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Abstract: In order to improve the efficiency of speech emotion
recognition across corpora, a speech emotion transfer learning
method based on the deep sparse auto-encoder is proposed.
The algorithm first reconstructs a small amount of data in the
target domain by training the deep sparse auto-encoder, so that
the encoder can learn the low-dimensional structural
representation of the target domain data. Then, the source
domain data and the target domain data are coded by the
trained deep sparse auto-encoder to obtain the reconstruction
data of the low-dimensional structural representation close to
the target domain. Finally, a part of the reconstructed tagged
target domain data is mixed with the reconstructed source
domain data to jointly train the classifier. This part of the
target domain data is used to guide the source domain data.
Experiments on the CASIA, SoutheastLab corpus show that
the model recognition rate after a small amount of data
transferred reached 89.2% and 72.4% on the DNN.
Compared to the training results of the complete original
corpus, it only decreased by 2% in the CASIA corpus, and
only 3.4% in the SoutheastLab corpus. Experiments show that
the algorithm can achieve the effect of labeling all data in the
extreme case that the data set has only a small amount of data
tagged.
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n the speech emotion recognition task, the classifier
I needs to determine the emotion category included in
the speech according to the acoustic features and parame-
ters of the speech. For speech emotion classifiers, their
performance is usually positively correlated with the
amount of data in the corpus; that is, the more data sam-
ples used for training, the higher the recognition rate will
be obtained when testing. In addition, when the distribu-
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tion of training data and test data is quite different, the
performance of the classifier will decline significantly.
Therefore, there are many similar problems in construc-
ting the speech emotion recognition system. Firstly, in
reality, it is very difficult to have a large number of anno-
tated corpora due to the high cost of manual annotation.
Secondly, due to the difference in data distribution be-
tween corpora, it is impossible to directly apply an exist-
ing speech emotion classifier to another scenario. There-
fore, most of the actual work of deploying the speech
emotion recognition system is to design an appropriate
and effective feature representation to achieve the target
classification performance. There are several speech emo-
tion corpora at present, but they are usually quite differ-
ent in spoken language, emotion types, performance or
spontaneity, and the annotating scheme, such as classifi-
cation or dimension'". In addition, when manually anno-
tating an emotional corpus, as there are no prescribed
standards but some subjective and artificial judgments,
there are certain differences between different corpora. In
order to reduce manual annotation, narrow the differences
between corpora annotated in different ways, and acceler-
ate the construction of the speech emotion system in prac-
tical application, speech emotion recognition requires a
method to reuse existing corpora.

In recent years, transfer learning has the ability to
transfer useful information from one or more source tasks

to related target tasks'™

, which has gradually attracted the
attention of researchers. Transfer learning can improve
the learning effect, especially when only a small amount
of data is available in the target domain'’. Transfer
learning can also apply to speech emotion recognition
tasks. For a new corpus with different data features or da-
ta distribution, it may only have a small amount of anno-
tated data and a large amount of unannotated data. In this
case, it is impossible to directly apply the model trained
by other tagged corpora to this new corpus. Deng et al. ™
proposed a feature transfer scheme based on the sparse au-
to-encoder, in which an independent sparse encoder is es-
tablished based on each emotion category to learn the fea-
tures of each emotion category and perform feature trans-
fer. Latif et al. ™ used deep belief networks (DBN) for

knowledge transfer across corpora. Zong et al.'™ pro-
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posed a domain-adapted least squares regression algorithm
to solve the feature space mapping problem of transfer.
Song et al. "' used the norm to search for potential feature
subspace to minimize the difference between the target
domain and the source domain data in a feature subspace.

In this paper, the deep sparse auto-encoder is used to
learn the transfer of features so as to complete the estab-
lishment of a speech emotion classification model across
the corpus. This method has two stages: In the first
stage, a deep sparse self-encoder is trained to learn the
potential low-dimensional feature representation of the da-
ta of the target domain. Therefore, the representation can
reconstruct the data of the target domain. In the second
stage, the representation method is applied to the source
domain data. Therefore, it can be mapped from the low-
dimensional features to the data of the target domain, and
then the mapped data is used to train the classifier.

