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Abstract: In order to de-noise and filter the acoustic emission
(AE) signal, the adaptive filtering technology is applied to AE
signal processing in view of the special
characteristics of burst AE According to the
contradiction between the convergence speed and steady-state
error of the traditional least mean square ( LMS) adaptive
filter, an improved LMS adaptive filtering algorithm with
variable iteration step is proposed on the basis of the existing
algorithms. Based on the Sigmoid function, an expression
with three parameters is constructed by function translation and
symmetric transformation. As for the error mutation, e(k) and
e(k —1) are combined to control the change of the iteration
step. The selection and adjustment process of each parameter
is described in detail, and the MSE is used to evaluate the

attenuation
signal.

performance. The simulation results show that the proposed
algorithm significantly increases the convergence speed,
reduces the steady-state error, and improves the performance
of the adaptive filter. The improved algorithm is applied to the
AE signal processing, and the experimental signal is
demodulated by an empirical mode decomposition ( EMD)
envelope to obtain the upper and lower envelopes. Then, the
expected function related to the AE signal is established.
Finally, the improved algorithm is substituted into the adaptive
filter to filter the AE signal. A good result is achieved, which
proves the feasibility of adaptive filtering technology in AE
signal processing.
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he phenomenon of rapid release of local energy in
T materials is called acoustic emission ( AE). The de-
formation and crack expansion of the material under stress
are the important mechanisms of structural failure. Acous-
tic emission technique ( AET) is a detection technique'",
which uses sensors to collect acoustic emission signals,
and uses instruments to analyze and process acoustic
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emission signals and to infer the position and state of an
acoustic emission source. It is advanced nondestructive
testing technology, and has been applied in the petroleum
chemical industry, power industry, aerospace, transporta-
tion and so on. Acoustic emission detection technology in-
volves acoustic emission sources, wave propagation, and
the conversion of the signal and data acquisition. Through
the acquisition of acoustic emission signals, the character-
istics of acoustic emission sources and the development of
generation and movement of the materials can be ob-
tained. The acoustic emission signals are usually collected
using the sensors, and the noise interference in the acqui-
sition process will have a great influence on the detection
result’”, so it is necessary to filter the noise of the acous-
tic emission signal collected.

In the field of acoustic emission, the common filtering
techniques are hardware filtering and software digital filte-
ring'”'. Hardware filtering means inserting filters in the
proper location of the whole circuit system, such as the
main amplifier, to select the appropriate “frequency win-
dow”. The characteristic of software digital filter is that it
is flexible and convenient to use and powerful. Wavelet
transform plays an important role in acoustic emission sig-
nal filtering and noise reduction. Zhao et al.' used
wavelet analysis to reduce noise interference and improve
the ability to identify and judge the nature of acoustic
emission sources. In terms of the fact that the traditional
linear filtering method is not ideal, Zhou et al. " pro-
posed an improved method using Donoho to produce the
threshold of de-noising. The software filter and the hard-
ware filter are, respectively, used to de-noise the AE sig-
nals. Aimed at the problems of noise polymorphism and
randomness during the transmission and acquisition of
acoustic emission signals, the combination of morpholog-
ical filtering and the ensemble empirical mode decomposi-
tion (EEMD) are proposed by Xi et al.', which de-
noise signals from different angles in space and time do-
mains. On the basis of the minimum entropy deconvolu-
tion (MED) and the maximum correlated kurtosis decon-
volution (MCKD), an improved MCKD noise reduction
method'”’ based on a bidirectional cyclic restructure filte-
ring criterion is proposed.

Adaptive filtering technology also plays an important
role in acoustic emission signal processing. An adaptive
filter is a filter that can be adjusted adaptively by a pa-
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rameter (or coefficient), so that the filter output can min-
imize a particular target function containing the reference
signal as far as possible. The common adaptive filtering
algorithms' contain the LMS algorithm, LMS Newton al-
gorithm, normalized LMS algorithm and recursive least
square (RLS) algorithm.

