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Multi-relaxation-time lattice Boltzmann simulation
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Abstract: To investigate the slide film damping in the micro-
scale shear-driven rarefied gas flows, an effective multi-
relaxation-time lattice Boltzmann method ( MRT-LBM) is
proposed. Through the Knudsen boundary layer model, the
effects of wall and rarefaction are considered in the correction
of relaxation time. The results of gas velocity distributions are
compared among the MRT, Monte Carlo model (DSMC) and
high-order LBM, and the effects of the tangential momentum
accommodation coefficient on the gas velocity distributions are
also compared between the MRT and the high-order LBM. It
is indicated that the amendatory MRT-LBM can unlock the
dilemma of simulation of micro-scale non-equilibrium.
Finally, the effects of the Knudsen number, the Stokes
number, and the gap between the plates on the damping are
researched. The results show that by decreasing the Knudsen
number or increasing the Stokes number, the slide film
damping increases in the transition regime; however, as the
size of the gap increases, the slide film damping decreases
substantially.
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he modern technologies associated with microstruc-
T tures such as micro-electro-mechanical systems, fuel
cells and biochips have attracted significant interest re-
cently and there is an urgent need for thorough research of
physical phenomena and mechanisms of microstruc-
tures'".
characteristics and the rarefaction effects in the transition
and free-molecular-flow regimes, an accurate evaluation
of the slide film damping in the micro-scale Couette plate
flow is still a challenging issue. The rarefaction effects
are described by the Knudsen number Kn, and the mean
free path of molecules A divided by the feature length L.
We will simulate the oscillating Couette flow in the tran-
sition flow regime.

However, due to the complexities of the flow

Received 2018-09-23, Revised 2019-01-11.

Biographies: Song Xucheng (1993—), male, graduate; Li Pu ( corre-
sponding author), male, doctor, professor, seulp@ seu. edu. cn.
Foundation item: The National Natural Science Foundation of China
(No. 51375091).

Citation: Song Xucheng, Li Pu, Zhu Rui. Multi-relaxation-time lattice
Boltzmann simulation of slide damping in micro-scale shear-driven rare-
fied gas flow[J]. Journal of Southeast University ( English Edition),
2019,35(1):30 —35. DOI: 10. 3969/j. issn. 1003 —7985.2019.01. 005.

The microscale flow has been studied in several
23! The corrected Reynolds equation is a common
theoretical model applied to the micro-scale rarefied flow,
which is commonly solved by a numerical approach, such
as the Monte Carlo model (DSMC). Although the DSMC

method has made great progress in simulating the rarefied

works

gas flow with high Knudsen number, statistical noise will
be generated when we evaluate the micro-scale flow
damping at a low velocity, and thereby, the calculation
costs are excessively high'”. The molecular dynamics
(MD) will be more suitable for the simulation of the lig-
uid or dense gas flow; however, the application of the
MD for simulating the rarefied gas flow and the micro-
scale flow is not recommended due to the large amount of
calculation and the slow convergence'”. In the Lattice
Boltzmann equation, the nonlinearity is imbedded in the
left-hand side and the nonlinear advection is replaced by
the linear streaming process. Therefore, it is different
from macroscopic methods, which need to solve the Pois-
son equation at each time step to satisfy the continuous e-
quation, and this fact greatly reduces the calculation
1 In addition, the collision and streaming processes
are local, so the LBM method can be easily implemented
in parallel computing, which further shortens the compu-
tational time.

Based on the mesoscopic scale, the precision of the lat-
tice Boltzmann model (LBM), which can simulate the
micro-scale flow and address these challenges, is com-
pared to the DSMC or the direct solution methods. Fur-
thermore, the LBM methodology has a good computa-

time

tional stability, and the boundary conditions can be easily
handled, which is appropriate for parallel computing. The
series of achievements have been acquired in simulating
the microfluidic systems by employing LBM in the past
few decades. The work by Nie at al. ' is among the first
ones that employed the LBM in simulating the microchan-
nel flow as well as explaining the boundary slip velocity.
However, the boundary adopted a nonslip bounce back
scheme and the slip velocity was later confirmed as a dis-
crete error ™. Subsequently, Succi. "’
bound with the specular-reflection to characterize the slip
velocities of the solid boundaries. After introducing the

combined the re-

discrete diffuse boundary condition by Ansumali and Kar-

li [10] 1 [11]

in ', Tang et a established a general discrete form

of the diffuse reflection. Meng et al.'"" systematically
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discussed the problems of the physical symmetry and the
relaxation time selection in the gas micro-flow.