Compared with the previous method of feature transfer
using an auto-encoder, the independent emotion auto-en-
coder is established for each emotion category, training
and performing feature transformation independently.
This paper establishes a unified auto-encoder for feature
transfer for all emotion categories, so that the knowledge
between different categories can also be transferred and
assisted in feature transformation. Then, effective cross-
category feature learning and feature transformation are
established, so that the model can be better trained in the
cross-corpus task, and be more generalized.

In addition, in the cross-corpus task of speech emotion
recognition, the previous auto-encoders basically used a
single-layer to ensure the efficiency of the auto-encoder
training and reduce the complexity of the transmission. In
this paper, a multi-layer deep sparse auto-encoder is used
to construct a more complex feature transfer mapping
space by using the powerful learning ability of a deep
by applying strong sparse
constraints to the auto-encoder, the difficulty of training
the deep auto-encoder and the degree of over-fitting are
reduced. Experiments on CASIA and SoutheastLab cor-
pora verify the effectiveness of the proposed method.

neural network. Moreover,

1 Basic Principles

This section introduces the basic principles of transfer
learning. On this basis, this paper analyzes several situa-
tions that may occur in transfer learning for speech
emotion recognition, and describes the corresponding spe-
cific cases.

First, for transfer learning, there are two basic ele-
ments: task and domain, where the symbol of the domain
is D and the symbol of the task is 7. For a domain D, it
consists of two parts: feature space y and marginal proba-
bility distribution P(X), X = {x,, x,, ..., x,} ey. Taking
speech emotion recognition as an example, the feature
space may be a MFCC coefficient of a certain dimension

or a low-order descriptor of a certain order. X is the MF-
CC coefficient or low-order descriptor of a sample in the
corresponding corpus. For two domains, as long as there
is one difference between the feature space and the mar-
ginal probability distribution; the two domains are differ-
ent.

For a given domain D = {y, P(X)}, task T also con-
sists of two parts: the label space y and the target predic-
tion function f(+), i.e., T={y,f(+) . Also, taking the
task of speech emotion recognition as an example, the la-
bel space y is the type of emotion. For a classification
task that needs to recognize four emotions, namely,
“happy”, “sad”, “angry” and “indignant” , vy is the la-
bel space constituted by the above four emotions. Howev-
er, it is a discriminant function for the recognition of the
above four emotions, which cannot be directly observed
from the data, and can only be learned from it. From the
perspective of probability, generally, it is also regarded
as a conditional probability distribution.

For transfer learning, at least the existence of both
source and target is required; that is, the transfer from
the source to the target needs to be completed. For a giv-
en source domain Dy and source task T, as well as the
target domain D, and target task 7;
designed to take advantage of the knowledge of D¢ and T,
to improve the performance of the target prediction func-
tion f(+) in T, where Dg# D, ,Ts#T,.

For the speech emotion recognition task, according to
the above definition, if the source domain D4 and the tar-
get domain D, are different, then the feature space y and
the marginal probability distribution P(X) of the two do-

“«

transfer learning is

mains have at least one difference. If the feature space y
is different and the marginal probability distribution
P(X) is the same, it indicates that the task of the transfer
learning is to transfer the knowledge based on the classifi-
cation model with different features on the same corpora.
For example, for the same corpora, the existence source
domain model is characterized by MFCC, and attempts to
transfer the knowledge of the source domain to a classifi-
cation model characterized by low-level descriptors. If the
feature space y is the same and the marginal probability
distribution P(X) is different, it indicates that the task of
the transfer learning is to transfer the knowledge based on
the same feature classification model on different corpora.
For example, for a corpus, the existence of the source
domain model is characterized by MFCC, and it tries to
transfer the knowledge of the source domain to the same
MFCC but based on a classification model on another dif-
ferently distributed corpus. If the feature space y and the
marginal probability distribution P(X) are both different,
it indicates that the transfer learning attempts to transfer
knowledge of different feature-based classification models
on different corpora.

