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Abstract: To evaluate the influence of data set noise, the
network in network ( NIN) model is introduced and the
negative effects of different types and proportions of noise on
deep convolutional models are studied. Different types and
proportions of data noise are added to two reference data sets,
Cifar-10 and Cifar-100. Then, this data containing noise is
used to train deep convolutional models and classify the
validation data set. The experimental results show that the
noise in the data set has obvious adverse effects on deep
convolutional network classification models. The adverse
effects of random noise are small, but the cross-category noise
among categories can significantly reduce the recognition
ability of the model. Therefore, a solution is proposed to
improve the quality of the data sets that are mixed into a single
noise category. The model trained with a data set containing
noise is used to evaluate the current training data and reclassify
the categories of the anomalies to form a new data set.
Repeating the above steps can greatly reduce the noise ratio, so
the influence of cross-category noise can be effectively avoided.
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n recent years, machine learning, deep learning and
I other methods in image recognition have experienced
vigorous development. A variety of deep convolutional
network models have made significant contributions to the
field of image recognition, increasing the accuracy of im-
age classification to new levels and achieving break-
throughs in all application areas. Deep learning is a
branch of machine learning. It is a hierarchical model
structure similar to that of the human brain. It extracts the
characteristics of the input data from the bottom layer to
the highest layer to establish a mapping relationship from
Today, it
has become an inevitable trend for the Internet, big data,

and artificial intelligence''.

the bottom signal to high-level semantics'"'.
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The CNN is the first successful learning algorithm for
training multilayer network structures. CNNs use a gradi-
ent-based improved back-propagation algorithm to train
the weights in the network. They implement a multilayer
filtered network structure for deep learning and a global
training algorithm combined with filters and classifiers,
which reduces the complexity of the network model and
the number of weights'”. The CNN has achieved very
good results in the image processing field'"'. After the de-
velopment of the Alex-Net deep convolutional network
model"” for the ILSVRC-2012 fire in 2012, researchers
continued to propose deep convolutions, such as the
ALL-NET'" | ResNet-50'"", Inception-V3'®, and VGG-
19" models. These models have achieved good perform-
ances in tasks such as image recognition, target detec-
tion, and semantic segmentation. The basis of these well-
performing models is the need for sufficient training data
to provide supervised training; therefore, the quality of
the data sets is a fundamental factor that limits the train-
ing results of the deep convolutional network model.

Since data sets are usually developed manually, the
quality of data sets is subjectively influenced by people.
An important basis for judging the quality of a data set is
the presence of noise images in each category. Elaborate-
ly produced open-source benchmark data sets, whose im-
ages of various categories are often represented by exact
and true category semantics, can often achieve a high
classification accuracy by using classification models ap-
plied to these data sets. Inspired by this, this paper starts
from the perspective of image classification, uses noise
data to train the classification model, and then uses the
classification accuracy of the noiseless test set to reflect
the impact of data set noise on the degraded performance
of the deep convolutional network classification.

1 Data Set Noise Analysis

When the data set is in the production stage and the ar-
tificial subjective classification error occurs, it may add
the remaining similar image in the data set to a certain
category, or it may mistakenly add the image of an unre-
lated category to a specific category. The first operation
introduces cross-category noise, and the second introduces
For cross-category noise, the artificial
standard category often mislabels multiple images in the

random noise.

same data class as a specific category. At this time, the
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noise concentrates on a certain class. In contrast, random
noise has a wide range of irrelevant category images. For
example, if the original image is randomly cropped during
the training phase, the background containing no target is
used as the specified data label. This background content
often does not belong to any category. In the same data
set, the proportion of noise data is usually uncertain, de-
pending on the artificial subjective recognition experience
and the proportion of the size in the target image.

To facilitate the analysis of noise data, this paper se-
lects the reference data set as the data source and then
samples the source data set to obtain different proportions
of noise data. The subsequent experiments set multiple
proportions of the noise control group for classification
training. Finally, the normal test data is used to detect
the classification accuracy. The idea of this analysis is as
follows. After the benchmark data set is carefully annota-
ted manually, the noise data is completely removed. At
this time, artificially introducing certain types of noise can
effectively analyze the effects of different noise types.