Owing to the inability of the standard LBM to capture
the boundary Knudsen layer,
have been revealed by conducting further research on the

some of its deficiencies

mechanics of the gas flow in the transition regimes.
When the thin gas flows through the wall, a Knudsen lay-
er that concerns the mean free path of molecules A forms
above the wall, in which the collision between the mole-
cules is not sufficient and the molecule thermal equilibri-
For solving
the higher-order LBM was adopted by

adding the higher-order equilibrium distribution function

um assumption would be no longer valid'"”'.
these problems,

as well as the high precision Gauss-Hermite integral.
However, introducing the high-order moment increases
the complexity of the model, and the storage and compu-
so some inherent advantages of the
LBM will be limited. In this paper, a corrected effective

relaxation time LBM is proposed, which takes into ac-

tation costs increase,

count the collision effect between the molecules and wall
by introducing effective relaxation time. Furthermore, the
MRT-LBM method can effectively reduce the problems of
the increasing number of calculations and the storage pro-
duced by using the higher-order LBM method for simula-
ting the gas flow in the transition regimes or a large Kn.

The above-mentioned literature mostly displays the
simulations of the steady-state micro-scale flow; howev-
er, the engineering applications frequently involve the
non-equilibrium gas flow such as micro-accelerometers,
inertial sensors, resonant filters, and so on. As a result,
a new numerical algorithm is required to evaluate the
damping forces caused by the non-equilibrium effect of
the gas flow. Tang et at.!" employed a higher-order
LBM to model the unsteady gas flow problems of the mi-
cro-scale single plate oscillation Couette flow. On this ba-
sis, we adopt the MRT-LBM to simulate the single plate
periodic oscillating Couette flow on a micro-scale, and
try to verify the correctness of the LBM in the analysis of
the non-equilibrium micro-scale gas flow as well as the
driven plate slide damping.

1 Micro-Scale Gas Flow LBM
1.1 MRT-LBM

In the momentum space, the collision operator can be

expressed as

f(x+cAt,t+AD) —f(x,0) = -G 'S[g(x, 1) —g™(x, 0]
(D

where g(x, ) and g* are the vectors of moments; f is the
velocity distribution function; S is the relaxation matrix,
and G is the transformation matrix.

The conversion between the speed and the moment
space can be achieved by the following linear transforma-
tion:

g§=6f (2)
f=G'g (3)
The discrete velocities ¢, of D2Q9 is given by
[0,0] k=0
¢, = {acos(k-1)m/4 k=1,2,3,4 (4)
V2 acos(k - 1) w/4 k=5,6,7,8

where a is the lattice velocity and it is set to be 1 usually.
The matrix G for D2Q9 is shown as

1 1 1 1 1 1 1 1 17
-4 -1 -1 -1 -1 2 2 2 2

4 -2 -2 -2 =2 1 1 1 1

0 1 0 -1 0 1 -1 -1 1

G=| 0 -2 0 2 0 1 -1 -1 1
0 0 1 0 -1 1 1 -1 -1

0 0 -2 0 2 1 I -1 -1

0 1 -1 1 -1 0 0 0 0

L O 0 0 0 0 1 -1 1 -1l

ho)'
in which p is the density, and i, and i, are the x and y

The moment vector g is (p, w, &, i,, L., i, 1,

X/\’
components of momentum.
lx = pux =

;ﬁqckx (5)
;ﬁqcky (6)

i, = pu,

Furthermore, the diagonal matrix S is
S =diag(0,0,1.4,0,s,,0,s,,s,,5,) (7

where s, and s, are the relaxation times.
The macro variables, including the density p, the fluid
velocity vector u, and the pressure p, are stated by

=31 (8)
l 8

= — . 9
; ; c.f (9)
P =pc. (10)

1.2 Boundary condition

The relaxation time s, associated with A in the MRT-

(13)
,=0.5 +—K /

where H is the gap between the plates.