Similarly, if the source task T and the target T, are
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different, it means that there is at least one difference be-
tween the label space 7y and the conditional probability
distribution P(Y | X). If the label space v is different, it
indicates that the source task is different from the target
task in attempting to complete the classification label. In
speech emotion recognition, it can be the emotion type
corresponding to the source task and the target task. In
the case of conditional probability distribution P(Y | X) ,
it may be that the label data distribution of the source task
and the target task is different. Similarly, taking speech
emotion recognition as an example, it may be that the
proportion of an emotion in the source task is much larger
than the corresponding proportion in the target task.

2 Algorithm Design and Implementation

An auto-encoder is a neural network composed of sev-
eral hidden layers that can set the target value equal to the
input, and is used to find a common data representation
from the input'®’. The auto-encoder can be divided into
two parts. One part is the encoder and the other part is
the decoder, as shown in Fig. 1. The former few hidden
layers of the auto-encoder constitute the encoder, which
is represented by a light blue graphic in Fig. 1. The out-
put of the last layer can be regarded as the encoded fea-
ture, represented by a dark blue graphic. Then, several
hidden layers constitute the decoder. The decoder repre-
sented by the light green graphic is responsible for deco-
ding the coding features, obtaining the same output as the
input, and completing the refactoring. In the process of
input reconstruction, the auto-encoder learns the distribu-
tion of data through the repeated encoding-decoding
process, and can compress and encode the data to obtain

: 9
a more compact feature representatlonM .

Decoder

Encoder

Fig.1 Auto-encoder structure

For an auto-encoder, assuming that the input is x,; the
output is y,; and the parameter is @; then during its train-
ing, the goal of parameter optimization is

N
mainz ”xi_yi”z (1)
=

By limiting the expected activation of the hidden unit
to sparse, that is, adding a regularization term ', the
deviation of the expected activation degree of the hidden
unit from the target sparsity is penalized. Thus, Eq. (1)
becomes the following loss function;

m

N
L= llx -y 1" +BY sp(plp,) (2)
i=1 j=1

where sp(p || p;) is the sparsity penalty term, which is
calculated as follows:
(p14) =plog £+ (1 -p)log =2 (3)
p; P
where g, is the average activation degree of all neurons in
the hidden layer; p is the sparse degree; B is the penalty
coefficient; and m is the number of all neurons. By
adding sparse constraints'''’, most neurons in the auto-
encoder network are in an inhibitory state, while only a
few neurons are active, which reduces the redundancy of
the network and increases the robustness of the model .

In this paper, a five-layer deep sparse auto-encoder is
constructed to learn the potential feature representation of
the speech emotion corpus. Assuming that the source do-
main corpus is Dy, and the target domain corpus is D,
the goal of transfer learning is to use the knowledge of the
source domain corpus to establish a suitable speech emo-
tion recognition model for D, based on the use of a small
amount of data in the target domain corpus D,. In the al-
gorithm proposed in this paper, the sparse auto-encoder is
trained by a small amount of D, data firstly. Therefore,
the deep sparse auto-encoder can learn the data distribu-
tion and feature representation of D, better, and save the
trained sparse auto-encoder model. After that, the data of
Dy is inputted into the deep sparse auto-encoder, and the
coding features are taken out as the input features of the
recognition model. Meanwhile, the data of D, is inputted
into the sparse auto-encoder and the coding features are
extracted. The encoded feature extraction D, is divided
into a training set and test set, and the training set is mer-
ged with the feature extraction Dy to obtain a final train-
ing set. Finally, the classifier model is trained by the
training set data, and after training, the model is verified
by the test set data. The details of the specific algorithm
are as follows:

1) Define the inputs as source domain corpus Dg and
target domain corpus D.. The initialization reconstruction
training data D, is an empty set, i.e. , D, = J.

