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Abstract: To balance inventory cost with diverse demand, an
optimal investment decision on necessary process improvement
for delayed product differentiation is studied. A two-stage
flexible manufacturing system is modeled as a continuous time
Markov chain. The first production stage manufactures semi-
finished products based on a make-to-stock policy. The second
production stage customizes semi-finished products from the
first production stage on a make-to-order policy. Various
performance measures for this flexible manufacturing system
are evaluated by using matrix geometric methods. An
optimization model to determine the level of investment on
process improvement that minimizes the manufacturer’s total
cost is established. The results show that, a higher investment
level can reduce both the expected customer order fulfillment
delay and the expected semi-finished products inventory.
When the initial order penetration point is 0.4, the
manufacturer’s total cost is reduced by 15. 89% through
process investment. In addition, the optimal investment level
increases with the increase in the unit time cost of customer
order fulfillment delay, and decreases with the increase in the
product value and the initial order penetration point.
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n the era of e-commerce and make-to-order ( MTO)
manufacturing, customer purchase behavior has a pro-
impact on the production
process. Many customers prefer more personalized prod-
ucts that satisfy their specific needs, while others are un-
willing to wait long for customized products and prefer

nounced manufacturer’s

standard products on a guaranteed order delivery time.
Such diverse customer purchase behaviors require the pro-
duction process to be flexible while ensuring its produc-
tivity!"!.  Consequently, the postponement strategy is
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adopted to match the various behaviors.

In practice, many assembly industries, such as elec-
tronics and automobile, have adopted the postponement
strategy. Investment on standardization, modular design,
and process restructuring are three product/process rede-
sign approaches commonly applied to the postpone-

2
ment[ !

. For example, Helmut Schramm, head of BMWi
BMW around €400

million ( $ 552 million) for the process investment at its

production, claims that it costs
plant in Leipzig, Germany'”'. BMW made an investment
in parallel assembly of the Life module and the Drive
module before the two modules were integrated into the
LifeDrive architecture. As a result, the true appearance of
the cars emerged only at final assembly rather than in the
body shop. Hewlett-Packard ( HP) created the so-called
design for localization'”'. HP redesigned their products so
that the power supply module was the last component to
be added. This addition can be easily done at the distribu-
tion center. With the above highlighted benefit of delayed
product differentiation, it is thus important to have the
analytics ability to make an optimal investment decision
about necessary process improvement for achieving such
delayed product differentiation.

The postponement production system is usually com-
posed of two phases, namely, push and pull. On the one
hand, the push phase is forecast-driven. It is located up-
stream and follows standard production. On the other
hand, the pull phase is customer-driven. It is located
downstream and follows customized production. The or-
der penetration point ( OPP) is the boundary between
these two phases, which is also known as the point of dif-
ferentiation or the customer order decoupling point. Giv-
en the importance of the postponement strategy, the OPP
decision problem has attracted much attention in the liter-
ature.

There are two main lines of literature related to our
study, i.e., OPP decision-making with and without con-
sideration of any process improvement. We first review
the literature without considering any process improve-
ment. Jewkes et al. "' found that the optimal OPP moves
downstream if customers accept a narrower range of prod-
uct characteristics. However, the optimal OPP is neither
sensitive to the changes in supplier capacity nor customer
demand. Pang et al.'” proposed a cost control model
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with multiple product differentiation points, and analyzed
the implementation conditions of process flow reorder.
Zhang et al.'” presented a supply chain postponement
strategy model by using the queuing theory to determine
the optimal ratio of differentiation and inventory level.
Shao et al. " modeled various postponement strategies for
coping with risk in the thin film transistor liquid crystal
display industry. Shan et al. " investigated the applica-
tion of the postponement strategy in apparel supply chain
management. They found that it is beneficial to adjust the
first production proportion and replenishment ratio to im-
prove competitiveness. Liu et al. " proposed an OPP de-
cision model considering time scheduling with capacity
and time constraints. Numerical examples showed that
OPP moves earlier with the increase in the volume of new
orders. Yousself et al. ' studied the impact of items pri-
ority levels on the optimal MTO/MTS decisions. By set-
ting the optimal priority allocation and the base-stock lev-
els, the overall inventory costs are minimized. Neverthe-
less, the studies discussed above only explored the rela-
tionship between the optimal OPP and the postponement
strategy. Little investigation has been done on the rela-
tionship between OPP and the investment process.

