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Abstract: Due to the fact that the vibration signal of the
rotating machine is one-dimensional and the large-scale
convolution kernel can obtain a better perception field, on the
basis of the classical convolution neural network model
(LetNet-5), one-dimensional large-kernel convolution neural
network( IDLCNN) is designed. Since the hyper-parameters
of IDLCNN have a greater impact on network performance,
the genetic algorithm ( GA) is used to optimize the hyper-
parameters, and the method of optimizing the parameters of
1DLCNN by the genetic algorithm is named GA-1DLCNN.
The experimental results show that the optimal network model
based on the GA-IDLCNN method can achieve 99. 9% fault
diagnosis accuracy, which is much higher than those of other
traditional fault diagnosis methods. In addition, the IDLCNN
is compared with one-dimencional small-kernel convolution
neural network (1DSCNN) and the classical two-dimensional
convolution neural network model. The input sample lengths
are set to be 128, 256, 512, 1 024, and 2 048, respectively,
and the final diagnostic accuracy results and the visual scatter
plot show that the effect of 1IDLCNN is optimal.
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earings are the most common mechanical parts in ro-
Btating machinery. According to statistics, 30% of
rotating machinery failures and 40% of motor failures are
related to rolling bearings''™. Obviously, bearings are
one of the most fault-prone parts in mechanical equip-
ment, so the fault diagnosis of the rolling bearings is nec-
essary.

Traditional fault diagnosis methods are usually divided
into three steps: 1) Fault signal acquisition; 2) Feature
extraction; 3) Fault diagnosis. There are many research
results based on traditional fault diagnosis methods. Ab-
basion et al. "' firstly used wavelet analysis to preprocess
the vibration signal of the motor bearing, which reduced
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the noise in the signal, and then they used the support

5
1. P used

vector machine to classify the faults. Han et a
LMD to decompose the original signal, then extracted
the energy entropy and sample entropy of each product
function, and finally used the support vector machine for
fault diagnosis. Wu'® applied wavelet packet decompo-
sition to analyze multi-resolution bearing signals, and
compared three diagnosis methods which are the BP,
RBF and Elman network. However, manually extracting
features requires prior knowledge to achieve better diag-
nostic results.

Convolution neural network (CNN) is one of the meth-
ods of deep learning. It has powerful information mining
capability and can automatically extract features, and
some achievements have been obtained by using CNN in
the field of fault diagnosis. You et al. " used CNN to ex-
tract the features of vibration signals from rolling bearing,
then input the extracted features into SVM for fault identi-
1. ™ performed wavelet packet trans-
form on the vibration signal to obtain its grayscale ima-
ges, and then used them as the input of CNN to identify
faults. Chen et al. " used 2DCNN to diagnose faults in
the gearbox, whose input matrix is 16 x 16, reconstructed
by 256 statistical features including RMS, standard devia-
tion, skewness, kurtosis, rotation frequency and load.

fication. Ding et a

However, the method did not utilize the information min-
ing capability of CNN. Guo et al. """ proposed an adap-
tive CNN model, which can speed up the convergence
rate to a certain extent and improve the recognition rate
by changing the learning rate automatically. Janssens et
al. """ utilized 2DCNN to identify the patterns of four
types of rotating machinery faults whose input was de-
rived from DFT (discrete Fourier transform) of vibration
acceleration signals acquired by two acceleration sensors.
Wang et al. "' applied the PSO algorithm to optimize the
hyper-parameters of the CNN model, so that the network
can adaptively learn more rules of the data set. Although
some of the methods mentioned above have more or less
achieved some good results, they still have the following
deficiencies: 1) The traditional fault diagnosis method
needs to use prior knowledge to extract features and how
to exploit the ability of CNN to extract signal features au-
tomatically is worth studying; 2) The two-dimensional
convolution kernel of a classical 2DCNN will disrupt the
periodicity of fault signal, which renders the extracted
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features inconspicuous, resulting in inaccurate final diag-
nostic results; 3) There are many hyper-parameters in the
CNN, and the selection of hyper-parameters affects the fi-
nal effect of the algorithm. Therefore, it is necessary to
optimize the hyper-parameters.