2) Divide D, into training set D.. and test set
D, .., and part of data D .. ., from the training set
Dy 1 Will be used for training the sparse auto-encoder,
and the ratio of D, ..\ to D, is a.

3) Construct a deep sparse auto-encoder SA and use
the data D, ., divided in step 2 for training.

4) Input the data D, and D, of the target domain
corpus D, into the SA to obtain the reconstructed data
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DRT-Train and DRT-Tes('

5) Input the data of the source domain corpus Dy into
the SA to obtain the reconstructed data Dyg.

6) Select part of the data with the proportion of 7 from
Dy rinsa » and merge with D¢ to form the final recon-
structed training data D,.

7) Construct classifier C, use Dy for training, Dyy..
for testing, and obtain the recognition accuracy of the
cross-corpus task for the training model.

3 Experimental Results

3.1 Corpus and features

! and

This paper uses two corpora: CASIA corpus "’
SoutheastLab corpus. The CASIA Chinese emotional cor-
pus is recorded by the Institute of Automation ( Chinese
Academy of Sciences). It consists of four professional
speakers, six emotions ( angry, happy, fear, sad, sur-
prise, and neutral) with a total of 9 600 different pronun-
ciations. Among them, 300 sentences are of the same
text; that is to say, the same text is read with different
emotions. These corpora can be used to compare and ana-
lyze the acoustic and rhythmic expression in different
emotional states. The other 100 sentences are in different
texts, which can literally tell what kind of emotion they
belong to, making it easier for the recorder to express
emotions more accurately. The SoutheastLab corpus is
recorded by the Center for Signal Processing and Applied
Research of Southeast University and includes a total of
6 237 samples of six emotions (angry, anxious, fearful,
sad, tired and neutral). As only four emotions ( anger,
joy, sadness and neutral) are the same in the two corpo-
ra, only the data of these four emotions are selected from
the two corpora for the experiment.

The 988-dimensional feature vector is obtained by
using the OpenSmile tool "’ to extract the features of the
two corpora. Since the value range of the feature vector is
large, among - 10’ to 10°, it is not conducive to the
training of the neural network'"'.
is z-score normalization, that is

Therefore, the feature

x == (4)

where . and ¢ are the mean and variance of the data set,
respectively. It should be noted that since the distribution
of the two corpora is different, the z-score normalization
of the two corpora is carried out independently.

3.2 Benchmark classification performance

This paper uses a variety of classifiers to classify the
SoutheastLab data set and CASIA data set to obtain
benchmark classification performance firstly. The results
are shown in Fig.2. The experiment uses a 5-fold cross-
validation to evaluate the model. Among them, the clas-
sifiers used in the experiment are;

1) Deep belief net (DBN) """} which has three lay-
ers of hidden layers with 1 024 neurons in each layer, is
trained by greedy layer-by-layer training.

2) Deep sparse auto-encoder ( deep SAE), which is
combined with SVM to extract features using deep sparse
auto-encoder, uses SVM for classification. The network
structure of deep SAE is shown in Tab. 1.

3) Deep SAE is combined with DNN. Feature extrac-
tion is completed by using the deep sparse auto-encoder,
and then classification is completed by DNN. The net-
work structure of deep SAE is the same as that of deep
SAE in 2). DNN is a five-layer neural network with 768
neurons in each layer, which adopts the activation func-
tion of Leaky ReLU"™, and is finally classified by Soft-
max.