The literature on the impact of process improvement on
the OPP decision-making is still in its infancy. Lee'”
was the first to present inventory models for product/
process design applications. Those models, however, as-
sume that no buffer stocks are held until the end of the
production process. In a further developed model, Lee et
al. ™ allowed different process points to hold inventories
and incorporated several factors that would normally be
affected by delayed product differentiation. However, the
average investment cost per period is independent of OPP

in their model. Su et al. " considered the problem that a

Order penetration point
in a production system

NV— 00—\

firm can make a series of investments to design generic
product components with the implementation of postpone-
ment structure. However, the one-time investment cost is
assumed to be fixed in their model. More recently, Ngni-
10 1”! by incorporating
the delivery of product components from an external sup-
plier at the beginning of the production network. Howev-
er, the investment cost remains independent of OPP.

In our paper, OPP can be pushed downstream through
process investment. We model the production process to

atedema et a extended the mode

better understand how the investment level affects the
trade-off between customer order fulfillment delay and in-
ventory risks. We use an approach similar to that pro-
posed by Jewkes et al. ' and propose an alternative mod-
el. First, our model is used to investigate the impact of
the investment level on the postponement strategy instead
Bl Secondly,
level is regarded as a decision variable in our model, not
a fixed value. In addition, we assume that the updated
OPP through process improvement meets the law of di-
minishing marginal utility, and thus it is modeled with a
continuous, increasing, and concave function with respect
to the investment level.

of market characteristics the investment

1 Production System Model

For each type of product that the manufacturer offers,
the production system consists of two phases. In phase
one, the semi-finished parts are made in an MTS fashion,
and are stocked at the warehouse. In phase two, when the
manufacturer receives customer orders, the semi-finished
parts are customized in an MTO fashion and are sent di-
rectly to customers. Fig. 1 illustrates the postponement
production process.

Customer orders
| | arrive with rate

Finished
products

Infinite raw Semi-finished items Semi-finished MTO process
material are produced with items capacity s with rate
rate ou/(6(u)) 1 (1-6(u))

Investment process

level u on OPP
Fig.1 The postponement production process

As shown in Fig. 1, we assume that the manufacturer
can procure an infinite amount of raw materials and never
faces shortages. Meanwhile, we assume that it has limited
storage capacity for semi-finished products, denoted by s.
We quantify the OPP variable, denoted by 8(0 <6 <1), to
be the percentage of product completion after phase one.
We set 6, to be the initial OPP. Note that we use 6, a
continuous variable, to quantify the decision about prod-
uct differentiation, thus it is more convenient to derive

analytical results from our model and conduct sensitivity
analyses. While most of the production processes are not
continuous with respect to OPP, the optimal value ob-
tained from our model can be used in practice to guide the
postponement of product differentiation.

We denote u to be the level of investment on process
improvement (#=0). 0(u) represents the new OPP that
resulted from the process improvement with investment
level u. Assume that 9( +) satisfies #(0) =46,, 6(u) <9,
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0'(u) >0, 0"(u) <0. Additionally, we assume that or-
ders are processed with a mean rate u. We assume the
time taken at phase one to produce one unit of semi-fin-
ished product to be exponentially distributed with parame-
o
6(u)’
the ratio of MTS processing rate to the MTO processing
rate. We also assume that the time taken at phase two to
process one unit of semi-finished product is exponentially

ter where 6 >0 is the scaling factor representing

distributed with parameter — & Next, we assume
u

that customer orders arrive according to a Poisson process
with rate A and they are served on a first-come-first-
served ( FCFS) basis. Once the products are retrieved
and processed, we can fulfill the customer orders.

