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Abstract: A joint resource allocation algorithm based on
parallel auction ( JRAPA)
computing (MEC). In JRAPA, the joint allocation of wireless
and cloud resources is modeled as an auction process, aiming
at maximizing the utilities of service providers ( SPs) and
satisfying the delay requirements of mobile terminals( MTs).
The auction process consists of the bidding submission, winner
determination and pricing stages. At the bidding submission
stage, the MTs take available resources from SPs and distance
factors into account to decide the bidding priority, thereby
reducing the processing delay and improving the successful
trades rate. A resource constrained utility ranking ( RCUR)
algorithm is put forward at the winner determination stage to
determine the winners and losers so as to maximize the utilities
of SPs. At the pricing stage, the sealed second-price rule is
adopted to ensure the independence between the price paid by
the buyer and its own bid. The simulation results show that the
proposed JRAPA algorithm outperforms
algorithms in terms of the convergence rate and the number of
successful trades rate. Moreover, it can not only achieve a
larger average utility of SPs but also significantly reduce the
average delay of MTs.
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is proposed for mobile edge

other existing

obile edge computing ( MEC) is regarded as a
M promising technology, which can bridge the gap
between the demands of applications and the restricted ca-
pabilities of mobile terminals (MTs) "™, MEC servers
are deployed at the base stations (BSs) in close proximity
to mobile subscribers to execute latency-sensitive serv-
ices, thereby extending the computing, storage and data
processing capabilities of MTs.

Little existing literature focuses on resource allocation in
MEC systems. The non-cooperative matrix game was for-
mulated in Ref. [3] to solve the resource sharing problem
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among the cloudlets. Meneguette et al. " proposed an ef-
fective protocol based on vehicle-to-vehicle ( V2V) com-
munication. Nevertheless, due to the search for super
nodes in the algorithm, additional time overhead was nee-
ded. In Ref. [5], the authors modeled the uplink data
transmission of the vehicular network into an equilibrium
program with the equilibrium constraints problem. The
Bayesian alliance game and automatic learning machine'®
were applied to deal with a large amount of spatio-tempo-
ral information. Based on the Markov decision process
(MDP), a motion prediction algorithm for dynamic re-
source allocation was investigated in Ref.[7], which great-
ly reduced the offloading time and energy consumption. In
Ref. [8], a resource allocation algorithm based on the
semi-Markov decision process ( SMDP) was proposed,
which considered the heterogeneous vehicular network and
the impact of road side units to maximize long-term utility.

A joint cloud and wireless resource allocation based on
evolutionary game (JRAEG) " was proposed to solve the
service selection problem in heterogeneous networks. A
power-delay tradeoff algorithm was proposed in Ref.
[10], which applied a joint task offloading and proactive
caching method to minimize computing latency. In Ref.
[11], users with different computation capabilities shared
a single edge server. A convex optimization problem was
formulated to minimize the energy consumption. An iter-
ative algorithm'"
optimization problem in the multicell MEC scenario. In
Ref. [13], an energy-efficient cooperative computation

was proposed to solve a non-convex

method was proposed, in which the computational appli-
cations can be partitioned into several tasks to be executed
in peer nodes.

Although the literature above provided effective approa-
ches to solve the resource allocation problem for the MEC
system, there are still some disadvantages in these ap-
proaches. The game theory requires multiple iterations
between the MTs and BSs, which brings the problem of
low convergence speed and large latency. The Markov
decision process increases the information interaction be-
tween the terminals and the MEC servers, which brings
great delay. The auction theory is a well-researched field
in economics that has been applied in resource manage-
ment with the advantages of high efficiency and low com-
putation complexity''*"”
less and cloud resource allocation algorithm based on the

. Therefore, we propose a wire-
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combinational parallel auction for MEC systems.