95

[ Deep SAE+SVM
vz Deep SAE+DNN
90- 1 DBN

85

ACC/%

751

70

CAISA
Comparison of benchmark performance of DBN and
Deep SAE methods on two corpora

SoutheastLab
Fig. 2

Tab.1 Deep sparse auto-encoder parameters

Component ~ No. Layer Neurons  Activation
1 Fully connected layer 988 ReLU
Encoder 2 Fully connected layer 768 ReLU
3 Fully connected layer 512 ReLU
1 Fully connected layer 768 ReLU
Decoder
2 Fully connected layer 988

As can be seen from Fig. 2, on both the SoutheastLab
and CASIA corpora, the combination method of deep
SAE and DNN achieve the best classification perform-
ance, reaching 91.2% recognition accuracy on the CA-
SIA corpus and 75. 8% accuracy on the SoutheastLab
corpus. In the SoutheastLab corpus, the combination of
deep SAE and SVM reached 72.9% , slightly lower than
that of DBN(73.6% ). However, in the CASIA corpus,
it is 1. 7% higher than DBN. Through the analysis of the
above experimental results, it can be found that the rec-
ognition rate of unsupervised feature extraction using deep
SAE is generally higher than that of the DBN method.

3.3 Speech emotion transfer

First, this paper experiments based on the case that 7 is
0, this is to say that there is no target domain data
Dy rinsa DUt only source domain data D, in the recon-
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structed training data Dy, for training SVM. In the experi-
ment, SVM is adopted as the classifier, and the proportion
of data Dy, ... used for testing is fixed at 50% . The exper-
imental results are shown in Fig.3. Among them, the sol-
id line shows the result of the SoutheastLab corpus as the
target domain and the CASIA corpus as the source domain
in the transfer experiment. It can be found that when the
SoutheastLab data set is the target domain and the CASIA
data set is the source domain, for the SVM classifier,
which is trained by the reconstructed data obtained from
the transformation of CASIA, its recognition accuracy on
the target domain test data is only slightly higher than
25% . However, with the increase in proportion « of data
Dypre Used to train the deep sparse auto-encoder, when
sparse auto-encoders are trained by using more target do-
main data, the recognition rate of the classifier starts to in-
crease, which indicates that the sparse auto-encoder uses
the target domain data to learn its potential feature repre-
sentations. With the increase of data, the feature represen-
tation learned can also be more effective and reliable. E-
ven though the data distribution of the two corpora is quite
different during knowledge transfer, the sparse auto-en-
coder with more robust coding ability can map the source
domain data to a more accurate joint distribution space.

50r
—+— SoutheastLab
45r -+~ CASIA P
,—*/’
40 PPt
e 4

SEN S
<

30

25_| 1 1 I )

10 20 30 40 50

Proportion/%
Fig. 3
when 7 =0

SVM recognition rate of reconstructed data training

The dotted line in Fig.3 shows the results of the trans-
fer state experiment based on the CASIA corpus as the
target domain and the SoutheastLab corpus as the source
domain. It can be seen that when using CASIA as the tar-
get domain and using SoutheastLab as the source domain
data for data reconstruction, the classification perform-
ance on the CASIA corpus is better than the experimental
results described in the previous paragraph, which is also
consistent with the conclusion in Fig. 2. At the same
time, with the increase in proportion « of Dyy ., used in
CASIA to train the deep sparse auto-encoder, the recogni-
tion rate of the classifier starts to increase, indicating that
the deep sparse auto-encoder does transfer the knowledge
of the SoutheastLab corpus. Therefore, the reconstructed
data used to train the classifier contains this part of the
knowledge, and the classifier can use this part of knowl-

edge to classify the CASIA corpus.

