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Abstract: For the purpose of positioning in various scenes,
including indoors, on open road, and side street buildings, a
low-cost personal navigation unit is put forward. The unit
consists of a low-cost MEMS ( micro-electro-mechanical
system) accelerometer, a gyroscope, a magnetometer and a
GPS( global positioning system) chip, and it is capable of
switching modes between indoor and outdoor situations
seamlessly. The outdoor mode is MIMU ( MEMS-inertial
measurement unit)/GPS/magnetometer integrated mode and
the indoor mode is MIMU/magnetometer integrated mode.
The outdoor algorithm uses the extended Kalman filter to fuse
data and provide optimum parameters. The indoor algorithm is
dead reckoning, which uses vertical and forward accelerations
to judge steps and uses a magnetometer to define heading. The
two-axis acceleration data is used to calculate the adaptive
threshold and estimate the confidence value of the steps, and
when the confidence of both two axes data meet the
conditions, the steps can be detected in the adaptive time
windows. The detection precision is more than 95%. An
experiment was in complex
experiment participant wearing the unit walked about 1 600 m
in the experiment. The results show that the positioning error
is less than 0.2% of the total route distance.

conducted situations. The
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A s a type of novel autonomous navigation technolo-
gy, personal navigation is widely used in the mili-
tary and civilian fields, especially for tasks including in-
dividual combat, emergency rescue, reconnaissance and
expedition, etc. Although the most common algorithm
for personal navigation is MIMU/GPS integrated naviga-
tion, it is unable to continue positioning in the locations
where the satellites are sheltered such as cities, valleys,

and forests'". Besides, the SINS algorithm with low-ac-
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curacy MEMS sensors are unreliable for the significant
accumulative error. Therefore, additional sensors are nec-
essary in the process of positioning and compassing based
on MIMU/ GPS integrated navigation. Xu'” put forward a
kind of MIMU/GPS/magnetometer integrated navigation
system in 2014, which behaved better than MIMU/GPS

! sugges-

integrated navigation outdoors. Aggarwal et al.
ted heuristic elimination of gyro drift in GPS-denied con-
ditions, estimating heading angle by matching IMU-de-
rived heading to the direction of the streets map in the da-
tabase, whose precision is 1% . Guo et al. '*! suggested a
personal navigation system using an inertial measurement
unit and a MEMS-based ground reaction sensor array
(GRSA), which provides a zero-velocity update for the
IMU, and the system showed high accuracy both in verti-
cal and in-plane positioning.

In terms of indoor location, the positioning algorithm
can be divided into four categories: 1) ZUPT (zero ve-
locity update), using velocity error at stance phase as an
observation measurement in the Kalman filter to correct
position errors, velocity errors and attitude errors™; 2)
Wireless positioning, usually based on RSSI or TDOA,
calculating the receiver’s location through the estimated
distance between targets and the receiver; 3) Database
matching, for instance, a raised typical indoor location
system using Wi-Fi fingerprint matching technique'”'; 4)
Dead reckoning, identifying pedestrian steps through iner-
tial sensors'”’. Recent research results show a tendency
toward combining different methods, for instance, a
combination of ZUPT and indoor map matching”™, a
combination of ZUPT and Wi-Fi received signal strength
indicator’, a combination of dead reckoning and
RFID'", and a combination of dead reckoning and map

matching''"™"*

. The methods above have a common point
that they are based on the autonomous navigation algo-
rithm, with external information ( map, Wi-Fi, RFID,
etc. ) as an auxiliary. The addition of external informa-
tion helps limit errors and improves positioning, which
produces a better positioning effect indoors.

This paper proposes a kind of low-cost personal naviga-
tion unit which works in both outdoor and indoor loca-
tions. In the event of qualified GPS signals, the MIMU/
GPS algorithm is adopted, while on other occasions the
MIMU/ magnetometer and pedometer are integrated. The
experiments show that the unit operates effectively and
switches between the two modes seamlessly.