We propose a joint resource allocation algorithm based
on parallel auction (JRAPA), including bidding submis-
sion, winner determination and pricing stages to maximize
the utilities of the service providers (SPs) and satisfy the
delay requirements of MTs at the same time. The MTs
take available resources from SPs and distance factors into
account to decide the bidding priority. A resource con-
strained utility ranking (RCUR) algorithm is put forward
to match the SPs and MTs at the winner determination
stage. Moreover, the wireless resource auction and cloud
resource auction are processed in parallel, which acceler-
ates the convergence speed of the auction process.

1 System Model

The system model studied in this paper is shown in
Fig. 1, which includes MTs, BSs, MEC servers, the core
network (CN) and central cloud (CC).

MEC — Wired link
server N —=— Wireless link

§ Mobile terminal
A Base station

Radio access network

Fig.1 An example of MEC system

1.1 Network model

The CC is composed of massive servers, which is the
central computational service provider of the whole sys-
tem. MEC servers are applied to supplement the CC, so
that applications can be processed close to the MTs. The
MEC servers and BSs are connected through reliable opti-
cal fibers, and they are connected to the CN through a
wide area network ( WAN). In addition, MTs are con-
nected to the BSs through the LTE/5G wireless network.
The wired connection between MEC servers and BSs al-
lows the MEC server to provide auxiliary functions for of-
floading decision making and resources allocation, which
guarantees the low delay and high reliability requirements
of the applications. Without loss of generality, we as-
sume that each BS only connects with one MEC server.

1.2 Communication model

It is assumed that there are J MTs, denoted as J = {1,
2,...,J}. The number of BSs/MEC servers is N, which
is expressed as N = {1,2,..., N}. Orthogonal sub-chan-

nels are allocated to MTs connected to each BS, which

indicates that there are no interfaces among MTs. The
channel between each BS is composed of a fixed path-
loss, a slowly varying lognormal shadowing and rayleigh
fast fading. The transmission power of MT j is denoted
by p;. The uplink transmission rate of MT j connected to
BS i is expressed as

(1)

P;8;
Rif=B,:flog2(l +- ])

R
T
where B, is the bandwidth allocated to MT j, and g, re-
fers to the channel gain between MT j and BS i. o-?j is de-
fined as the power of additive Gauss white noise

(AWGN).

1.3 Computation model and problem formulation
1.3.1 Computation model of MTs

When a MT needs to offload a task, it should pay the
corresponding remuneration to encourage SPs to provide
wireless and cloud resources. The utility function of MT j
is

N
Uw()) = X my(t,; =1,) = VB, = V)'f; (2)
i=1

where m;; is a two-value variable to show the matching re-
lationship between SP i and MT j, and m; e {0,1}. 1,
is the time for MT j to execute a task locally. Vf is the
bidding price of MT j for a unit wireless resource, and
V/M is the bidding price for a unit computation resource. s,
refers to the number of CPU instructions that MT j re-
quests, and b, is the bandwidth required to upload the
task. ¢/ is the delay constrain of MT j. The total delay
between MT j and SP i is denoted as

b, ; e
Sj +tmdt«.h (3)

ti=L+-L 4]
y y

where B, and f; are the wireless and cloud resources that
MT j required. The matching time between MT j and SP
i is denoted as £;"".
1.3.2 Utility function of BSs

We need to consider how to maximize the revenue of

BSs. The optimization problem is

J J
max Yy U,(i,j) = Y m(V: = A})B,
j=1 j=1
J
S. t. B, < B" (4)
=1

i
where A7 represents the cost of BS i for the allocating unit
wireless resource, and B{" is the available wireless re-
source of BS i.

1.3.3 Utility function of MEC servers
It is necessary to consider how to maximize the revenue

of MEC servers. Similarly, the optimization problem is

J J
maxz U,(i,)) = zm,-,-(V]M —)\,M)f,-j
iz i=
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st X f s (5)

where A represents the cost of MEC server i for alloca-
ting unit cloud resource, and f7" is the available cloud re-
source of MEC server i.