LBM is given as

(1)

However, when the thin gas flows through the wall,
a Knudsen layer forms above the wall and in the transi-
tion regimes. It implies that the Knudsen layer is an es-
sential factor in studying the micro-scale rarefied Cou-
ette flow. Therefore, we introduce the effective relaxa-

tion time model proposed by Guo'"', as follows:

,=0.5 +*Km/f(y, Kn) /

(12)



32

Song Xucheng, Li Pu, and Zhu Rui

The modified function ¥ is

Z(y/A) + Z(H-y/))

Y(y, Kn) = >
Z) =1+(x-De™ -x'T,(x) (13)
where
T.(p) = fof‘e*‘dt (14)

in which T, (y) is the exponential integral function.

At the boundary walls, the slip velocity has a signifi-
cant influence on the velocity distribution between plates
and therefore, we adopt the boundary conditions of BSR
proposed by Succi'” and the wall is located at 1/2 the lat-
tice sites. The three unknown distribution functions at the
upper boundary with known velocity are

fi=1,

21pw; €5 - U,
f7=rfs+(1—r)f6+T (15)

2ipw; ¢4 - U,
f827f6+(1—r)f; +T

s

where u_ is the upper plate velocity and r is the tangential
momentum accommodation coefficient. For achieving the
above-mentioned second-order slide boundary condition,
the tangential momentum accommodation coefficient r
and the relaxation time s, are given as

T (H)8 "
r:[1+gAl+W] (16)
~ 3+247°72(H)A, 7,(H)8.B
i = [0'5 T ler,(H) T 16r,(H) ] (7
where
N (18)
7,=5,-0.5 (19)
dr,
i (20)
A “o(1-0.181 70) 2D
A =L y05xL (22)
y Al
B =12 +307 (H){A, (23)

2 Plate Oscillation Couette Flow

The upper surface at z = d oscillates with velocity u,
while the substrate has
been fixed, as shown in Fig. 1. Two control parameters
of the Couette flow are Kn and Stokes’ number 8, where
the latter represents the relative relationship between the
unsteady and the viscous effects, defined by

along the horizontal direction,

(24)

where v is the kinetic viscosity; w is the oscillatory fre-
quency. The characteristics of the structure are listed in
Tab. 1.

u,=Ucos(wt)

|y
T J—X
Substrate
Fig.1 The slide film damping of the Couette flow model

Tab.1 Characteristics of the structure

Parameter Value
Mass M/ pg 0.26
Stiffness K/(N - pm ") 3.8x1077
Structure thickness 4/ pm 1.8
Air-film thickness underneath the plate /,/pm 2
Top surface of the plate A/pm? 2.93 x10*
The kinetic viscosity vy/(um?* - s~ ") 1.5 %107

The maximum amplitudes U/pm 11

In LBM simulations, the correlation parameters are di-
mensionless and the mapping between physical units and
lattice units can be performed by dimensionless criterion
numbers. The mapping is shown in Tab. 2. Concerning
the boundary conditions, the up and bottom adopt BSR
and the left and right exploit periodic boundary condi-
tions.

