a stable optimal
velocity relative to PLV.

3) In traditional microscopic simulation models, the
DLCP process is considered to be the same as the car fol-
lowing phase and the longitudinal motion of lane-chan-
ging vehicle during DLCP process is simulated with regu-
lar car-following models. On the basis of identification of
the starting and ending point of DLCP process from real
trajectory data, the construction of the decision-making
model for starting and ending the DLCP process will be
our next work. The data source used in this study is limit-
ed to one dataset in NGSIM data. More datasets will be
calibrated in order to validate our models in the future.
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