1.1 Markov model

With the above system specifications, we model the or-
der fulfillment process as a continuous-time Markov chain
with infinite states. The state space is {(i,j),i=0,0<
j<s!|, where i is the number of orders and j is the num-
ber of semi-finished products. Fig.2 presents the transi-
tion diagram with row and column indices by i and j. We
next explain representative states and state transitions.
State (0, 0) implies an idle system. When a customer’s
order is placed, the system state changes from (0, 0) to
(1, 0) with transition rate A. After completing the first
phase of the manufacturing system, the system state chan-

ges to (1, 1) with transition rate a = % After the or-

der is fulfilled, the system state returns to (0, 0) with

Fig.2 Transition rate diagram of the Markov chain

,a, | be the steady-state probability
of the Markov chain, where 7, = {7, o) ,7 (1), """ s T () |

Let w={m,,m ,

is an (s +1)-dimensional row vector. Additionally, 7,
denotes the steady-state probability associated with the
condition that there are i orders and j semi-finished prod-
ucts. Referring to the transition diagram in Fig. 2, we ob-
tain the following balance equations :

(a+/\)7T(i,j) =D (ih1ju) i=0,j=0 (1)
(a+M)m; =am;,; \, +bm .., i=0,lsj<ss-1
(2)
ATy = Qg i=0,j=s (3)
(a+A)m ;) =Ami ;) +bm .0, 1<i,j=0
(4)
(@+ A +D) 7 =am; ;.\, + ATy + b7y
I<si,l<sj<ss-1 (5)
(A+b)m ;) =am;,; ) +Am_, I<i,j=s (6)

The generator matrix of the Markov chain is given by

B A,
A, A A
0=|" Al AO 4 (7)
2 1 0
where
-(a+\) a
-(a+A) a
B: .', .
—(a+A) a
-A
—(a+)\) a
—(a+A+b) a
Al: ‘. . ..
—(a+A+b) a
—(A+b)
0 0
AZ:[Ib 0]’A°=”‘

1.2 Performance evaluation

Before analyzing the steady states, we check the stabil-
ity condition inherent to the Markov chain modeled earli-
er. We introduce matrix A =A; + A, +A,, where A is a
generator matrix and its associated stationary distribution
X=1{X,,X,X,, ,X, | is a solution to XA =0 and

we obtain X = ——<=

Y X, =1. Considering a =--, o
~ b -

fa’,a' 0’0,

To ensure the stability of the system, the processing rate
for the second phase of the production must be greater than
the customer arrival rate and smaller than the processing
rate for the first phase. Moreover, the Markov chain is
positively recurrent if the following condition is met;
XA,D >XA,D. D is an (s +1)-dimentional row vector of
which the entries are 1. Thus, we obtain the stability con-

(1-a")du
(1-a"")6(u)
shown to be stable, we can derive the steady-state distribu-
tion.

dition as A < Once the Markov chain is

To compute the steady-state distribution, we employ
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the matrix geometric method (MGM) , which is effective
when dealing with high-dimensional systems'”’. We use
the submatrices of Q to compute the steady-state probabil-
ity vector iteratively, with boundary vector 77, determined
by m,(B + RA,) =0. The rate matrix R is introduced,
which satisfies the matrix geometric equation: 7,,, =
a, R, i=0. Moreover, R is the minimal non-negative so-
lution to the matrix quadratic equation: A, + RA, + R’A,
=0. That is, R is determined by the submatrices of the re-
peating portion in . One way to compute R numerically
follows an iterative approach: R(n+1) = — (A, +R(n)” -
ADA, until [R(n+1) -R(n) |, <&, with R(0)
=0. It is known that the spectral radius of R is less than
one if the Markov chain is stable and ergodic.