Tab.2 Dimensionless lattice units for plate oscillation Co-
quette flow
Physical ~ Physical Lattice  Lattice
Parameter
symbol value symbol  value
Sound speed/(um - s~ ') [ 3.404 x10% ¢ 2
Heigh/pum Ly 2 Ly 8
Grid step/ pum Ax, 0.2 Ax 1
Time step/ um At, 0.415 At 1
Kinematic viscosity/ .
2 - Vo 1.5 x10 vy 0. 156
(pm” - s™)
The maximum speed of
P U, 9.02x10° Uy 0.001 87

oscillation plate/(pum - s~ )

3 Simulation Results

Fig. 2 demonstrates the velocity profiles at the mid-sec-
tion, normalized by the maximum velocity of the driven
plate. The maximum relative errors between the results of
the MRT-LBM and those of the DSMC are lower than
30.87%, 32.51%, 31.99%, respectively, in Figs. 2
(a), (b) and (c). The maximum relative errors between
the MRT-LBM and the high-LBM are lower than
23.94%, 18.11%, 23.45% in Figs.2(a), (b) and (c).
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Fig.2 Velocity profiles at the mid-section. (a) Kn=0.1, 8=
4.0; (b) Kn=0.2, B=2.0; (c) Kn=0.4, B=1.0

They indicate that the results acquired from the MRT-
LBM are quite consistent with the DSMC data given by
Hadjiconstantinou“ﬂ as well as the high-LBM (D2Q13)
data given by Tang et al''*'.

Fig. 3 shows the velocity profiles of the mid-section
(L, =25) at two moments during one cycle. The results
of these profiles reveal that the slip velocity of the wall
increases as the value of r decreases, which means that

0.8r )

06k — MRT-LBM
’ o r=1.0, high-order LBM
0.4 x 1=0.8, high-order LBM

o 7=0.5, high-order LBM
0.2

Dimensionless velocity
(=]

—0.8; 02 04 06 08 10

Dimensionless height

Fig. 3
effect of tangential momentum accommodation coefficient r

Velocity profiles for Kn =0. 1, B8 =4.0 revealing the

the slip film damping force is greater with a smaller value
of r. The results are in good agreement with the high-or-
der LBM data by Tang et al''*'.

From the distribution function, the slide film damping
can be evaluated directly. Therefore, it is convenient to
compute the slide film damping and then compare it with
that evaluated by the NS approaches. The predicted re-
sults of the slide film damping on the driven plate are
shown in Fig. 4, which are normalized by the maximum
value of the damping. When the Knudsen number is
close to 0. 1, the slide film damping increases obviously
with the increase of the Stoke number. As the Knudsen
number increases, the slide film damping decreases at
the fixed Stokes numbers. The obtained findings are in a

good agreement with the DSMC data by Hadjiconstantin-
(16l

ou
101_
& o $=0.25,DSMC
£ x p=1.0,DSMC
g o p=2.0,DSMC
= 0 p=4.0,DSMC
= —LBM
& 10
3
=
kS
g
£
o
10"

1 1 J
10! 10° 10!
Knudsen number

Fig.4 Slide film damping on the driven plate with the Knud-
sen number

From the studies which display the velocity and damp-
ing profiles in terms of the Knudsen number or the Stokes
number, we conclude that the MRT-LBM is reliable for
simulating the non-equilibrium micro-scale gas flow and
the driven plate slide damping. Therefore, the relation-
ship between the slip film damping and the plate gap is
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explored as shown in Fig. 5. As the size of the gap in-
creases, the slide film damping decreases obviously, so
for the larger Knudsen numbers, the slide film damping is

smaller.
2.0+
Kn:

--0.1
0.4

0.5F

Dimensionless side film damping
=
T

O 1 1 1 1 1

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Dimensionless gap between the plates

Fig.5 Slide film damping on the driven plate as a function of

the gap between plates

4 Conclusions

1) An effective MRT-LBM approach was presented to
investigate the slide film damping in laterally driven mi-
crostructures by taking into account the Knudsen layer.
The velocity distributions between the driven plate and the
substrate were examined, and the predicted results were
in a good agreement with those of the DSMC.

2) The connections between the slide film damping on
the driven plate and the Knudsen number, the Stokes
number, and the gap between plates were investigated.
The researchers found that slide film damping will in-
crease, particularly in the transition regime, by decrea-
sing the Knudsen number, size of gaps or increasing the
Stokes number.

3) In contrast to the DSMC method, the proposed
MRT-LBM gives a better slide film damping evaluation.
Furthermore, the obtained results confirm the importance
of considering the Knudsen layer in non-equilibrium flow
simulations.
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