58

Cai Tijing, Xu Qimeng, and Zhou Daijin

1 Description of Hardware

The hardware includes a navigation computer and data
acquisition module. Fig. 1(a) shows that the navigation
computer consists of a DSP and a FPGA, which are con-
nected through EMIFA. The FPGA connects peripherals
and sends calculation results to the PC through UART,
while DSP runs the navigation algorithm. The data acqui-
sition module is composed of an accelerometer, a gyro-
scope, a magnetometer and a GPS board. The frequen-
cies of the inertial data and GPS are 100 and 1 Hz, re-
spectively. The personal navigation unit is immobilized
on the pedestrian’s waist while walking, and the result is
shown on the PC monitor. Fig. 1(b) is the picture of the
unit.
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2 Mathematical Model of Outdoor Positioning

In terms of outdoor positioning, the MIMU, GPS and
magnetometer are integrated. The initial attitude is deter-
mined by the accelerometer and magnetometer. In the al-
gorithm, the extended Kalman filter fuses GPS, magne-
tometer and positioning data, and then the errors of the

accelerometer, gyroscope and navigator can be estimated.
After the data is corrected, the navigation results are out-
putted.

2.1 The system state equation

The extended Kalman filter state equation is
X(t) =F(t)X(0) +G(t) W(1) (1)

where X is the system’s state vector; W is the noise vec-
tor; F is the state transition vector; G is the noise conver-
sion vector. The form of X and Wis X = [8L 6\ 6h

oV 8Vy OVy Opr Soyn Spy &y, Evry i ] T7
adW=[w, o, o, 0, o, waz]T. The compo-
nents L, SA, &h are the errors of longitude, latitude and
height; 6V, 8V, 6V, are the errors of velocity in east,
north and upward directions; S¢;, d¢y, O¢, are the errors
of attitude in east, north and upward directions; &, &,
&, are the zero drift errors of the gyroscope; w,,, .,
w,. are the white noises of the gyroscope; w,., w,, o,
are the white noises of the accelerometer.

2.2 The system observation equation

The MIMU output parameters are corrected with the
help of GPS and magnetometer data, that is, on the occa-
sions when qualified GPS signals, GPS velocity, the po-
sition and heading angle are used and on other occasions,
the magnetometer provides a heading angle. The observa-
tion equation is

CLooLo ] g [OLe]
As —Ag oA OAg
hg = hg &h Shy
Z(1) = “;:: ] zzz = ::j: + 2\‘;22 =H(D)X(1) + V(1)
VSU - VGU 5VU 8VGU
s — Pg op 0pg
Les—ou | H00 - [ Spy

(2)

where Ly, Ag, hg, Vg, Vi Vs, ¢ are the position,
velocity and heading angle calculated through the SINS
navigation algorithm; L;, Ag, hg, Vaes Voo Vour @4
are the GPS positions, velocity and heading angle; ¢,, is
the magnetic heading angle obtained from magnetometer;
8L, 8\, 6h, 8V, 8Vy, 8V, OS¢ are the errors of MIMU
positions, velocity and heading angle; 6L, SAg, Ohg.,
V> 8Vins 6Vgy, Spg are the errors of GPS positions,
velocity and heading angle; &¢,, is the error of magnetic
heading angle; H and V are the system’s measurement
matrix and measurement noise matrix, respectively.

3 Mathematical Model of Indoor Positioning

In terms of indoor positioning, the dead reckoning algo-
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rithm is adopted. According to accelerometer data, the
adaptive threshold is calculated and the step confidence is
estimated, and then the step can be detected in the adap-
tive window. In addition, step length can be estimated
according to the step frequency based on the step frequen-
cy-length linear model. Finally, indoor positioning is re-
alized with step number and step length.

3.1 Analysis of step data

The output of the 3-axis accelerometer mobilized on the
pedestrians’ waist shows that the acceleration data changes
cyclically, especially the vertical and forward accelera-
tions. However, multiple peaks and valleys exist in each
cycle because of factors including noise and error. There-
fore, the acceleration data of both axes should be taken
into account for the issue of steps detection.

3.2 Adaptive threshold

The vertical acceleration fluctuates periodically, one
cycle matching one step. Here is the detection method,
first we compare vertical acceleration to a predetermined
threshold, and then we regard the time point that acceler-
ation passes through threshold from bottom to up as the
beginning of a step. Considering that multiple extremums
may appear in one period since the raw data rises and falls
sharply, the method may miss a step or overcount.

In each time window, the high threshold 7, middle
threshold T,,, and low threshold 7, can be written as

% Y p i=2
T, = k= (3)
! p, t+ TH.r—l P=1
2
}
L~ z Vi =2
7, =] (4)
v, + TL,r—l N
2 ] =
T, +T
e (5)

Suppose that there are i local maximums, p,, p,, ...,
p;, and j local minimums, v, v,, ..., v, in the time win-
dow. Ty, , and T, , are the high threshold and low
threshold in the previous time window. The three thresh-
olds change constantly with the pedestrian’s walking
steps. In particular, the methods calculating adaptive
thresholds on the vertical and forward axes are the same.
It is relatively reliable to use the middle threshold as a
standard, so the unit regards the time point when the ver-
tical acceleration passes through middle threshold upward
as the beginning of a step.