In this case, when simulating the convergence conditions
of the training process, it is necessary to add noise to the
training set and verification set during the noise analysis.
The test set is used to reflect the performance degradation.
Only test data with accurate classification can accurately re-
flect the real situation of the degradation of recognition per-
formance under noise data. Therefore, noise should not be
introduced into the test data in the analysis phase.

2 Experimental Data and Model Selection

This paper uses Cifar-10 and Cifar-100, which are two
benchmark data sets, for classification testing. Both data
sets add a specific proportion of random noise. To better
judge the impact of cross-category noise on the quality of
the data sets, a comparison was made here between the
impact of single-category and multicategory cross-catego-
ry noise on model recognition performance. Cifar-10 has
10 different categories. Furthermore, we tested its 10 cat-
egories separately. The Cifar-100 data set has 20 coarse
labels, each with 5 fine labels. In this paper, among the
20 coarse labels, one fine label for each coarse label was
arbitrarily selected as the final test object.

2.1 Introducing random noise

To introduce random noise images in the training set
and validation set, the experiment randomly selected
some images from ImageNet and scaled them to 32 x 32
and then added them to the training data and verification
data proportionally.

2.2 Introducing cross-category noise

As shown in Fig. 1, to introduce a cross-category noise
image into the training data, in Cifar-10, the experiment
directly added other categories to a specific category at a

certain proportion. For Cifar-100, 20 coarse labels were
separated from 100 categories, and 5 fine labels were sepa-
rated from each coarse label. Among the 20 coarse labels,
one fine-label was arbitrarily selected as a test object, and
the other four fine labels were introduced as noise into the
category at the same ratio. Therefore, the effect of intro-
ducing cross-category noise can be obtained. Here, (0) to
(4) represent fine labels in every coarse label.

| Category 0 | Category 0(0) |<f:‘ Category 0(1)-0(4) |

| Category 1 | Category 1(0) |<):‘ Category 1(1)-1(4) |

| Category 2 | Category 2(0) |<:‘ Category 2(1)-2(4) |

| Category 9 |Category 19(0)|<;:1Category 19(1)—19(4)|

| Category 0 Category 20(0)|<:1Category 20(1)—20(4)|
(a) (b)

Fig.1  Adding cross-category noise to Cifar-10 and Cifar-100.

(a) Cifar-10; (b) Cifar-100

2.3 Details of noise introduction

In this paper, four noise ratios are set to obtain reliable
inferences from test data from multiple control groups. In
both data sets, the proportion of noise images in the training
set for each category is the same. In Cifar-10, the random
noise and cross-category noise ratios are set to be 2. 5%,
5%, 10%, and 20%, respectively. In Cifar-100, the ratio
of random noise to total cross-category noise is the same as
that of cifar-10. However, due to the introduction of four
categories of noise, each noise ratio introduced should be the
total cross-category noise ratio divided by four.

2.4 Model selection and its superiority

Classic convolutional neural networks consist of alter-
natively stacked convolutional layers and spatial pooling
layers. The convolutional layers generate feature maps by
linear convolutional filters followed by nonlinear activa-
tion functions (e. g., and tanh).
Using the linear rectifier as an example, the feature map
can be calculated as

rectifier, sigmoid,

= max(w, x
ij, k k

2 0) (1)

where (i, j) represents the pixel index in the feature map;
x, ; is the input patch centered at location (i, j); k is used
to index the channels of the feature map.

In fact, the high-level features of the CNN are actually
a combination of low-level features through some kind of
operation. According to this idea, the principle of NIN'""!
is to perform more complex operations in each local re-
ceptive field and implement an improved algorithm for the
convolutional layer: the MLP convolutional layer. Com-
pared to the traditional convolutional layer process, the
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Mlpconv layer can be seen as a microlayer network in the
local receptive field of each convolution. Fig.2 shows the
difference between the linear convolution layer and the
Mlpconv layer.