With the steady-state distribution, we can compute the
following queuing performance measures; E (L) is the
expected number of customer orders; E( W) is the expec-
ted customer order fulfillment delay (i.e., the expected

time from customer order arrival to order completion) ,
and E(O) is the expected number of semi-finished prod-
ucts. The measures are then given by

E(L) =, (I-R)’°D
E(W) =E(L)/\

E(O0) =@, (I-R) "'V, V=10,1,2,st"

We next present a stylistic numerical example to illus-
trate how the investment level u and the initial OPP 6, af-
fect E(W) and E(O). Set §,to be 0.1, 0.3 and 0.6. Re-
call that (0) =6,, 6(u) <6, 6'(u) >0, 0"(u) <0. We
consider two functions to represent §( u) that satisfy the
above conditions. The two functions are §, (u) =6, + (6 —

6,)(1 —e™)" and 6, (u) =6, +c ﬁm] , shown in
Fig.3. Other parameters are as follows: A =0.55, s =3,
0=0.9, £=10""", ¢=0.07 and v =0.3. We assume that
8=6(u). Figs.3(a) to 5(a) report the cases for 8, (u)
and Figs.3(b) to 5(b) report the cases for g, (u).

From Fig.4, we observe that a higher investment level
results in a shorter expected customer order fulfillment de-
lay. This observation implies that a smaller percentage of
the production process is required to perform the customi-
zation task, which reduces the expected customer order
fulfillment delay. Additionally, E( W) is sensitive to ,.
If the initial OPP is located at the front-end of the produc-
tion process, the expected fulfillment delay registers a
more marked reduction. However, when the process im-
provement is beyond a certain investment level, such as
u =10 in Fig. 4 (a) , the expected customer order fulfill-
ment delay remains unchanged, no matter where the ini-
tial OPP is located.

Fig. 5 shows how E(O) is affected by u. A higher in-
vestment level is beneficial to hold a fewer expected num-
ber of semi-finished products. As the investment level in-
creases, the initial OPP is pushed down; i.e. , a larger
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(b)
Fig.5  Impact of investment level on expected number of

semi-finished products. (a) 6, (u) =6, + (0 -6,) (1 —e™);
(b) 6,(u) =6, +cu

percentage of each product is completed in advance in phase
one. Customers can receive their products much faster. As a
result, it is not necessary to hold a more semi-finished prod-
ucts inventory. Similarly to Fig.4, E(O) is also sensitive to
6,. The smaller the 6,, the larger the E(O).

2 Cost-Minimization Formulation

The manufacturer seeks to minimize the sum of the fol-
lowing costs when determining the optimal investment
level u” ; The expected cost of customer order fulfillment
delay; the expected inventory holding cost of semi-fin-
ished products; and process improvement cost. Mathe-
matically speaking, the manufacturer intends to minimize
its total cost (TC).

minTC(u) =C,E(W) +C,V(0)E(O) +gu’ (8)

where C| is the average cost per time unit of customer or-
der fulfillment delay; C, is the average holding cost per
time unit per semi-finished product; V(@) is the average
value per semi-finished product, assumed to be increasing
in #; and g is the cost coefficient of the investment. Here
we assume that the cost directly associated with the in-
vestment level is quadratically proportional to the invest-
ment level. The customer order fulfillment delay may de-
crease as the investment level increases. However, an in-
creased investment may also increase the inventory hold-
ing cost of semi-finished products and also increase

spending on the investment.
must weigh these conflicting factors when selecting the
optimal investment level.

Hence, the manufacturer

2.1 Optimization results

We present numerical experiments to investigate how
the manufacturer’s total cost is affected by the initial OPP
and the investment level. In these experiments, we use
0,(u) =6,+(0-6,) (1 -e ™). In our Matlab R2015a
implementation, we used the following parameter values:
A=0.55, u=1,5=3,0=0.9,¢=10"",C, =1,
C,=1,y=0.3 and g=0.1. We assumed that § =0(u)
and V(6) =V@(u), where V is the value of the product
and equal to 1. Since both E(W) and E(O) are un-
changed when u = 10, as shown in Fig. 4 (a) and
Fig.5(a), we use the enumeration method to calculate
TC by selecting the value of u from O to 10.