It can be seen from the above experiments that the per-
formance of the trained SVM classifier is poor when there
is no target domain data Dy;...s, in the reconstructed
training data D,, and the classification accuracy rate of
the SoutheastLab corpus is only about 30% , and the clas-
sification accuracy rate of the CASIA corpus is about
44% , which is also unsatisfactory. The reason is that
when the knowledge transfer is performed on the South-
eastLab and CASIA corpora with large differences in data
distribution, no matter which is the target domain and
which is the source domain; the target domain data D, is
never added to the reconstructed training data D, and
there is only the source domain data D,y. Therefore, the
classifier in the process of learning lacks effective guid-
ance, and makes its conditional probability distribution
completely based on the source domain data distribution,
which cannot be well applied to the classification of the
target domain discrimination. Secondly, this paper experi-
ments on the reconstruction training data of different 7
values for training the classifier. In order to ensure the
fairness of the experimental comparison, the experiment
uses a fixed « value. The data Dy, .., used for testing has
a fixed proportion of 50% of D,,, and uses the DNN and
SVM models as classifiers for comparison. Fig. 4 shows
the classifier performance under different ) when the tar-
get domain corpus is CASIA. It can be seen from the fig-
ure that as the target data Dy 1...s4 1S gradually added to

90 —— SVM
-4-DNN JEPE
8ol
< 70F
Q
Q
Z 60k
50F
1 1 1 1 ]
4045 20 30 40 50
Proportion/%
(a)

1 1 J
10 20 30 40 50
Proportion/%

(b)
Fig.4 Comparison of classifier performance under different 7.
(a) The target domain corpus is CASIA; (b) The target domain corpus
is SoutheastLab
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the reconstruction training data D,, the performance of
the model is gradually improved. For the speech emotion
recognition model with DNN as the classifier, 7 increases
from 0% to 50% , and the recognition accuracy of the
model increases by about 41% , which is close to the per-
formance of the benchmark classifier. In addition, when
n is 10% , which means that only a small amount of tar-
get domain data is added, the classification accuracy of
the DNN model increases from 48.2% to 75.1% , with
an increase of nearly 30% . For the speech emotion recog-
nition model with SVM as the classifier, 7 increases from
0% to 10% , and the recognition accuracy of the model
increases by about 22% . When 7 increases to 50% , the
recognition accuracy of the model increases by about
45% , and the improvement is nearly doubled, indicating
that adding a certain proportion of the target domain data
Dyrrinsa i the reconstruction training data D, can help
the classifier to establish a conditional probability distribu-
tion that is suitable for identifying the target domain data.

Fig. 4 also shows the performance comparison of SVM
and DNN classifiers under different  when the target do-
main corpus is CASIA and SoutheastLab. Compared with
the previous experiment, it can be seen that when the tar-
get domain corpus is SoutheastLab, the classification ac-
curacy of SVM and DNN is relatively close, and the
curve trend is also similar. Similarly, as the target do-
main data is gradually added to the reconstructed training
data, the classification accuracy of SVM and DNN is
gradually increased. Moreover, when 7 increases from
0% to 10% , the accuracy of the SVM model increases by
about 29% , and the DNN model increases by about
23% . When 7 is 50% , the SVM achieves a recognition
accuracy of 69.2% , and the DNN is 72. 4% , which is
also close to the performance of the benchmark classifier
in Experiment 1. Compared with the benchmark classifier
which used all the target data to train, our model has only
2% difference in CASIA, as well as 3.4% in the South-
eastLab corpus. The above analysis shows that in the
process of training the classifier with the reconstruction
training data, the target domain data can play a role in
guiding the model learning. Using only a small amount of
the labeled target domain data can enable the model to
achieve better performance.

3.4 Cross-linguistic speech emotion transfer

A five-layer deep sparse auto-encoder is constructed
and used to learn the potential feature representation of
the speech emotion corpus. The parameter settings are
shown in Tab. 1. As it is a sparse self-encoder, the en-
coder needs to delete the acquired information first ( that
is, the number of neurons is lower than that in the upper
layer; therefore, the information is lost), and then the
reconstruction can extract the domain invariant features of
the target domain data. The sparse auto-encoder needs to

reduce the dimension of the input 988 dimension. If the
single layer neural network is directly reduced to 512 or
256 dimensions, it will cause excessive information loss,
so a dense layer of 768 neurons is introduced between the
reduced-dimensional networks. Therefore, the selection
of neurons is 988, 768, 512, 768 and 988. Please note
that when we reconstruct the low-dimensional structural
representation, we use the output of the layer containing
512 neurons.