In this paper, an improved variable iteration step LMS
algorithm is proposed and used to process acoustic emis-
sion signals. At the same time, its performance in the
simulation function and AE signals is compared in order
to show its feasibility and advantages.

1 Principle and Performance Analysis of LMS
Algorithm

1.1 Principle of classical LMS algorithm

The LMS algorithm is a search algorithm which modi-
fies the parameters by objective function to simplify the
computation of gradient vectors. Djendi et al. " focused
on the application of adaptive filter based on the LMS al-
gorithm. Zhu et al. """ used the LMS algorithm to solve
the problem of stereophonic echo cancellation field
(SAEC). Kay''" realized the adaptive filter using a linear
combiner, and the optimal solution of the parameters un-
der the condition of multiple input signals was derived.
This solution minimized the mean square error when esti-
mating the reference signal d( k). The optimal Wiener so-
lution is

Wy =R"'p (1)

where R = E[X(k)X"(k)]and p = E[d(k)X(k)], so the
main flow of the LMS algorithm is

y(k) =W (k) X(k)
e(k) =d(k) —y(k) } (2)
W(k+1) = W(k) +2ue( k) X(k)

1.2 Convergence properties of LMS algorithm

For a FIR filter with unknown coefficient vectors, the

[12]

convergence of the filter' © can be obtained as

1
0 — 3
<,ud<)l (3)

max

where A is the maximum eigenvalue of R. The more it-

max

erations there are, the closer to the Wiener solution the
solution will be.

1.3 Principle of variable iteration step LMS algorithm

The traditional LMS algorithm is the most classic and
widely used algorithm in the field of application, but
there is a great contradiction between the steady state error
and the convergence speed. The smaller iteration step can
obtain a small steady state error, but the convergence
speed is slow, and the larger iteration step can obtain a
larger convergence speed, but the steady-state error can-

not be guaranteed. Therefore, many improved LMS algo-
rithms have been proposed by scholars at home and
abroad. Qin et al.'!" proposed a variable iteration step
LMS algorithm based on Sigmoid function, but it is not
perfect, and the change of step size is more obvious.

1
10 =B( 1 oo —a e 1)

-0.5) (4)

The normalized LMS algorithm''*! adjusts the iteration

step through a certain normalized function form of the in-
put signal. Its iterative formula is

- I S

w(k+1)_w(/’<)+y+ | x(h) Hze(k)x(k) (5)
where || x(k) | represents the square norm of the input
signal. Paleologu et al. '™ proposed a bilinear form for
the normalization algorithm. Batista et al. """ applied the
NLMS algorithm to sparse interpolation, and it achieved
good results. Chen et al. """ proposed an improved algo-
rithm based on Sigmoid function,

4
"2 +exp( —ale(k) [) +exp(a|e(k) \))
(6)

It has greatly improved the convergence speed, conver-

w(k) =p(1

gence accuracy, steady state error and the anti-noise per-
formance, but it increases the computational complexity
and the algorithm complexity. In Ref. [ 18], an improved
LMS algorithm, RELMS algorithm, is proposed. The
following formula is used to improve the convergence ac-
curacy and steady state error of the LMS algorithm by
using the adjacent error as the update iteration basis.

w(k+1) =w(k) +2B8[1 —exp[ —a | e(k)e(k-1) |]]
(7)

Zhang et al. " proposed an algorithm on the basis of
the SVSLMS algorithm. By establishing a new iteration
step and the nonlinear function model of error, five pa-
rameters are introduced to make the iteration step control-
lable. However, the error mutation is not taken into ac-
count.

1 _e—ale(k)l"'

a+be ®

p(k) =B (8)

On the basis of the MVSS-LMS algorithm, Lii et
al. ™ increased the forgetting weighting and estimation of
historical errors and controlled the update of the iteration
step. At the same time, the improved algorithm dynami-
cally controls the updating range of the iteration step, and
reduces the computational complexity by using the sliding
window forgetting weighting.

n-1

pk) = Y e(ie’(k =i (9)

i=0

uCk+1) = au(k) +yle(k)e(k=1) +p*(k)1° (10)

The above algorithms improve iteration performance to
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a certain extent, but the applicability and iteration speed
are not so good, and the flexibility of parameter adjust-
ment is not good enough. In order to process more com-
plex signals and to cope with sudden error changes, an
improved variable iteration step LMS algorithm is pro-
posed.

