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Abstract: To implement a real-time reduction in NO,, a rapid
and accurate model is required. A PLS-ELM model based on
the combination of partial least squares (PLS) and the extreme
learning machine ( ELM) for the establishment of the NO,
emission model of utility boilers is proposed. First, the initial
input variables of the NO, emission model are determined
according to the mechanism analysis. Then, the initial input
data is extracted by PLS. Finally, the extracted information is
used as the input of the ELM model. A large amount of real
data was obtained from the distributed control system ( DCS)
historical database of a 1 000 MW power plant boiler to train
and validate the PLS-ELM model. The modeling performance
of the PLS-ELM was compared with that of the back
propagation ( BP) neural network, support vector machine
(SVM) and ELM models. The mean relative errors (MRE) of
the PLS-ELM model were 1.58% for the training dataset and
1.69% for the testing dataset. The prediction precision of the
PLS-ELM model is higher than those of the BP, SVM and
ELM models. The consumption time of the PLS-ELM model
is also shorter than that of the BP, SVM and ELM models.
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‘x T ith the increasing demand for environmental pro-

tection, reducing pollutant emissions has become
an important and urgent problem to be solved for most
coal-fired power plants in China. Nitrogen oxide (NO,)
is one of the main pollutants of coal combustion, and is al-
so a contributor to global warming'"'. Combustion optimi-
zation technology has been proven to be an effective and
economical method for the reduction of NO, emissions
from coal-fired boilers'. The reduction of NO, emissions
can be achieved by tuning the adjustable parameters of a
boiler, such as coal feed quantity, excess air ratio, sec-
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ondary air etc"”.
tional parameters relies heavily on an accurate correlation

However, such optimization of opera-

between NO_ emissions and operational parameters. There-
fore, a rapid and precise prediction model of NO_ emis-
sions is required.

However, the generation mechanism of NO, emissions
is complex, and there is a serious coupling among each
variable of a boiler, so it is difficult to set up an accurate
mechanism model for real time control by mechanism
modeling methods. Fortunately, the development of ma-
chine learning based on data drivers offers an alternative
approach to constructing the NO_ emission model. Many
researchers have paid attention to building the system
model of NO, emissions from coal-fired power plants.
Wei et al.'"*! used support vector regression ( SVR), of
which the parameters were optimized by the quantum ge-
netic algorithm, to establish the NO, emission model and
obtained a good prediction result. Tan et al. "' set up an
efficient NO_ emission model based on the principle com-
ponent analysis (PAC) and SVR. Although SVR has
some disadvantages, such as difficulty in obtaining an op-
timum solution and costing much computational time'®,
the artificial neural network ( ANN), another computa-
tional intelligence-based method, was proposed to solve
highly nonlinear problems. Ilamathi et al.'” used the
ANN to model NO, emissions for tangentially fired boil-
ers. However, the ANN suffers from some unsurmount-
able disadvantages, such as an abundance of controlling
parameters, difficulty in obtaining a stable solution and
risk of over-fitting'™'.
(ELM) is a novel single hidden layer feed-forward net-
work, which can overcome the drawbacks of the ANN to
a certain degree. The ELM has an extremely fast learning
algorithm and good generalization capability™’.
er, regarding the combustion process, there is a certain

The extreme learning machine

Howev-
coupling relationship between some variables, such as
coal feed, primary air flow, secondary air flow, and so
on. If these variables are directly used as input factors of
the model, it will inevitably lead to redundancy of the in-
put information and affect the generalization ability of the
model. In order to obtain an accurate NO_ emission mod-
el, it is necessary to eliminate the correlation between the
variables and reduce the number of input variables before
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modeling. Partial least squares ( PLS) is a statistical
method for dealing with the problem of correlated inputs
and reducing the number of input variables. The PLS
technique has been successful in many fields'"™".

According to the above analysis, this paper proposes a
NO, emission model of the power plant boiler based on
the combination of PLS and ELM, namely, the PLS-
ELM model. The procedure of establishing the proposed
PLS-ELM model consists of two stages: First, the PLS
method is applied to extract the feature of the variables;
secondly, the extracted feature information is used as in-
put of the ELM model. To validate the performance, the
proposed PLS-ELM model is developed as an effective
analysis model for a 1 000 MW coal-fired power plant.
Simulation results show that, compared with the BP neu-
ral network, SVM and ELM models, the PLS-ELM mod-
el can achieve not only a much greater accuracy, but also
shorter modeling time-consumption.