In this paper, combining the genetic algorithm and
convolution neural network with one-dimensional large
convolution kernel can solve the above problems, and we
call the hybrid algorithm GA-1DLCNN. A comparative
experiment is carried out to prove the effectiveness of the
method. In addition, another experiment verifies that
large convolution kernels have advantages over small con-
volution kernels and two-dimensional convolution ker-
nels.

1 Basic Theory
1.1 Theory of CNN

The convolution layer and pool layer of CNN make it
superior to traditional neural networks. Different convolu-
tion layers contain different numbers of convolution ker-
nels. The convolution kernels continuously move on the
feature maps passed on from the previous layer. During
the movement,
convoluted with the overlapping data, and the output of
the convolution layer is finally obtained. This constantly

the convolution kernel is continuously

moving operation of the single convolution kernel also
causes CNN to have the characteristic of weight sharing.
Compared with the disadvantage of excessive weights in
fully-connected networks, the sharing of the weights of
CNN can reduce network parameters, which reduces com-
putational complexity and avoids network overload caused
by excessive weights. The following part describes the
forward propagation algorithm of CNN.

Here, suppose that the input of the convolution layer is
xeR,, ,, where A is the number of samples, B is the da-
ta dimension, and the output of the convolution layer is
calculated as

o' =f( Y07« w +b') (D

jem,

i

where O'~' denotes the output of the first feature map of
the first layer; w_; represents the j-th feature map of the /-
th layer; #* denotes a convolution calculation; f denotes
an activation function, which mainly includes modified
linear unit (Relu) and sigmoid function; b' is the offset
item.

In general, the pooling operation on the feature data is a
nonlinear sampling method after the convolution opera-
tion. Through the pooling operation, the matrix size of
the feature map can be effectively reduced, thereby re-
ducing the parameters in the last fully connected layer. Its
formula is

x' =down(x'™") (2)

where x'~' denotes the output of the previous convolution
layer; down( ) denotes the sampling operation, and the
most commonly used sampling operation is the max-poo-
ling, that is, taking the maximum value of the local area.

The CNN consists of pairs of convolution and pooling
layers. Normally, the fully connected layer follows the
last pooling layer. The fully connected layer of CNN is
the same as that of traditional artificial neural networks.
The number of full connection layers can be determined
according to the specific conditions. The last layer of
CNN is the softmax layer. The softmax layer is the classi-
fication layer of CNN. The number of neurons on this
layer is equal to that of the categories that need to be clas-
sified. The formula on the softmax layer is

P(y
P(y

1|x;w,.,b)
2 x;w,,b,)

0 =

P(y = nlx;we b
[ exp(w, *x + b))
1

c
z exp(w, *x +b,)
i=1

exp(w, *x +b,)

(3)
exp(w.* x +b,)

where O represents the result of the output layer, which is
the output category; C is the number of failure catego-
ries.

Fig. 1 shows the IDLCNN model, and it can directly
input the original one-dimensional vibration signal into
the model. The model has two convolution layers and two
pooling layers. From pooling layer 2 to the fully connect-
ed layer, each map of the pooling layer needs to be con-
nected, and the output layer finally classifies the fault cat-
egories.
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Fig.1 1DLCNN model construction

1.2 Hyper-parameter optimization by genetic algorithm

The CNN model has many hyper-parameters, and dif-
ferent hyper-parameter combinations can lead to varying
model generalization performances. As there are many
hyper-parameters in the model, different hyper-parameter
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combinations will vary each model performance. In order
to obtain the optimal hyper-parameter combination, this
paper proposes a new method combining the genetic algo-
rithm with 1DLCNN, which is called the GA-1DLCNN
method. On the one hand, the algorithm can play the role
of IDLCNN without manually extracting features ( input
raw data directly). On the other hand, it can exert the op-
timization characteristics of the genetic algorithm. The pa-
rameters needed to be optimized are the kernel number of
the first convolution layer C,, the kernel number of the
second convolution layer C,, the learning rate &, the batch
size B, and the number of iterations /.