2 Joint Resource Allocation Algorithm based on
Parallel Auction

The resource allocation in the MEC system needs to
meet the real-time requirements of tasks. In this section,
we propose a parallel auction algorithm to realize the joint
allocation of the wireless and cloud resources, aiming at
maximizing the utilities of SPs and meeting the delay re-
quirements of MTs at the same time.

2.1 Auction model

The basic auction model of JRAPA is illustrated in Fig.
2. MTs are resource buyers, while BSs and MEC servers
are resource sellers. We regard BSs and MEC servers as
the auctioneers of wireless and cloud resource auction, re-
spectively. Hence, no additional charge is required. The
bidding and pricing information of both buyers and sellers
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Fig.2 The auction model

As shown in Fig. 3, due to the independence of wire-
less and cloud request channels, the auction of wireless
and cloud resources can be processed in parallel. One MT
transmits the wireless and cloud resource request while
signaling to the BS at the same time. After receiving the
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Fig.3 The description of parallel auction

two signals, the BS will conduct the wireless resource
auction, and the cloud resource request signaling is for-
warded to the MEC server to conduct the cloud resource
request auction. Parallel auction of wireless and computa-
tion resources can achieve fast matching of sellers and
buyers, which can meet the low latency requirement of
the system.

2.2 Parallel auction algorithm description

An auction mechanism with clear rules will be adopted
to prevent dishonest transactions between buyers and sell-
ers. One trade in the parallel auction is successful when
both the wireless and cloud resources required by one MT
are satisfied. The auction process can be divided into
three stages: the bidding submission stage, winner deter-
mination stage and pricing stage.

2.2.1 Bidding submission

Each MEC server and each BS broadcast its available
cloud resource f7" and wireless resource B, respective-
ly. When receiving the resource information, MT j prior-
itizes the SPs according to priority factor o, ;, which takes
the available resources of the BS and MEC server , the
distance d; between SP i and MT j into account.

e ey
ij ij ij

(6)

where «, B, y are the available wireless resource factor,
available cloud resource factor and distance factor, re-
spectively, and o +B8 +y =1.

The priority vector is 0} = {o

sorted sorted sorted }
Lj 2>72j > 2> YN,j

In each round, MT j submits its bidding vector (BU,
f;» V7. V)Y, where V' and V)" are the unit bidding price
for wireless and cloud resources of MT j, respectively.
When the MT and SP match successfully, the MT stops

bidding for wireless and cloud resources.
2.2.2 Winner determination

We define a match matrix M = {m,},, to describe the
relationship between MTs and SPs, where m; e {0, 1}.
m,; =1 means that SP i and MT j matches, while m; =0
refers to that MT j fails to match SP i. Also, we assume

N
that 2 m; <1, which indicates an MT can only choose
i=1

service from at most one SP.

We propose a resource constrained utility ranking
(RCUR) algorithm to match the MTs and SPs. After re-
ceiving the bidding vectors, BS i and MEC server i first
calculate the utility vector, respectively. The descending
utility vector is obtained as U, (i) = {Uy (i, 1),...,
Uy(i,K,)} and U, (i) ={U,(i,1),..., U,(i, K;)},
where K, represents the number of MTs bidding for BS
and MEC server i. BS and MEC server i choose the MT
whose utility ranks top in U; and U}", respectively, as the
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winner, and update (f;", B;"") as

B?va — B?va _ B (7)

== (8)

A winner will not take part in the auction in the next
round, and its utility is removed from the utility vectors.
The above process will be repeated until B < " or £ <
¢" holds, where ¢” and ¢" are the predetermined wireless
and cloud resource threshold, respectively. It is noted that
if one auction (for example, the auction at the MEC serv-
ers) is successful and another auction failed for the same
MT, the MT fails to obtain the required resources.