1 Basis of PLS and ELM
1.1 PLS

PLS is a multivariate statistical technique that can ob-
tain the orthogonal characteristic vectors of the independ-
ent variables and dependent variables, by mapping the
high-dimensional data space between the independent var-
iable and dependent variable to the corresponding low-di-
mensional feature space. Compared with the PCA, PLS
can not only effectively overcome the common linear
problem, but also strengthen the interpretation of the in-
dependent variable to the dependent variable when selec-
ting the eigenvector.

The data set is assumed to consist of an input ( predic-
tor) variable matrix X eR and an output ( response)
variable matrix ¥ eR"', and they are both mean-cen-
tered and scaled by the standard deviation, where the in-
dex N represents the number of samples, and m represents
the number of dimensions of the predictor variables. The
main component ¢ is extracted in X. When extracting
principal components, ¢ is required not only to carry the
variation information of X as much as possible, but also
to maximize the correlation between ¢ and Y. After the

Nxm

first component ¢ is extracted, the regression of X and Y
to ¢ is carried out respectively, and then the next principal
component is extracted from the residual information.
The partial least squares algorithm used to extract princi-
pal component is detailed as follows'":

1) Obtain the output score u: u =Y.

2) Calculate the input weight w, and then normalize w
to unit length: w' = " X/ (u" w), w=w/||w| .

3) Calculate the input score ¢: ¢ = Xw.

4) Calculate the input load vector p: p" =¢" X/ (t' ¢t).

5) Calculate the regression coefficient of internal model
b: b=u"t/ (t'¢).

6) Compute the residual matrix: E=X-tp', F=Y -

bt. Replace X and Y by E and F, respectively, and re-
peat steps 1) to 6) until the required components are ex-
tracted or the results satisfy the precision requirement.

T={t, t, .., t,} is the score matrix, which is the
characteristic matrix of the samples, and is used as the in-
put of the ELM model in this paper. P = {p,, p,, ...,
D} is the load matrix. W ={w,, w,, ..., w,} is the co-
efficient matrix. A represents the number of extracted
principal elements.

1.2 ELM

ELM is a novel single hidden layer feed-forward neural
network!"". The basic idea of ELM is to randomly assign
the input weight values and hidden layer biases. Then,
the ELM will become a linear system, of which the out-
put weights can be analytically calculated by the least
square method. Here, we simply review the learning al-
gorithm of ELM.

Suppose that there are N training samples (x;, ¢,), in
which x, = {x,, x,, ...x,}' eR"(i=1,2,...,N), the n-
dimensional feather vectors, are the input parameters of
ELM and ¢, = {t,, t,, ..., 1, } €R”, and the m-dimen-
sional target vectors, are the output parameters of ELM.
The n and m are equal to the number of input layer nodes
and the number of output nodes of the ELM model, re-
spectively. Here, the number of hidden layer nodes of the
model is / and the activation function is g( + ), then the
output of the ELM model can be calculated by the follow-
ing form:

! 1
;Bigi(xj) = ;Blg(wl . xj + b,) - 0./
j=1,2,...,N )

where B, = {8, Bsas ---» B, denotes the output weights
vector, which connects the i-th hidden node with the out-
put nodes. Simultaneously, w, = {w,, w,, ..., w, }  is
the input weight vector, which connects the i-th hidden
node with the input nodes. b, represents the bias of the i-
th hidden node. Previous studies have shown that the out-
put value of the ELM model can be fitted to samples with
zero error. So, a derivation equation can be obtained as

follows:
/zl; lo,=¢t || =0 j=12,...N (2)
Eq. (1) can be transformed as
Zﬂig(wi “x;+b) =t, j=12,..,N (3)

Eq. (3) can be simply written as
HB=T (4)

where
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glw, - x, +b)) glw, - x, +b)
H-= : : (5)
glw, ~xy+b) glw, = xy+b) ]
B! t
B=|: , T=| : (6)
B B

In the form, H is the hidden layer output matrix. In the
training process of ELM, the input weight and bias values
of ELM are generated randomly. Then, the output matrix
H can be obtained, so that the ELM learning training
problem is transformed into a least squares norm problem
for solving the output weight, and that is

B=H'T (7)

where H " is the Moore-Penrose generalized inverse of the
hidden layer output matrix H.