2 Improved Variable Iteration Step LMS Algo-
rithm

2.1 Principle of the algorithm

1
1+e”
taken as the prototype. The amplitude of the Sigmoid
function is expanded by two times and moved one unit
downwards, and then the abscissa is changed into the ab-
solute value:

In this paper, the Sigmoid function f(x) = is

x

= x|

(S

flo ===
1+e

It can be seen from Fig. 1 that the value of the function
increases with the increase of the absolute error value,
which is in agreement with the expectation of the larger
iteration step when the error is larger in the LMS algo-
rithm. That is, the iteration step will increase accordingly

when the error is large.
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Fig.1 Transform of Sigmoid function

In order to make the nonlinear function of the iteration
step and error more variable and adjustable, parameters «,
B, v are introduced into it to control the shape of the
function. vy is a parameter introduced to avoid large chan-
ges in the step size when the function converges, and the
odd number is taken by default. On this basis, the error
e(k) is combined with e(k —1) to change the size of the
iteration step. Therefore, an improved variable iteration
step LMS algorithm is proposed as

y(k) = W' (k) X(k)
e(k) =d(k) —y(k)

1 _ e—a\e(k)e(k—])lv

(1)
(k) =BW

W(k+1) =W(k) +2u(k)e(k) X(k)

2.2 Performance analysis

First, the influence of each parameter is studied. From
Fig.2, we can clearly see that the range of 8 controls the
iteration step. The value of iteration step function increa-
ses with the increase of 8. Therefore, the larger 8 can ob-

tain a faster convergence rate. Fig.3 shows the influence
of a.
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Fig.2 The effect of 8
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Fig.3 The effect of o

It can be clearly seen from Fig. 3 that « controls the
shape of the function. The oversize value will lead to the
iteration step approaching to 1, which is not conducive to
the adaptive-adjustment of the iteration step. Therefore,
« should be kept within a small range. Fig.4 shows the
influence of y.
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Fig.4 The effect of y

From Fig. 4, it is clear that the performance of the iter-
ation step function is the best when the value of vy is 3.
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With the change in the error, the iteration step function
can be changed as well, thus avoiding the large change of
the iteration step when the function converges.

2.3 Simulation analysis

Simulation function is constructed as

y =sin(2mw10¢) + sin(2w20¢) + sin(27w30¢) + n(1)
(12)

In order to better distinguish the filtering effect of the var-
iable iteration step LMS algorithm, the amplitude of the
first half of the white noise is 2, the second half is uni-
form white noise, and the simulation analysis is carried
out through MATLAB. The performance of the algo-
rithms is measured by comparing the MSE (mean square
error). First, the algorithm is compared with the tradi-
tional LMS algorithm. The simulation results are shown
in Fig. 5.
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Fig.5 Comparison of filtering performance. (a) Original signal;
(b) Variable iteration step LMS algorithm; (c) Traditional LMS algo-
rithm

Then, the algorithm is compared with the current algo-
rithms (Algorithms in Refs. [17 —19]). We use the sig-
nal-noise ratio (SNR) and MSE to describe the perform-
ance of the algorithm. The SNR of each algorithm is
shown in Tab. 1.

The MSE of learning curve is shown in Fig. 6. From

Tab.1 Comparison of SNR dB
SNR of each algorithm
Number -
Ref. [17] Ref. [18] Ref. [19] This paper
1 11.459 0 11.307 1 10.847 0 11.538 7
2 12.514 8 12.328 3 11.843 5 12.590 4
3 11.621 1 11.462 2 10.936 7 11.677 3
4 10.462 2 10.344 9 10.044 5 10.573 1
5 13.359 6 13.235 4 12.792°5 13.4107