Fig. 6 shows the manufacturer’s total cost and the OPP
under different investment levels when 6, =0. 1. It is noted
that the minimum total cost is 7. 361 and it occurs when
level is 3, The
manufacturer’s total cost is reduced by 48. 29% through
process investment, which is remarkable. The correspond-
ing optimal OPP @(u” ) is 0.575. Increasing the invest-
ment level can indeed lower the manufacturer’s total cost.

the investment i.e., u® = 3.

However, when the investment level further increases, it
no longer results in any cost reduction.

18- 109
- X=X
16 Lox X Jo.8
4 14.235 —— o7
¥ - - 10.
N 0.575,% e
121, o o H0.6
10 7 - 405 o
o, X 17361 e &
sl T 404 ©
L X/ -
6r cxe-opp 103
ar/ --e--TC 0.2
2f H0.1
0 1 1 1 1 1 1 1 1 1 0
012 3 456 78 910

Investment level u
Fig.6 Impact of investment level on total cost and OPP

Tab. 1 shows the optimal investment level u” and the
optimal OPP 9(u" ) with respect to varied 6,. As 6, in-
creases, u~ decreases and is greater than 0. Thus, it is
beneficial to further delay product differentiation through
process investment, since reducing the customer order
fulfillment delay is the primary goal of the manufacturer.
However, when 6, =0.8, u” is reduced to 0. It means
that there is no investment. The manufacturer’s total cost
increases in response to any further increase in invest-
ment, and thus the manufacturer is unwilling to further
invest in the process improvement. On the other hand,
the optimal OPP §(u" ) does not strictly increase with
6, 0(u") declines from 0. 615 to 0.571 when 6, increa-
ses from 0.2 to 0. 3. The reason is that u* decreases from
3 to 2. For a similar reason, §(u" ) falls slightly when 6,
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increases from 0.5 to 0. 6. Fig. 7 describes the relation-
ship among 6(u” ), u” and 6,.

Tab.1 The optimal decisions for various 6,

0o u” O(u™) TC(u™) A/ %
0.1 3 0.575 7.361 48.29
0.2 3 0.615 7.147 35.91
0.3 2 0.571 6.884 24.89
0.4 2 0.626 6.598 15.89
0.5 2 0. 680 6.364 8.38
0.6 1 0.678 6.075 3.95
0.7 1 0.752 5.820 1.20
0.8 0 0. 800 5.587 0
Note: A =(TC(0) —=TC(u*))/TC(0) x100% is the cost saving

and TC (0) is the manufacturer’s total cost without investment
,u=0).

rate,
(i.e.

0.8

03 =05
- 0.6

5| STy ——

0.2O

u*
Fig.7 The optimal OPP and optimal investment level under
different 6,

2.2 Sensitivity study

Next, we study the sensitivity of optimal solutions with
the parameters changing.

Fig.8(a) and Fig.9(a) illustrate that as the unit-time
cost of customer order fulfillment delay increases, the op-
timal investment level and the cost saving rate increase.
This implies that, for a higher unit-time cost of customer
order fulfillment delay, the manufacturer should more
sensibly consider an investment in the process improve-
ment. In other words, the OPP is likely to be further
pushed downstream with impatient customers.

As the product value increases in Fig. 8 (b) and Fig. 9
(b), the optimal investment level and the cost saving rate
decrease. This implies that the manufacturer is less will-
ing to make an investment on process improvement when
the product value becomes larger. This is due to an in-
crease in the holding cost of the semi-finished products.