(a) (b)

The difference between the linear convolution layer and

Fig. 2
the Mlpconv layer. (a) Linear convolution layer; (b) Mipconv layer

Using the micronetwork of the multilayer MLP, more
complex operations are performed on each local receptive
field neuron, and the nonlinearity is improved. The cal-
culation process is as follows:

fi =max(wyx, +b,,0)

2T
ﬁjﬁkl = max(wkzx[’j + bkz,O)

fi;. =max(w; fi-' +b,,0) (2)

where 7 is the number of layers in the multilayer percep-
tron. A rectified linear unit is used as the activation func-
tion in the multilayer perceptron.

For the classification problem, unlike the fully connect-
ed layer in the traditional CNN, the principle of NIN is to
use the mean pooling method to globally average the en-
tire image of each feature map. In this way, you can ob-
tain an output for each feature map, as shown in Fig. 3.
This can remove a large number of parameters for build-
ing a fully connected layer, which greatly reduce the net-
work size and effectively avoid overfitting. On the other
hand, it makes sense that each feature map is equivalent
to an output feature.

Feature maps Output Feature maps  Output
o . O
@) — O
=0 ~ O
O =0
(a) (b)

Fig. 3
global average pooling. (a) Fully connected layers; (b) Global aver-
age pooling

The difference between fully connected layers and

Based on the above advantages, this paper uses NIN
to classify categories. In fact, NIN, with a small num-
ber of parameters, has good performance with CIFAR-
10 and CIFAR-100. The detailed settings are as fol-
lows. The model uses Relu activation to speed up model
convergence. The loss term of the training optimization
goal consists of the classification loss and L2 regulariza-
tion term, where the weight of the L2 regularization
term is 0. 001.
tion, and the learning rate is exponentially decayed.
Otherwise, the dropout is set to be 0.5 to prevent over-
fitting. Finally, a softmax classifier is added to identify
each category type.
training process is 90.

SGD is used to evaluate the loss func-

The number of iterations of the

3 Classification under Noise Conditions

In this experiment, Cifar-10 and Cifar-100 were trained
using the noise settings above, and the NIN model was
used to calculate the accuracy and average of each catego-
ry on the test set.

3.1 Analysis of the average accuracy of each data set

Tab. 1 shows the performance of the test set under the
three training set training models by introducing various
noise ratios. The leftmost AP value is the average accura-
cy rate predicted by the model trained using only normal
graph data in the test set. The middle row of the AP val-
ues is the average accuracy under random noise. The
rightmost AP value is the average accuracy under cross-
category noise.
noise, the accuracy of model recognition decreases as the
noise ratio increases. The former has less influence on the
recognition ability of the model, and the latter has more
significant effects.

Whether it is random noise or cross

In fact, if we take an extreme example, the effects of
random noise and cross-category noise on the model be-
come more apparent. Assuming that the model is perfect
enough to achieve the correct classification of all catego-
ries, we can obtain the following conclusions:

If R, =100% and K, =1, then the original category is
completely replaced by a new category, P, =1, A =0.

Otherwise, if R, =100% and K, =7, then the cross-
category noise is approximated as random noise; there-
fore, the probability density function is

Tab.1 The average precision of classification of Cifar-10 and Cifar-100 in different noise situations

Normal images + No noise

Normal images + Random noise

Normal images + Cross-category noise

Noise ratio/ %

Cifar-10 Cifar-100 Cifar-10 Cifar-100 Cifar-10 Cifar-100
0 0.892 0.658 0.892 0.658 0.892 0.658
2.5 0.887 0. 668 0.865 0.663 0.858 0.644
5 0.882 0.647 0.867 0.632 0.854 0. 605
10 0.869 0.650 0.862 0.646 0.841 0.610
20 0.867 0.642 0.849 0.615 0.823 0.590
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f(x)zblfa a<x<b (3)

Thus, we can obtain P,~1/T, A =1/T. Here, R, is
the rate of noise in the training data set; K, is the number
of cross-category noise types; P, is the probability of
adding cross-category noise; 7 is the number of training
set images; P, is the probability of adding any one of T
kinds of noise. The variable A is the recognition accuracy
of the original category.