Tab. 1 and Fig.6, we can clearly see that the SNR of the
improved variable iteration step LMS algorithm is the lar-
gest of the algorithms. The algorithm is equivalent to the
other algorithms in the convergence speed, but it has ob-
vious advantages over the other three algorithms in MSE.
For this reason, the improved iteration step LMS algo-
rithm is effective. It can improve the convergence rate
and reduce the steady-state error of the iteration.
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Fig. 6 Comparison of the learning curve

3 Adaptive Filter of Acoustic Emission
3.1 Construction of expectation function

The process of signal processing mainly includes signal
preprocessing, sound source positioning, acoustic emis-
sion feature extraction and pattern recognition. For this
purpose, some redundant noise signals are removed, so
that it has good performance in frequency domain pro-
cessing, thus better source location has become the focus
of research. Adaptive filtering technology can filter dif-
ferent acoustic emission characteristics according to differ-
ent acoustic emission signals. From the time domain mor-
phology of acoustic emission signals, it is generally di-
vided into two basic types: Burst acoustic emission signal
and continuous acoustic emission signal. Burst signals are
separable waves in the time domain, and are usually sepa-
rated into acoustic emission signals and noise signals. At
present, most of the acoustic emission signals are burst
signals. Only when the frequency of acoustic emission
signals cannot be separated in the time domain, will it be
displayed by continuous signals. A typical burst acoustic
emission signal is shown in Fig. 7.

From Fig.7, we can observe that the acoustic emission
signal is a kind of constant attenuation signal in the time
domain. To this end, a desired function with attenuation
characteristics can be constructed by the acoustic emission
signal, and the acoustic emission signal is filtered by
adaptive filtering technology. In view of this characteristic
of acoustic emission, we construct the expected functions
of the adaptive filter by constructing the corresponding
envelope curve and envelope demodulation, so as to real-
ize the filtering processing of the acoustic emission signal.
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Fig.7 Acoustic emission signal

The empirical mode decomposition EMD algorithm is a
new method for nonlinear and non-stationary data analysis
" This paper uses EMD envelope
demodulation to construct the upper and lower envelopes
of acoustic emission signals. The steps are as follows:

1) Calculate all local extremum points of x(¢).

2) Work out the upper envelope u(#) and the lower en-
velope v(t).

3) Work out the mean m(t) = (u(t) +v(t))/2 and the
difference h(t) =u(t) —v(1).

4) Judge whether h(?) satisfies two properties of intrin-
sic mode function (IMF) ™. If so, h(f) becomes IMF,
else repeat steps 1) to 3) until i(¢) satisfies the properties
of IMF, then it is recorded as ¢, (7).

5) Take r,(t) =x(t) —c,(t), repeat steps 1) to 4) un-
til r,(¢) is a monotone signal or the value of r, (1) is less
than the given threshold. x(f) can be shown as

proposed by Huang

n

x(r) = Y (1) +r,(1)

k=1

(13)

Through the above EMD method, the upper and lower
envelopes of acoustic emission signals can be obtained. A
new method for constructing the expected function of
acoustic emission signals is established. When the ampli-
tude is greater than 0, the upper envelope curve is used as
the expected function d(k). When the amplitude is less
than 0, the lower envelope curve is used as the expected
function d(k).

3.2 Experimental analysis

The experimental data is provided by the Donghua Spe-
cial Equipment Research Institute. The condition is
shown in Tab.2. The arrangement of sensors is shown in

Fig. 8.

Tab.2 Experimentalconditions

Material Diameter/ Baui — ¢ Installation

Ti men nsor

aterial mm quipme ensor type method
Steel 1 000 DH5960A PK151 Magnetic

Single strike is the generation of AE signal. The dis-
tance from the sensors is 150 mm. Then the experimental
original signal is obtained, and its envelope demodulation

Fig.8 Sensors arrangement

and adaptive filtering are carried out, in which the adap-
tive filter parameters « =5, 8 =0.2, y =3. The results
are shown in Fig.9. The learning curve of the experimen-
tal signal is shown in Fig. 10.
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Fig.9 Results of the adaptive filter. (a) Envelope signal;
(b) Adaptive filtering signal
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Fig.10 Learning curve

In the frequency domain, it can be seen from Fig. 11
that the algorithm weakens the sub peaks on the edges of
the main edges of the spectrum, so we can clearly find the
main peak(around 80 kHz).