The losers should improve their bidding strategies in
the next round. The bidding price update by the functions
Vj‘? = Vf +Aij].3 and VJM = VJM +Aj.VIVIM, where AJB, AIM are
steps of the price adjustment for unit wireless and cloud
resources, respectively.

i

2.2.3 Pricing stage

An auction should be constructed while the price paid
by the buyer is independent of its own bids"'”. At the
pricing stage, we adopt the sealed second-price rule,
where each winning MT pays the second-high bidding
price in the winner set.

Assume that the winners of SP i are expressed as J,' =
{Jisdas--- s, }, where w, is the number of winners. Tak-
ing the unit wireless resource pricing of the BS as an ex-
ample, we assume that the bidding price of winners is

ranked as V; = {V;,, V. ..., V] }, where V[, = V]

i

=...= Vf ;.- According to the second-price rule, the
payment for each winner is
. ijm n=1,2,...,w,-1
P = { - 9)
% n=w,

i, i

where {/?] is the payment of the winner whose bidding

price is V7, , and it is assumed that A} < {/?j <V, . By
calculating the pricing of the winner of each BS, the
wireless resource pricing matrix P® = {P,.';. }uxy 18 deter-
mined.

Similarly, the MEC servers will also obtain the pricing
matrix P" = {P}'},,, according to the sealed second-price
rule.

B (10)
M

{Vf.‘ﬁ.w n=1,2,...
ij, i
where Vfwj is the payment of the winner whose bidding
price is Vf"j and it is assumed that A}' < Vfwj S Vf"/

2.3 Proposed algorithm description

The proposed JRAPA algorithm is described in Algo-
rithm 1, which describes the bidding submission, winner

determination and pricing stages of multiple auction
rounds to decide the match matrix and pricing matrix.
r™ is the maximum auction rounds in the algorithm.

The RCUR algorithm in the winner determination stage
is illustrated in Algorithm 2, in which the utilities of SPs
are ranked in a descending order to determine the win-
ners, and available wireless and cloud resources are upda-
ted with the iterations.

In Algorithm 2, U(i,j) is the utility of the BS or MEC
server, which depends on the requested resource. J. re-
fers to the set of candidate MTs, and K, is the number of
MTs in J;. ¢°, @™ are the resource thresholds of BSs and
MEC servers, respectively.

Algorithm 1 JRAPA algorithm
Input: J, N, (B, f,, ™, V], V'), r"™;
Output: M, P.
Initialization: o, B, 7y, J,J), (fI*, B™).
for each particle r=1: r™ do
Bidding submission
Each MT in J calculates o, ; according to Eq. (6).
Sort o, ; in a descending order, and 0_;“““1 is ob-
tained.
MT bids to the BS and MEC server according to
the first element in O}™.
Winner determination
for each particle i = 1: N do
BS and MEC server i utilize Algorithm 2 to decide
winners. 6:
end for
for jeJ do
VA
V=V ANV
O;OI’YCd — OjonEd _ {OU}
end for
end for
Pricing stage
Each MT pays according to (9) and (10).
Algorithm 2 RCUR algorithm
Input: K,, (B, .f..V;,V;'), UG, j), J, J..f™,
B
Output: M, J;'.
for each particle i =1: K, do
Calculate the utility for each MT in J;.
end for
Sort the utility U(i,j) in a descending order. U,
=[U(i,1),U(i,2),...,U(i,K)].
for each particle i =1: K, do
if B =" or " =¢" do
B =B™ — B, or f* =f** —f,
JS =J7 - {k}, update U,.
IV =0 + (k)
end for
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2.4 Properties of JRAPA algorithm

Definition 1 A feasible auction mechanism should
satisfy the following properties:

e Computational efficiency. The auction outcome
should be completed with a polynomial time complexity.

e Individual rationality. The utility of the buyers and
sellers should not be less than zero, which means that no
winning buyer is charged more than its bidding, and no
winning seller is paid less than its cost.

® Budget balance. The gain of the auctioneer is de-
fined as U7, which is equal to the price paid by the buy-
ers subtracting the payment to the sellers. The gain of the
auctioneer should be no less than zero.