The genetic algorithm is a method of searching for opti-
mal solutions by simulating natural evolutionary proces-
ses, which uses the fitness function and probability trans-
formation rules to guide the search direction. The basic
operations of the genetic algorithm include selection,
crossover, and mutation. The
processes are as follows:

1) Initializing the population and encoding. A group
X ., is randomly generated, and each individual X, , re-
presents a hyper-parameter distribution. Here, n repre-
sents the number of hyper-parameters, and m is the initial
population size. The encoding is shown in Fig.2.

specific optimization

Batch
size B

Number of

c c Learning
' ? iterations /

rate ¢

Fig.2 Chromosome coding

2) Determining the fitness function. The squared re-
construction error of the training sample of 1DLCNN
model is used as the fitness function, and its formula is as

C
f=2 (o,-y) )
i=1
where 0 = (0, 0,, ..., 0.) is the actual output( obtained
by Eq. (3)); the expected output is y = (¥, ¥,, ---, Y¢) -
In this paper, one hot encoding is used to indicate expec-
ted output, for example, (0,0, 0, 1) means this is the
fourth category.
3) Selecting. The roulette method based on the fitness
ratio selection strategy is used. The probability of selec-
tion p, for each individual q is

A
fy =7 (5)

f

<

<

P, = (6)

M=

1y

q=

where F_ is the fitness value of the individual; A is the
coefficient.

4) Cross operation. Since the individual uses real num-
ber coding, the cross operation uses the real number

crossing method, and the cross operation method of the u-

th chromosome a, and the v-th chromosome a, in the w-th
place is

auw = auw(l - b) + aVWb
} (7)

a,=a,(l-b)+a,b

vw

where b is a random number between [0, 1].

5) Variation. New individuals are generated based on
the probability of mutation.

6) Calculate the fitness value and determine whether
the maximum evolution algebra is reached, otherwise re-
turn to step 3).

After the optimization of the genetic algorithm is com-
pleted, the obtained optimal individual is utilized as the
hyper-parameter combination of 1DCNN.

2 Rotating Machinery Fault Diagnosis Method
Based on GA-1DLCNN

The flow chart of the fault diagnosis method based on
GA-1DLCNN is shown in Fig. 3. The specific steps are
as follows:

1) Collect the fault signal, then intercept signals at
equal length to obtain multiple sets of samples, and ran-
domly separate the training set and the test set.

2) Generate an initial population. Set the number of
populations and the max generation.

3) Train each 1DLCNN model, and the fitness function
is obtained by Eq. (4).

4) Sequentially select, cross, and mutate operations to

Bearing fault
signal

[
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Fig.3 Fault diagnosis process of rotating machinery based on
GA-1DLCNN
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generate new populations, determine whether the max
generation is reached.
met, output the optimal network hyper-parameter, other-
wise, repeat steps 3) and 4) until the discriminant condi-

tion is satisfied.

If the discriminant condition is

5) Input the test set into the optimized model to obtain
the fault classification results.

3 Experimental Verification and Discussion

3.1 Experimental data description

The experimental data comes from the bearing failure
experiment of Case Western Reserve University. The
sampling frequency is 12 kHz and the failures are divided
into 3 types: Inner race failure, outer race failure and ball
failure. Each failure type has three fault sizes of 0.007,
0.014, and 0. 021 mm, respectively, and a total of 9
fault categories were obtained, namely, label,, label,,

., label,. In this experiment, the data length of each
sample was set to be 1 024, and 200 samples can be ob-
tained for each fault. A total of 1 800 samples can be ob-
tained, and 1 200 samples were randomly selected as
training samples, and another 600 samples were used as
test samples (test samples did not participate in training) .