2 Modeling NO, Using PLS-ELM
2.1 Boiler introduction and data preparation

A 1 000 MW ultra-supercritical variable pressure once-
through boiler was chosen as the research object in this
work. This boiler is 65.5 m in height and has a cross sec-
tion of 32. 08 m x 15. 67 m. The boiler adopts the []
type arrangement, the single furnace, the improved low
NO, PM ( pollution minimum) main burner, the MACT
(Mitsuibishi advanced combustion technology) type low
NO, grading air supply combustion system and the reverse
double tangent combustion mode. The water cold wall
adopts the vertical rising mode of the inner threaded pipe.

In this work, 3 651 measurements encompassing ap-
proximately 61 h of boiler operation were obtained from
the DCS ( distributed control system) database of the
power plant. The sampling interval was 1 min and it was
proved by Smrekar et al. """’ to be the most suitable data-
sampling interval for modeling NO, emissions. Based on
the basic knowledge of boilers and the engineers’ experi-
ence, twenty-three variables, including unit load (one),
pulverized coal flow rate (six), primary air flow rate of
coal pulverized (six), OFA air damper opening percent-
age (two),
(six), total secondary air flow rate (one) and total air

secondary air damper opening percentage

flow rate (one) were employed as inputs of the NO,
emission model, and the only output was the NO, emis-
sions. The variables employed and their ranges are lis-
ted in Tab. 1. The keynote of this paper is to establish
the relationship between operational parameters and
NO emissions, as well as demonstrating the validity of
the hybrid PLS-ELM NO, emission model, therefore,
the influence factor of coal properties was ignored.
Through investigation,
range of 700 to 1 000 MW under normal operating
conditions, so the sampled data can meet the require-

the unit fluctuates within the

ment of NO_emission modeling for the unit. In addi-
tion, the NO, emission data obtained in this study is re-
presented on a dry gas basis at 6% O,.

Tab.1 The range of each sample variable

Parameter Range
Unit load/ MW 704.5 to 991.4
Pulverized coal flow rate (A-F)/( t - h™!) 0t076.8
Primary air flow rate of coal pulverized/( t - h™!) 0 to 166.2
OFA air damper opening percentage/ % 12 to 100
Secondary air damper opening percentage/ % 15 to 100

2054.3t02997.1
2779.7 to 3 852.5
135.5 t0 275.1

Total secondary air flow rate/(t - h™")
Total air flow rate/(t - h™')
NO, emissions/ (mg + Nm~ %)

2.2 Modeling process

In this study, PLS was used to extract the features of
the input variables to reduce the number of the variable
dimensions and the coupling of the input variables, since
some variables, such as unit load, pulverized coal flow
rate, total secondary air flow rate and total air flow rate,
have strong coupling correlation. The feature matrix ex-
tracted by the PLS takes the place of the original input
samples as input for the ELM model.

The modeling process can be made up of three steps,
which are represented in Fig. 1.

Remove
Data
reprocessing unstable data

Unit load,pulverized coal flow rate, OFA
/secondary air damper opening percentage,
total air flow rate and so on

Eliminate

operational data_fDivide into

Partial least
squares

- ¢ - With total
Extracting feature matrix as| o __ explanation rate
original inputs of ELM over 96%

Extreme learning
machine

NO,
€missions

Fig.1 Construction flowchart of PLS-ELM model

Step 1 Data preprocessing

Data preprocessing was further divided into four proce-
dures before using sampled data to set up the hybrid PLS-
ELM model. In the first step, in order to obtain data un-
der steady state conditions, the unreliable data was re-
moved. In the second step, all unusual and outliers oper-
ations were eliminated from the rest of the data. In the
third step, the remaining data were divided into two
groups, as illustrated in Fig.2. The first group, which is
referred to as the training set, was used for training the
model. The second group, which is referred to as the tes-
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ting set, was used for verifying the model. What should
be emphasized is that the testing set has never been used
in the model training phase. Therefore, the testing set
was guaranteed as new to the model and contributed well
to the reliability for proving the generalization capability
of the model. In the fourth step, to eliminate the errors
caused by the difference of dimension and range of varia-
bles, all data were scaled to [ -1, 1].