Additionally ,as shown in Fig.8(c) and Fig.9(c), the
optimal investment level and the cost saving rate decrease
with the increase in the cost coefficient of the investment.
A higher cost coefficient of the investment means that the
manufacturer should invest more in order to achieve the
same delivery lead time. To balance the customer order
fulfillment delay cost with the investment cost, the manu-
facturer may set a reasonable investment level.

For more sensitive information, please see Tabs. 2 to 4.
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Fig.8 Impactof C,, V, g, 6, on optimal investment level. (a) V=1, g=0.1; (b) C, =1,g=0.1; (¢) C,, =1,V=1
701 _o
e 30% 45r
651 e”//” N 40 e e 00(;1
- | > - = ~—— 0.
60 /e’// = \\\ (90: \‘e‘\\\ 0.3
50 .~ &\\ 0.1 35+ el
s0L.~ o 20 S <03 ~~%
® /x"”’ 1SS AN I 30
E 451 //,” E 15F N E
40} e NN 251
35 e 10F~ \3\\ 20% <
0 .7 0,: RN RN Tl
25¢7 0.1 5t e 15 - e
<03 SX=
20 1 1 1 1 0 L L ~ v 1 lO 1 1 1 ]
1.0 L5 2.0 2.5 3.0 2.0 25 3.0 35 4.0 0.2 03 0.4 0.5 0.6
C, 14 g
(a) (b) (c)
Fig.9 Impactof C,, V, g, 6, on cost saving rate. (a) V=1, g=0.1; (b) C,=1,g=0.1; (¢) C, =1,V=1
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Tab.2 The optimal #™ and TC(u" ) for various C,,
u” TC(u™)

b c, =15 C,=2 C,=2.5C,=1.5 C,=2 C,=2.5
0.1 4 4 4 8.851 10.052  11.254
0.2 3 4 4 8.509 9.733  10.834
0.3 3 3 4 8.174  9.386  10.449
0.4 3 3 4 7.880  8.957  10.097
0.5 2 3 3 7.493  8.577  9.534
0.6 2 2 2 7.133  8.095  9.057
0.7 1 2 2 6.737 7.647  8.464
0.8 1 1 1 6.358 7.091  7.825

Tab.3 The optimal u* and TC(u" ) for various V

8, u* TC(u™)
V=2 V=3 V=4 V=2 V=3 V=4
0.1 2 2 1 10.665 13.672 16. 141
0.2 2 1 1 10.438 13.517 16. 199
0.3 2 1 0 10.271 13.378 16. 044
0.4 1 1 0 10.091 13.344 16.132
0.5 1 0 0 9.895 13.248 16.398
0.6 1 0 0 9.773 13.280 16.758
0.7 0 0 0 9.649 13.406 17.163
0.8 0 0 0 9.588 13.588 17.588
Tab.4 The optimal #™ and TC(u" ) for various g

o u* TC(u™)

g=0.2 g=0.4 g=0.6 g=0.2 g=0.4 ¢=0.6
0.1 2 2 1 8.058  8.858 9.650
0.2 2 2 1 7.632  8.432 8.653
0.3 2 1 1 7.284  7.705 7.905
0.4 1 1 1 6.938 7.138 7.338
0.5 1 1 1 6.506  6.706 6.906
0.6 1 0 0 6.175  6.325 6.325
0.7 0 0 0 5.891 5.891 5.891
0.8 0 0 0 5.588  5.587 5.587

3 Conclusion

This paper mainly investigates the investment decision
optimization for delayed product differentiation. A flexi-
ble manufacturing system modeled as a continuous time
Markov chain is considered. Two important queuing per-
formance measures by using the matrix geometric method
are computed. Furthermore, our study leads to three
managerial recommendations. First, the manager should
consider the initial OPP when making a decision to invest
or disinvest in the process improvement. Secondly, the
manager should focus more on impatient customers as the
cost of customer order fulfillment delay can have different
impacts on the investment decision. Finally, the manager
should take a more holistic viewpoint by considering the
value of the products and the cost directly associated with
the investment decision, especially when attempting to
launch a high volume of investment.
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