This experiment adopts two corpora of different langua-
ges: the Chinese corpus CASIA and the English corpus
Enterface. The CASIA corpus is composed of six emo-
tions, namely, angry, happy, fear, sad, surprise, and
neutral, with a total of 9 600 different pronunciation sam-
ples. Enterface contains six emotions; anger, disgust,
fear, happy, sad, and surprise. There are 71 samples for
each type of emotion, and 426 samples in total. The two
corpora share the same five emotions, namely fear, hap-
py, sad, surprise and anger. Therefore, the experiment
uses the data of the five emotions in the two corpora.

The 988-dimensional feature vector is obtained by
using the OpenSmile tool " to extract the features of the
two corpora. As the value range of the feature vector is
large, from —10° to 10°,it is not conducive to the train-
ing of the neural network. Therefore, we do z-score nor-
malization on the features. It should be noted that since
the distribution of the two corpora is different, the z-score
normalization of the two corpora is carried out independ-
ently.

The data amount of the two corpora varies greatly, the
CASIA corpus has 9 600 samples while Enterface only
has 426 samples. It is difficult for Enterface to transfer
CASIA as the source domain data set. Therefore, the ex-
periment uses CASIA as the source domain data set and
Enterface as the target domain data set for feature transfer
learning.

The experimental classifier uses SVM as the benchmark
classifier with a penalty parameter C of 1.5. The Enter-
face corpus is divided into two equal parts. One is for
training the deep sparse auto-encoder, it conducts feature
transformation after the training of the sparse auto-encoder
as the data of the training SVM, and the other is used to
verify the performance of the classifier as test data after
feature transformation.

As shown in Fig. 5, the brighter the color, the better
the recognition effect. The ordinate on the upper graph
represents the actual label category, and the abscissa re-
presents the predicted label category. After the feature
transformation of the deep sparse auto-encoder, the over-
all recognition accuracy obtained by using SVM as a clas-
sifier is about 57% . Among them, the sad category has
the highest recognition rate of 65% , and the happy cate-
gory has the lowest recognition accuracy rate of 48% .
The happy category and the surprise category have the
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highest degree of confusion, which is 21% .

Sad Angry Happy Surprise Fear ACC:
Sad| 0.65  0.14 004 006 0.1 0.6
0.5

Angry | 0.10 059 ~ 0.17  0.10 0.04
F0.4
Happy 0.18 048 021 0.07 e
Surprise { 0.16 = 0.10  0.14  0.60 . F0.2

0.1
rar| 014 . o . 05
o,

Fig.5 Confusion matrix of the Enterface corpus

For the cross-lingual emotional transfer experiment,
due to the huge difference between corpora and the small
overlapping degree of potential feature subspace between
them, it is difficult to search for potential feature sub-
space by using the deep sparse auto-encoder as the feature
transformation network. When the encoding space corre-
sponding to the deep sparse auto-encoder differs greatly
from the potential feature subspace, the transfer feature
obtained from the feature transformation is difficult to ef-
fectively transfer the source domain knowledge. There-
fore, it can not help the target domain to establish a
strong conditional probability distribution.

4 Conclusions

1) A unified feature transfer model for all categories is
established by using the deep sparse auto-encoder. There-
fore, in the process of transferring knowledge from the
source domain corpus to the target domain corpus, the
cross-category knowledge transfer is reinforced rather than
the transfer knowledge or the transfer feature for a specific
category.

2) Furthermore, by increasing the sparsity constraint,
the deep sparse auto-encoder can resist over-fitting and
learn a more accurate potential joint probability distribu-
tion.

3) The experiments demonstrate that the increase in
proportion of target domain data has a positive effect on
the accuracy. It means that the model performance could
increase rapidly with a small amount of labeled target do-
main data, which has a practical application potential for
many scenarios that need to transfer learning.
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