3.3 Estimation of degree of step confidence

The unit distinguishes between two states, walking and

rest, by estimating the degree of step confidence twice.
The purpose of the first estimation is to judge the trend of
data in the window roughly and ignore the windows in
which steps almost impossibly exist. Standard deviation is
a typical statistical argument reflecting the degree of dis-
persion. Greater standard deviation matches sharper fluctu-
ation of the acceleration data in a window, that is, a step
is more likely to exist. However, the large amount of com-
putation in calculating standard deviation affects the efficien-
cy of the algorithm, so the fluctuation is represented by

1 50
Sz = % ; (az,i _az,])2 (6)

The calculation of s, is similar to Eq. (6). It is certain
that s, and s, approach zero when a pedestrian rests or
barely moves. From this, the degrees of step confidence
on the two axes, ¢, and ¢, will be set to be 1 or clear to
0 by the rule

1 s, >1 7
C_ =
“ {0 others
1 s, >1 (8)
“n = {0 others

The second estimation is executed if both ¢, and c,,
meet the condition, and the degrees, c, and Cys
fined by the difference between high and low thresholds.
The rule can be written as

are de-

1 q.=0.9 (9)
C, =
? {0 others
1 q,=1.1
= 10
“r {0 others (10)
q; =Ty -Ty, =Y,z (1D)

wher T, and T, are the high threshold and low threshold
of acceleration in the time window, respectively. The
thresholds 0.9 and 1.1 are empirical values. Then, the
window in which the number of steps changes can be de-
tected. Fig.2(a) and Fig. 2(b) show the degree of confi-
dence of vertical and forward accelerations.

If both c,, and c,, are set, the vertical acceleration data
will be traversed and the step will be detected further.

The condition of the step can be written as
a,,<Ty<a,., (12)

where the sampling point k£ + 1 is the time when vertical
acceleration passes through the middle threshold upward,
that is, the beginning of a step.

3.4 Adaptive time window

Although the algorithm does not miss a step if the pass-
ing point is in the time window, the problem is that the
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Fig.2 Degree of confidence. (a) Vertical acceleration; (b) For-
ward acceleration

step will be missed if the point is exactly right on the
boundary of the time window. Therefore, an adaptive
time window is adopted to make the step point appear in
the middle as much as possible, which means that a time
window with changing steps will be terminated if the con-
dition

az,k > TL > az,k+1

(13)

is met. The point k + 1 is the time when vertical accelera-
tion passes through the low threshold downward, and a
new time window will be fit from data a_,,, and @, .
The data in the new time window is {a_,,, ..., a_y, ...,

a .yt and{a, . ..., @y, -5 @y}, where N is the
size of the window.

In Fig. 3, the blue curve is the vertical acceleration da-
ta acquired while walking, the black polyline represents
middle threshold, and the red split line represents the de-
tected step. Since the time window is adaptive, the width
of the window varies. The figure shows that the result of

the algorithm is quite effective.
3.5 Dead reckoning

According to the dead reckoning theory, the walking
process can be separated into steps, each one projecting
to east and north under the heading angle. As the duration
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Fig.3 Graphical effect of pedometer

of a step is quite short, it is supposed to be a linear mo-
tion, and the pedestrians’ position is obtained by accumu-
lating all of the steps.

The position on the next moment, (L, ,,A,,,), is cal-
culated on the basis of dead reckoning according to the
previous position, (L,, A,), which can be modeled by

Icos
Ln+l = n + qu (14)
er
A B Ising,, (15)
nel T Ty cosL,

where ¢,, is the magnetic heading angle; r, is the curva-
ture radius of the earth on the north-axis; r, is the curva-
ture radius of the earth on the east-axis; [ is the length of
a step which is estimated by the frequency. There is a lin-
ear relationship between the length / and frequency f of a
step, which can be written as

l=of +B

where o and B are coefficients of the linear equation,

(16)

which are obtained from the fitting curve by several tests.
As Fig. 4 shows, the vertical and forward acceleration da-
ta are put into two 50-length buffer arrays, and the algo-
rithm is executed when the arrays are full. The first esti-
mation of the confidence degree is obtained according to
Egs. (7) and (8), and then the adaptive thresholds are
obtained according to Eqgs. (3) to (5). The number of
steps is probably changing in the current time window if
both of the second estimations meet the condition, and
the changing point can be detected when vertical accelera-
tion passes through T,, upward. Finally, the current posi-
tion is calculated based on the step number, length and
magnetic heading angle.