Obviously, the influence of cross-category noise is
greater than that of random noise.

3.2 Methods to reduce the effects of cross-category
noise

The greater the proportion of cross-category noise, the
more significant the influence on the negative effects of
the model. Therefore, reducing the proportion of cross-
category noise effectively improves the recognition ability
of the model. In Cifar-10, the training data is classified
using a model that is initially trained to contain noise da-
ta. As shown in Tab. 2, from the mixing matrix of the
classification results, most of the cross-category noise cat-
egories can be effectively identified. For example, the
1 000 cross-category noise images whose labels are 0 in
the training data have real labels of 1. A total of 909 of
these images were judged to have labels of 1. Therefore,
the screening of images that have been categorized as oth-

New model Test Training

er categories in the training data can greatly reduce the
cross-category noise ratio, and the recognition perform-
ance of the correspondingly retrained model is greatly im-
proved.

Tab.2 The mixing matrix of the classification of cross-catego-
ry noises in Cifar-10 before iterations

Category of Predicted category

training data

with 20% noise 0 1 2 3 4 5 6 7 8 9
0 49 909 O 0 0 0 3 0 5 34
1 45 98 735 17 19 1 75 3 6 1
2 17 6 127 655 25 25 134 4 7 6
3 13 3 16 41 834 3 78 6 4 2
4 14 6 25 112 140 595 75 29 1 3
5 7 1 5 4 1 12970 0 0 0
6 15 2 14 10 47 4 75 825 2 6
7 16 4 0 1 0 0 112 9%1 5
8 11 12 0 2 0 0 1 0 47 927
9 736 202 3 0 2 0 3 0 12 42

To obtain more accurate training data, we designed
such an algorithm to separate interspersed cross-category
noise as much as possible. By judging the data in the
mixing matrix shown in Fig.9, if the recognition accura-
cy of the category can be improved, the images are re-
classified. Then, the images are retrained, and the train-
ing data is classified to obtain a new mixing matrix.
Here, we set the number of iterations to be 3. The specif-
ic flow chart is shown in Fig. 4.

data set

Sort the number in
each category from
high to low

Mixing
matrix

Choose

| Choose the largest one of the left numkers |

the
largest
number

Iteration

Reclassify the category

| Break s <Threshold o
o S No
Wl?::gﬁ;?ggfznl N 3 Determine whether the
L a8l Yes | classification is correct
Y
Iteration=3 Organize training
data to retrain Call the
corresponding
- category model
Print the final Train and save the Eory
TG Ne 1{1&_1 corresponding model
mixing matrix for each category

Fig.4 The algorithm flowchart for filtering of cross-category noise

After three iterations, we can obtain a new mixing ma-
trix, as shown in Tab. 3. We find that the prediction of
each introduced cross-category noise leaves only the noise
category introduced and the original category. This shows
that iterative screening does have a positive effect on cor-
recting a wrong label. At the same time, it also shows
that cross-category noise does affect the model’s extrac-
tion of the original category features, resulting in some

images being incorrectly categorized. Of course, the
more iterations there are, the less the noise of the data.
After three iterations, the correction rate is 91.57% ac-
cording to the following formula:

8
z Nc,z‘+1 + Ny,

_ c=0
¢= 10 000 (4)
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where C is the correction rate; ¢ is the row label of the
mixing matrix; N is the value of the current coordinate.