3.2 Test results and analysis
3.2.1 Analysis of the proposed method

The simulation for 1DLCNN is performed in Tensor-
flow, a Google open deep learning platform. In addition,
the NVIDIA GTX1050Ti GPU is used to accelerate algo-
rithm training. In the evolution process of the genetic al-
gorithm, the number of populations is set to be 5, the
max generation is 10, the selection probability is 0. 1, the
crossover probability is 1, and the probability of mutation
is 0. 2", The results of hyper-parameters optimized by
the genetic algorithm are shown in Tab. 1. The results of
each generation of the genetic algorithm are shown in
Fig.4. As the generation continues to increase, the re-
sults become increasingly accurate and the recognition
rate of the final model reaches 99.83% . Fig.5 shows a
confusion matrix of misclassfication. The X-axis is the
target category, and the Y-axis is the calculated category.
When the target category is the same as the calculated cat-
egory, the value at the intersection is increased by 1. So,
according to Fig.5, the misclassification of each category
can be obtained. Only one of 68 samples of category 1 is
misclassified into category 1, and the other eight catego-
ries are all classified correctly.

Tab.1 Optimal hyper-parameters by genetic algorithm

Parameters Optimization result
C, 6
G, 6
Learning rate £/10 > 1
Batch size B 20
Number of iterations / 150

100
99
98
97
9%
95
94
93

L

Generation

Accuracy/%

Fig.4 Genetic algorithm optimization process
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Fig.5 Confusion matrix of misclassification

3.2.2 Comparison with traditional methods

Feature extraction and the classifiers are two key points
of traditional fault diagnosis methods, which affect the fi-
nal result greatly. In this comparison experiment, the fea-
ture extraction methods used are: 1) Time-frequency
mixed statistical indicators (TMSI); 2) Wavelet packet
decomposition( WPD) ; 3) Empirical mode decomposition
(EMD). The classifiers used contain BP, SVM and
stacked auto-encoder ( SAE). 10 time domain statistical
indicators and 5 frequency domain statistical indicators are
selected as time-frequency mixed statistical features''".
The wavelet packet decomposition decomposed each fault
signal into three layers, and a total of eight different fre-
quency band signals were obtained. The energy value of
each frequency band was taken as its feature!"', and
therefore, 8 features were acquired in total. The EMD
decomposed the sample signal into six IMF compo-
nents"'”, and extracted the time-frequency mixed statisti-
1" as features for each component. The
comparison results are shown in Tab.2. The method pro-
posed in this paper is more advantageous than the tradi-
tional methods of extracting features and identification.

cal indicators

3.2.3 Further comparison with classical CNN

In order to more comprehensively verify the effective-
ness of a one-dimensional large-size convolution kernel, a
large number of experimental comparisons have been set
out, in which the parameters that need to be changed in-
clude the length of the input data and the number of itera-
tions. In this comparison, a two-dimensional convolu-
tional neural network(2DCNN), one-dimensional small-
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Tab.2 Diagnostic accuracy of different methods

Method Accuracy/ %
SVM + TMSI 86.5
SVM + WPD 87.1
SVM + EMD 88.9

BP + TMSI 94.8
BP + WPD 92.2
BP + EMD 89.8
SAE + TMSI 84.0
SAE + WPD 78.7
SAE + EMD 84.9
Proposed method 99.9

kernel convolution neural network (1DSCNN) are selected
as the comparison algorithms. The input data length is set
to be 128, 256, 512, 1024, 2 048, respectively, and the
number of iterations is set to be 50, 100, 200, 300, re-
spectively. The number of training sets accounts for 2/3
of the total number of samples, and the number of test
sets accounts for 1/3 of the total number of samples. The
specific data set is divided as shown in Tab. 3, and the
convolution kernel parameter setting for each method is
shown in Tab. 4. In order to reduce the error of a single
test, the average of five test results is calculated as the fi-
nal result.