4 Switch Between Two Modes

The instrument chooses GPS/SINS integrated naviga-
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tion mode when outdoors, and it changes to the dead re-
ckoning algorithm when indoors, that is, there is no GPS
signal. Fig.5 shows the switching method between out-
door and indoor algorithms.

Split
time window
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Fig.4 Description of the dead reckoning algorithm
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Fig.5 Graphical description of switching

The GPS signal is checked every second ( GPS frequen-
cy is 1 Hz). Once the signal is not available, there is a
variable K counting time. If K is less than 5 which means

that missing time is less than 5 s, the GPS/SINS integrat-
ed navigation algorithm can still work. Otherwise, the
system changes to the dead reckoning algorithm.

As Fig. 6 shows, the participant walks from an open
environment into a building, and wanders for a while in-
doors. The diagram can roughly indicate the person’s
path, so the switching algorithm is acceptable.
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Fig.6 Diagram of switching from outdoors to indoors

5 Results and Discussion

Before testing the navigation algorithm, the pedometer
was tested since the accuracy of the counting steps is es-
sential for the navigation result. The experiment partici-
pant wearing the unit walked on the path at different
lengths, and the steps were counted and compared to the
steps outputted from the pedometer.

The results in Tab. 1 show that the algorithm counts
steps correctly and the precision is greater than 95% .

Tab.1 Results of the pedometer experiment

Real steps Calculated steps Precision/ %
50 50 100
50 51 98.0
100 96 96.0
100 97 97.0
150 143 95.3
150 145 96.7
200 191 95.5
200 192 96.0

Afterwards, an experiment testing the indoor positio-
ning effect was performed, in which the participant wear-
ing the unit walked indoors along a specified route. The
participant started from point (0, 0),
shaped a rectangle as Fig. 7(a) shows. The error during
the route can be seen in Fig. 7(b). The walking distance
is about 80 m, and Tab.2 shows that the root square er-
rors in east and north directions are 0.71 and 1.34 m, re-

and the route

spectively.

Tab.2 Root square errors in the indoor experiment m
East direction RMSE North direction RMSE ~ Average RMSE
0.71 1.34 1.02

The comprehensive experiment was performed on cam-
pus. Both indoor and outdoor algorithms could be tested
in this situation, because there were buildings and tree
shade and GPS signal could be sheltered. The participant
wearing the unit walked around campus, and Fig. 8(a) is
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the trace plot on the Google map.

According to the experiment, GPS could not position
during loss of a satellite signal while the pedestrian passed
across the courtyard, under tall buildings or tree shade.
However, the unit was able to adapt to indoor situation
and position with the help of the accelerometer and mag-
netometer. The errors during the experiment can be seen
in Fig. 8(b), and the maximum error in east and north di-
rections is 8 m.

The root mean square errors in east and north directions
are listed in Tab. 3. The results show that the error rate of
the unit is less than 0. 2% of the total route distance,
which is about 1 600 m. This proves that the unit is able
to position correctly in most occasions.

Tab.3 Root square error in the comprehensive experiment
m

East direction RMSE North direction RMSE  Average RMSE
1.35 1.75 1.55

6 Conclusions

1) The personal navigation unit realizes long-term posi-
tioning indoors and outdoors for a pedestrian, and is able
to switch between two modes when the situation changes.

2) The outdoor positioning algorithm is MIMU/GPS/
magnetometer integrated navigation, using the position,
velocity and heading angle as an observation vector in the
extended Kalman filter.

3) The indoor positioning operating mode integrates the
MIMU/ magnetometer, and the algorithm is dead reckon-
ing. With the vertical and forward acceleration data, the
algorithm is able to detect the steps according to the adap-
tive threshold and degree estimation of step confidence.
Finally, positioning is realized by magnetometer determi-
ning heading.

4) The experiment shows that the unit’s error rate is
less than 0.2% of the total route distance, which proves
that the realization is effective and beneficial for research
in fields of personal navigation.
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