Lemma 1 The JRAPA is computationally efficient.

Proof In Algorithm 1, in each single-round auction,
sorting the priority factors takes O( NJ log(NJ)) time at
the bidding submission stage. According to Algorithm 2,
at the winner determination stage, there are at most J
MTs for each SP. As a consequence, the time complexity
of sorting the utility vector is O(NJ log(J)), and the
while-loop takes at most O( NJ) time. For bidding strate-
gy adjustment, there are at most J MTs in set J. Hence,
it has the time complexity of O(J). Since the auction
process will be conducted r™ times, the overall time
complexity of Algorithm 1 is O(r™ NJlog(NJ)).

In other words, JRAPA will converge to a final re-
source allocation and pricing results in a polynomial time
with respect to N, J and r™, and JRAPA is computation-
ally efficient.

Lemma 2

Proof
adopt the sealed second-price rule at the pricing stage, so
the payment to sellers is less than the bidding of the win-
ning MT. For winning sellers, as described in previous
section, P;=A; and P)'=2}". Therefore, the utilities of
SPs are more than zero.

On the other hand, the utilities of MTs in the loser set
J, are zero. Since the utilities of both sellers and buyers
are not less than zero, the proposed JRAPA is individual-
ly rational.

Lemma 3 The JRAPA is budget balanced.

Proof The MEC servers and BSs are auctioneers,
which take charge of the whole auction process in JRA-
PA. No extra charge is required. The total profit of MEC

N
. . A
servers and BSs gained as auctioneers are Z U’ =0.

i=1

To conclude, the proposed JRAPA is budget balanced.

The JRAPA is individually rational.
On the one hand, for winning buyers, we

3 Performance Evaluation

In this section, we use a computer simulation to evalu-
ate the performance of the proposed JRAPA algorithm,
and compare the performance of the JRAPA mechanism
with other algorithms.

3.1 Simulation setup

We consider a simulation scenario where 3 BSs and 3
MEC servers randomly locate on a 1000-meter road. The
initial available resources of BSs and MEC servers are
{55, 50, 60} MHz, {7 000, 8 000, 7 500} Mega/s, re-
spectively. We set the channel gain of the MTs following
the Gaussian distribution CN(p,, oy), where u, =10, o
=1. The transmission power MT j is set to be o, = 1.
The wireless and cloud resource requests as well as the de-
lay constraint are randomly distributed on the intervals (0,
2) MHz, (20, 100) Mega/s, and (5, 10) ms, respectively.
The fixed transmission power is p, =20 dBm, and VjeJ.
The factors in Eq. (6) are « = 0.3, 8= 0.3, and y =0.4.
Moreover, the wireless and cloud bidding price are distrib-
uted within (5,10) $/MHz and (0,1) $/Mega, respec-
tively. We set the cost of the wireless unit and cloud re-
source to be A} =0.1, and A} =0.1. The maximum auc-
tion round ™ are set to be 20, and the bidding price ad-
justment steps of MT j are A/M =0.1 and Af =0.1.

3.2 Simulation results

Fig. 4 describes the resource utilization rates of three
SPs. In the JRAPA, the resource utilization rates of all
three SPs increase when the number of MTs varies from
50 to 200. Since the auction is processed in parallel to
achieve faster matching between buyers and sellers, suc-
cessful trade increases with the increasing number of
MTs, and as a result, the resource utilization shows a ris-
ing trend. However, when the number of MTs is larger
than 200, utilization is no longer increasing. It is due to
the limited resource capabilities of SPs, which fail to
completely meet the requirements of the MTs.