3.3 Performance of the algorithm applied to acoustic
emission signals

3.3.1 Influence of the parameters on the learning curve
From Figs. 12(a), (b), (¢), it can be seen that 8 con-
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trols the range of the iteration step. The larger 8 can ac-
celerate the convergence speed and converge after 30 to
40 iterations. The larger o can also speed up the conver-

> 6
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2
g2
g
< 0 1 1 Il 1
0 20 40 60 80 100 120 140 160 180 200
Frequency/kHz
()

gence speed, and the larger y can also speed up the con-
vergence speed. Therefore, the parameters of the adap-
tive filtering are « =5, 8=0.2, v =5.
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020 40 60 80 100 120 140 160 180 200
Frequency/kHz
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Fig.11 Spectrum comparison. (a) Spectrum of original signal; (b) Spectrum of adaptive filtering signal
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order

The filter order is also important in the adaptive filter.
The filter order is set to be 10, 50, 200, and the results
are shown in Figs. 12(d). We can see that the larger filter
order can accelerate the convergence speed and reduce the
steady-state error.

3.3.2 Comparison with the existing algorithms

In order to find the superiority of the algorithm in this
paper, the MSE of these algorithms are compared in the
following figures. The parameters are set to be a =5,
=0.2, y=3 and « =5, $=0.2, y=5.

It can be seen from Fig. 13 that in the case of y =3 and
y =5, the convergence speed of this algorithm is higher
than those in other literature, and the steady-state error is
relatively small. Therefore, it also illustrates the superior-

20 30 40 50 60 70 80 90 100
Iteration number k

(b)

Filter order:

010 20 30 40 50 60 70 80 90 100
Iteration number &

(d)

Influence of the parameters. (a) The influence of 8; (b) The influence of a; (¢) The influence of y; (d) The influence of the filter

ity of the algorithm in dealing with the contradiction be-
tween the convergence speed and the steady-state error
which the traditional adaptive filter needs to solve, and
also further explains the advantages of the algorithm, the
feasibility and convenience of adaptive filtering technolo-
gy in the field of acoustic emission.

Meanwhile, the spectrum of each algorithm after adap-
tive filtering is analyzed. The results are shown in Fig.
14.

According to the experimental analysis, we can see that
the peak spectrum of acoustic emission waveform is about
80 to 100 kHz. This algorithm has an obvious effect in
reducing the high frequency noise signal( mainly mechani-
cal vibration and environment noise), and it has the same
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performance as the existing algorithm. It is easy to see
from Tab. 1 that the SNR of the improved algorithm is
relatively greater than others. At the same time, this al-
gorithm weakens the peak spectrum of the main peak,
and lays a foundation for the acoustic emission source po-
sitioning technology based on the waveform analysis.
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Fig.13 Comparison in the learning curve each algorithm. (a)
v=3; (b) y=5
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Fig. 14 Comparison in the spectrum of each algorithm. (a)
The algorithm in Ref. [17]; (b) The algorithm in Ref. [18]; (c) The
algorithm in Ref. [19]; (d) The algorithm of this paper

4 Conclusions

1) An improved variable iteration step LMS adaptive
filtering algorithm is proposed, which includes three pa-
rameters «, 3, vy and combines e(k) with e(k —1) in or-
der to cope with error mutation. This algorithm improves
the convergence speed and reduces the steady-state error.
It has an obvious advantage over other existing algo-
rithms.

2) In view of the special attenuation characteristics of
the burst AE signal, adaptive filtering is applied to acous-
tic emission signal processing. A new method of con-
structing expectation function is proposed for acoustic e-
mission signals, which is suitable for acoustic emission
signals.

3) It is found that the improved algorithm also has a
certain filtering effect in the frequency domain, which re-
duces the high frequency noise signal and makes the main
frequency bands more prominent, and it has achieved a
good filtering effect. It has a good application prospect in
the field of AE signal processing especially in the source
positioning of AE signals.
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