Tab.3 The mixing matrix for the classification of cross-cate-
gory noise in Cifar-10 after three iterations

Category of Predicted category

training data

with 20% noise 0 1 2 3 4 5 6 7 8 9
0 22 978 0 0 0 0 0 0 0 0
1 0 89 911 O 0 0 0 0 0 0
2 0 0 127 873 0 0 0 0 0 0
3 0 0 0 106 894 0 0 0 0 0
4 0 0 0 0 159 841 O 0 0 0
5 0 0 0 0 0 7 993 0 0 0
6 0 0 0 0 0 0 70 930 O 0
7 0 0 0 0 0 0 0 11 989 0
8 0 0 0 0 0 0 0 0 24 976
9 7720 0 0 0 0 0 0 0 228

In Cifar-10, each category is mixed with a single cate-
gory of noise. However, each fine label of Cifar-100 mi-
xes into the other four categories of noise on the same
coarse label. Similarly, we can also use the above model
to obtain the mixing matrix, as shown in Tab. 4.

Tab.4 The mixing matrix for the classification of cross-cate-
gory noise in Cifar-100

Category of
training data
with 20%
noise
0(0)
0(1)

Predicted category Predicted category

before iterations after iterations

1(n) 2(n) 3(n)
12/17 9/11 13/15
15/18 10/12 13/15

4(n) 1(n) 2(n) 3(n)
19/23 22/40 10/16 7/7
17/18 16/24 13/17 15/17

4(n)
12/13
15/15

0(2) 14/14 25/31 25/28 10/14 18/24 16/25 23/26 11/18
0(3) 15721 21/22 18/18 15/18 16/22 22/25 19/19 20/24
0(4) 18/18 25/28 21/21 15/15 25/25 24/30 22/31 9/9
0(5) 18/18 10/10 16/17 19/22 23/31 18/19 13/15 14/14
0(6) 20/21 11711 17/19 18/18 22/23 12/15 22/28 17/17
0(7) 15/17 17/18 13/13 24/29 19/26 13/13 18/21 13/14
0(8) 19/23 16/17 19/23 16/17 18/23 17/18 20/21 12/12
0(9) 19/19 14/16 22/22 18/18 17/19 20/23 25/25 13/13
0(10)  15/16 24/25 22/23 21/22 20/21 24/27 23/25 20/21
0(1l)  15/16 24/25 22/23 21/22 20/21 24/27 23/25 20/21
0(12) 4/4 12712 14/14 25727 17/22 22/22 17/18 21/23
0(13) 10/10 16/16 16/18 21/21 12/13 12/13 19/21 19/19
0(14) 14/39 6/7 9/11 11/13 12/34 15/22 10/14 7/9
0(15) 11712 14/18 17/18 14/14 19/23 21/23 6/6 8/10
0(16) 12/14 8/8 17/17 11/12 18/27 9/10 10/11 18/24
0(17)  24/26 20/23 16/16 20/22 22/31 16/17 19/19 17/20
0(18) 9/11 22722 22/25 15/15 17/30 20/26 12/17 9/10
0(19)  21/21 21/22 21/21 20/22 23/23 18/19 21/22 22/23

Notes: 0 (1) represents the fine label O in the coarse label 1. The rest is
similar. 17 in 12/17 represents the total amount of 1(0) predicted and
corrected, but the correct number is only 12. The rest is similar.

As seen from Tab. 4, this algorithm is actually very
bad for data sets mixed into multiple categories of noise.
Although it can correct the type of mixed noise to a cer-
tain extent, it mixes various types of noise into other cat-
egories, which causes the noise distribution to be more
extensive. In other words, there is almost no completely

correct category for the entire training data set. There-
fore, this algorithm only has a significant effect on cor-
recting data sets with a single category of noise. For a da-
ta set mixed into multiple types of noise, it becomes
worse.

4 Conclusions

1) The recognition rate of each category in the data set
has a different degree of reduction with increased noise
ratio.

2) Compared with the introduction of random noise,
the introduction of cross-category noise has a more signif-
icant influence on the recognition effect.

3) From the mixing matrix shown above, it can be
seen that for a data set mixed into a single category, to
reduce the influence of cross-level noise, the initial train-
ing model can be used to filter the cross-category noise in
the training data so that the quality of the data set can be
effectively improved. After filtering, the noise ratio of
the data set can be significantly reduced. However, for a
data set mixed into multiple categories of noise, the algo-
rithm of this paper cannot improve its quality, which re-
quires further research.
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