Step 2 PLS execution

After data preprocessing, PLS was executed to obtain
the latent correlation among the operational variables and
lay down the foundation for reducing input variables.

Step 3  Extracting feature matrix as the original inputs
of the ELM

Based on the result of the PLS, feature matrix T = {¢,,
t,, ..., t,} was selected as the input variable for the
ELM. The number A was determined based on the total
explanation rate of the principal elements extracted. In
this paper, the value of A is 5 with a total explanation
rate greater than 96% . Moreover, the number of hidden
layer nodes of the ELM model is 30.

1000 -

950 | |

900 -

850 |- Training set

Load/ MW

800 |

750 L Testing set

700 -

1 1 1 1 J
600 800 1000 1200 1400
Number of cases

Fig.2 Load dynamics of the sampled data

650

1 1
0 200 400

3 Results and Discussion

3.1 NO, prediction using PLS-ELM model

The learning and generalization ability of the PLS-ELM
model depends on the number of principal components of
PLS since PLS is used to extract some principal compo-
nents from candidate input variables. Fig.3 shows the ex-
planation rate of the first ten principal components, how-
ever, the remaining principal components’ explanation
rates are too low to be shown in the figure. In addition, it
can be seen that the explanation rates of the first principal
component is 74. 3% , which indicates that the original
inputs have a significant linear relationship with one an-
other. Therefore, it is meaningful to employ PLS for data
compression prior to the ELM modeling process. The ex-
planation rates of the first five principal components is
greater than 96% , which means that the variance inter-
pretation information obtained by the extraction of the
new principal component is small, so the residuals can be
considered to be noise interference. If the number of prin-

cipal components is added, the noise will be introduced
and the complexity of the model is increased. Therefore,
the first five principal components with a total explanation
rate of over 96% were applied as inputs to the following
ELM model.

80

P (=)
(=} (=}

o
(=}

Variance interpretation rate/%

(=

1 2 3 4 5 6 7 8 9 10
Number of principal components

Fig.3 Explanation rate of the principal components

The prediction result of the PLS-ELM NO, prediction
model and the measured values from the DCS database for
the training dataset and testing dataset are shown in Fig.
4. It can be seen from Fig. 4 that the predicted value
curve of the PLS-ELM model fits well with the training
and testing dataset curves, indicating that the model has a
good fitting and prediction ability. Furthermore, other
three criteria are calculated. The root mean squared error
(RMSE) is 3. 733 for the training dataset and 3. 817 for
the testing dataset. In addition, the correlation coefficients
are 0.994 and 0.992, and the mean relative errors ( MRE)
are 1.58% and 1.69% , respectively. The results demon-
strate that the prediction accuracy of PLS-ELM model is

300 -
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o ----Predicted NO,
g
Z 250
o
g
= 200
=]
=
g 150
S
Z
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Number of cases
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=
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g
]
=
2200
=
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o
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(b)
Fig.4 Prediction results of NO, emission. (a) Training dataset;
(b) Testing dataset
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high for both the training and testing datasets. Moreover,
the model took 0.5 s for the entire modeling process on a
personal computer, which indicates that the proposed PLS-
ELM NO, prediction model is relatively fast in setting up
the model of NO, emission for the coal-fired boiler.

3.2 Comparison of prediction performance between
the BP neural network, SVM, ELM and PLS-
ELM models

In order to further evaluate the performance of the PLS-
ELM model, the BP neural network, SVM and ELM are
employed to predict NO, emissions in this paper. It
should be noted that all the models used the same training
and testing datasets.

The BP neural network uses gradient descent with mo-
mentum and adaptive learning rate back propagation to
train the model. The number of hidden layer nodes of the
BP neural network is the same as that of the PLS-ELM
model. The RMSE of the BP model is 3. 524 for the
training dataset and 5. 688 for the testing dataset. The
consumption time of the total simulation process is 109 s.