0.9-
0.8¢
%
< 07" mmsP2
£0.6f [ISP3
Sost
E 04}
(]
203k
2
20.2F
2
0.1F
0

50 100 150 200 250 300 350
Number of MTs

Fig.4 Average resource utilization of SPs with respect to the
number of MTs

We then investigate the convergence speed of the pro-
posed JRAPA algorithm. The successful trade rate (STR)
is defined as the proportion of winning MTs. We com-
pare the performance of JRAPA with three algorithms:
motion-prediction-based resource allocation (MPRA) ',
one-shot sealed combinational auction ( OSCA) and
multi-round sealed sequential algorithm (MSSA) ", In
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MPRA, each MT chooses a SP based on motion-predic-
tion, and the SP determines the winners according to the
first come first service ( FCFS) rule. SSCA is a one-
round auction. According to the MSSA, the MT sequen-
tially bids to a SP by means of polling in each iteration.

In Fig. 5, the STR of four algorithms is compared
when the number of MTs is 100. It is clear that the num-
ber of successful trades in MPRA, MSSA and JRAPA
shows an upward trend with the iteration times, while in
OSCA, the value remains constant. After 3 iterations,
the successful trade rate in JRAPA achieves the maxi-
mum. The RCUR algorithm and the bidding priority de-
termination in JRAPA increase the successful trade in the
auction. In conclusion, the convergence speed of the
JRAPA is faster than other algorithms and the maximum
STR in the JPARA is 81.82%, 100% and 156.41% lar-
ger than that of MPRA, OSCA and MSSA, respectively.

1001
S ——MPRA
3 80r —=—0SCA
& —o—MSSA
-“é 60+ ——JRAPA
£ 40 Pt
3 20
1 ]

2 4 6 8 10 12 14 16 18 20
Iteration times

Fig.5 Successful trade rate comparison

Fig. 6 shows the average utilities of SPs in different al-
gorithms. Since the MPRA determines the winners accord-
ing to the FCFS rule, the average utility of SPs in MPRA
is revealed randomly. The average utility in the JPARA is
107. 91%, 66. 02% and 29. 44% larger than that of
MPRA, OSCA and MSSA, respectively. At the winner
determination stage, SPs always choose the MT with the
highest utility as the winner in each round of the auction,
as a result of which the successful trade rate and average
utility of SPs are higher than those of other algorithms.
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Fig.6 Average utility of SPs with respect to the number of MTs
The delay of MTi is calculated by Eq. (3), and the av-

J
erage delay is z t,/J . As shown in Fig. 7, compared
i=1

with MPRA, OSCA and MSSA, the delay in JRAPA is
reduced by 46.67%, 41.46% and 33.33% on average,
respectively. On the one hand, since the wireless re-
source auction and cloud resource auction are processed in
parallel, the matching delay between buyers and sellers is
significantly reduced. On the other hand, the MTs take
available resources of SPs and distance factors into account
to determine the bidding priority, which decreases the pro-
cessing time. As a result, the proposed JRAPA can well
meet the latency requirement of MTs, and the delay is sig-
nificantly reduced compared with other algorithms.

. MPRA
EOSCA
8k EZEMSSA

C_JJRAPA .

Average delay/ms

0 50 100 150 200
Number of MTs

Fig.7 Average delay comparison

4 Conclusion

In this paper, we propose a JRAPA algorithm for MEC
system, which includes the bidding submission, winner
determination and pricing stages, aiming at maximizing
the utilities of SPs and satisfying the delay requirements
of the MTs. At the bidding submission stage, the MTs
take available resources from SPs and distance into ac-
count to determine the bidding priority. At the winner de-
termination stage, a RCUR algorithm is put forward to
match the SPs and MTs, and the wireless resource auction
and cloud resource auction are processed in parallel to
achieve the fast matching of the buyers and the sellers,
thus reducing the complexity of the algorithm and system
delay. A sealed second-price rule is adopted at the pricing
stage to ensure the independence between the price paid by
the buyer and its own bid. The JRAPA algorithm is proved
to be computationally efficient, individually rational and
budget-balanced. Simulation results illustrate that the pro-
posed JRAPA algorithm achieves a better performance in
terms of the number of successful trades and utilities of the
SPs. Moreover, compared with MPRA, OSCA and
MSSA, the delay in JRAPA is significantly reduced.
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