Tab.3 Data set dividing

Length of Number of  Number of training Number of test
input data samples samples samples
128 14 400 9 600 4 800
256 7 200 4 800 2 400
512 3 600 2 400 1200
1024 1 800 1 200 600
2048 900 600 300

Tab.4 Corresponding convolution kernel parameter settings

Length of Kernel size

input data 2DCNN IDSCNN IDLCNN
128 3x3,5x%x5 3x1,4x1 21 x1,21 x1
256 3x3,5x%x5 3x1,4x1 21 x1,21 x1
512 3x3,5x%x5 3x1,4x1 101 x1, 101 x 1
2014 3x3,5x%x5 3x1,4x1 101 x1, 101 x1
2 048 3x3,5x%x5 3x1,4x1 501 x1, 501 x1

According to Fig. 6, the above experiments can verify
that 1DLCNN is superior to the classic 2DCNN and
I DSCNN. The reasons are as follows: 1) In the field of
image processing, the traditional two-dimensional con-
volution neural network directly inputs two-dimensional
data into the network, and the convolution kernel used is
also two-dimensional, but in the field of fault diagnosis,
the fault signal is usually one-dimensional. If a one-di-
mensional signal is reconstructed into two-dimensional
data, the two-dimensional convolution kernel is used to
extract the signal characteristics, which will disturb the
periodicity of the signal to some extent, so that the ex-
tracted features are not obvious, resulting in lower accu-

racy. 2) The larger-scale convolution kernels have a lar-
ger field of perception and the extracted features are bet-
ter. Therefore, the final effect is better than that of the
small convolution kernel.
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Fig.6 Comparison of methods for different training times.
(a) 50 training steps; (b) 100 training steps; (c¢) 200 training steps;
(d) 300 training steps

The above comparison test also explains the effect of
the input data length on the recognition rate. The above
input data lengths are 128, 256, 512, 1 024, and 2
048, respectively. The general trend in Fig. 6 is that as
the input data length increases, the recognition rate of
the model increases. Due to the fault signal having a cer-
tain periodicity, if the intercepted data length is too short
relative to the period, the distribution of sample data di-
vided into the same category will be different, reducing
the classification accuracy eventually. Similarly, a too
long intercepted data length will result in fewer samples,
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which also reduces the recognition rate. Therefore, in
the field of fault diagnosis, the authors believe that when
the data volume is sufficient, the input data length can
be increased as much as possible, which can improve
recognition.

In order to visualize the differences between these
methods, we use a technique called t-SNE'"". Tt should
be noted that we take the data length of 2 048 as an exam-
ple of feature visualization for analysis. First, the princi-
pal component analysis(PCA) is used to reduce the high-
dimensional data of the soft max layer to 3-D, and then
the scatter plot for each test data is obtained. Fig.7(a) is
the feature visualization of 2DCNN, Fig. 7(b) is the vi-
sualization of IDSCNN, and Fig. 7(c) is the feature visu-
alization of 1DLCNN. Through comparisons, it can be
clearly seen that the separation phenomenon of different
categories in Fig. 7(c) is obvious, while the aliasing phe-
nomenon occurs in the other two cases, which also dem-
onstrates that the classification effect of IDLCNN is opti-
mal.
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Fig.7 Feature visualization clustering of different methods. (a)
2DCNN; (b) 1DSCNN; (c¢) 1IDLCNN

4 Conclusions

1) When using the one-dimensional large-kernel con-
volution neural network for fault diagnosis, an original
one-dimensional vibration signal is directly inputted into
the network without the expert experience. The diagnosis
accuracy of this method is more accurate than that of the
traditional fault diagnosis method.

2) The genetic algorithm can optimize the hyper-pa-
rameters of the network to obtain a set of optimal solu-
tions. In this way, artificially selecting hyper-parameters
can be avoided.

3) The high-dimensional features obtained by IDSCNN
and 2DCNN are confused, while 1DLCNN can separate
different features clearly, so the one-dimensional large
kernel is more advantageous when dealing with one-di-
mensional mechanical fault signals.
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