In this work, the optimal parameters of the SVM mod-
el are determined by a grid search based on cross valida-
tion criterion. Specifically, two optimized parameters are
the penalty coefficient ¢ and the kernel parameter y. The
range of parameter ¢ is [27%, 27", ...,2",2"], and the
range of kernel parameter y is [2 00270, 2%, 2. The
RMSE value of the SVM model is 4. 589 for the training
dataset and 5. 548 for the testing dataset, the correspond-
ing MRE values are 1. 86% and 2.24% . 362 s is re-
quired for the SVM to finish the complete simulation.

The traditional ELM is also applied for modeling the
NO, emissions. Unlike the PLS-ELM model, the data is
directly applied to the ELM model without the process of
feature extraction. The number of hidden layer nodes of
the traditional ELM is the same as that of the PLS-ELM
model. The traditional ELM model has a RMSE of 5. 086
for the training dataset and 5. 581 for the testing dataset.
In addition, the corresponding MRE values are 2. 13%
and 2. 29%, respectively. The time consumed by the
simulation process is 0. 8 s. For the training and testing
datasets, the PLS-ELM model performs better than the
traditional ELM model. This consequence may be a result
of the majority of input variables and coupling between
variables, which adds complexity to the model. So, the
fitting and generalization capacity of the traditional ELM
decrease. Therefore, it is necessary to use PLS to reduce
the dimensions of the input before the ELM modeling
process. Compared with the traditional ELM model, the
PLS-ELM model is more suitable for establishing the NO,
emission model of the fired-boiler.

Fig. 5 shows the modeling errors of the testing dataset
for each of the four models. It can be clearly seen that the
modeling errors of the proposed PLS-ELM model are

closer to zero compared to those of other models. The
performance criteria of the models, such as RMSE, MRE
and R-value on the testing dataset, as well as computation
time, are listed in Tab.2. As the four models use the
same training and testing datasets, the prediction of the
testing dataset is reliable for proving the models’ generali-
zation and prediction accuracy capability. The BP model
is observed to have the worst performance among the four
models. The prediction accuracy of the SVM model is
slightly better than that of the ELM model, but not as
good as the PLS-ELM model. Compared with the ELM
model, the performance of the PLS-ELM model has been
significantly improved, which again demonstrates the va-
lidity of PLS feature extraction for enhancing the generali-
zation ability of the model. Moreover, the computation
time of modeling process is also important for online
combustion optimization. Significantly, the establishment
of the PLS-ELM model is completed in 0.5 s, which is
much less time compared with BP and SVM models. This
is also an outstanding advantage of the ELM method. It
can be concluded that the PLS-ELM model performs bet-
ter not only in terms of its prediction accuracy but also in
its computation time. The results in this work indicate
that the PLS-ELM NO_ model is suitable for online reduc-
tion of NO, emissions from the coal-fired boilers of power
plants.

30 = BP model
* SVM model
o 20+ o ELM model
v PLS-ELM model
10

i
=

Error of predicted N
emissions/(mg * Nm™

|
[\
(=)
T

=30

0 100 200 300 400
Number of cases
Fig.5 The errors of testing dataset for various models

Tab.2 The performance criteria of various models

Models RMSE MRE/ % R Computation time/s
BP 5.688 2.33 0.978 109
SVM 5.548 2.24 0.985 362
ELM 5.581 2.29 0.982 0.8
PLS-ELM  3.817 1.69 0.992 0.5

4 Conclusions

1) The proposed PLS-ELM model applied the PLS to
extract feature information with input variables, which
can reduce the dimensions and coupling of the input vec-
tors.

2) In order to verify this model’s performance, a large
amount of real-time data was obtained from the DCS data-
base of a 1 000-MW coal-fired power plant. The simula-
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tion results show that the proposed hybrid PLS-ELM mod-
el has a high predictive accuracy and good generation ca-
pacity.

3) The modeling performance of PLS-ELM was also
compared to the BP neural network, SVM and ELM
and the results demonstrate that the PLS-ELM is
better than the other three models in the aspects of its pre-
dictive accuracy and computational cost.

models,
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