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Abstract: In order to investigate the effect of the use of battery
electric vehicles on traffic dynamics, the valid paths of electric
battery vehicles are defined and a check-based method is
proposed to obtain them. Then, assuming that travelers only
focus on their past travel experience, a day-to-day traffic
assignment model is established based on reinforcement
learning and bounded rationality. In the proposed model, the
Bush-Mosteller model, a reinforcement learning model, is
modified to calculate path choice probability according to
bounded rationality. The modified model updates the path
choice probability only if the gap between expected travel time
and perceived travel time is beyond the cognitive threshold.
Numerical experiments validate the effectiveness of the model
and show that traffic flows can converge to the equilibrium in
any case of cognitive thresholds and penetration rates of
battery electric vehicles. The cognitive threshold has a positive
influence on the variation of traffic flows while it has a
negative influence on the differences between traffic flows.
The adaptation of battery electric vehicles leads to the poor
performance of the traffic system.
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ay-to-day traffic assignment models that aim to cap-
Dture the evolutionary process of the traffic system
can be used not only to evaluate traffic management
measures but also to provide information about dynamic
traffic flow for dynamic navigation'".
fulness, these models and traffic dynamics have been
widely studied in the past few decades. However, to the
best of our knowledge, these studies assumed that travel-

ers only use conventional gasoline vehicles (CGVs).

Due to their use-
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Battery electric vehicles ( BEVs) have enjoyed a fast-
growing adoption in recent years, thanks to the concern
about climate change, the advancement of battery tech-
nologies and expeditiously rising prices of crude oil*.
However, the limited driving range of BEVs and insuffi-
cient charging infrastructure cause drivers to fear that bat-
teries will run out of power on the path that is normally
referred to as range anxiety in Ref. [3]. Psychology inev-
itably affects BEV drivers’ travel choices, which might
result in different traffic dynamics. Therefore, this paper
focuses on analyzing day-to-day traffic dynamics with
battery electric vehicles and conventional gasoline vehi-
cles and examining how the use of BEVs influences traffic
dynamics. To complete this, the day-to-day traffic as-
signment model needs to be first established.

According to the levels of aggregation, day-to-day traf-
fic assignment models can be divided into two categories:
macroscopic models based on the flow swapping rule and
microscopic models based on path choice behavior. The
macroscopic models focus on how traffic flows switch,
which always describes traffic flow on a path on a certain
day as the function of the network state of the previous
day. Classic models have a proportional switching adjust-
ment', tatonnement process™™ and projected dynamical
system'” . The microscopic models put the emphasis on
how the individual adjusts his/her path choice based on
information or experience. For example, Nakayama et
al. " took into account the limitation of drivers’ cognitive
abilities in their path choice model and examined the dy-
namic natures of the traffic system. Zhang and He' es-
tablished a path choice model based on the prospect theo-
ry. Rossetti and Liu'” incorporated mental attitudes in the
model and investigated how pre-trip information has an
impact on the evolution of the traffic system. Compared
to the macroscopic models, these microscopic models can
incorporate a variety of factors that affect the evolution of
the traffic system and thus better represent the dynamics
of the traffic system'” . Therefore, we decided to estab-
lish our day-to-day traffic assignment model based on
path choice behavior from a microscopic perspective.

This study makes the following specific contributions.
First, the valid paths for battery electric vehicles are de-
fined and a method of obtaining them is given. Secondly,
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the proposed day-to-day traffic assighment model incorpo-
rates travelers’ bounded rationality that travelers cannot
distinguish minor differences between path attractiveness.
Finally, we examine the effects of the use of battery elec-
tric vehicles and bounded rationality on the dynamic na-
tures of traffic flow by numerical experiments.

1 Valid Path

The first problem that needs to be dealt with in establis-
hing the day-to-day assignment model is to determine val-
id paths that can be chosen by travelers. For CGVs, a
valid path between an origin-destination (OD) pair con-
sists of valid links and each valid link is a link of which
its end is closer to the destination than its start''"'. The
distance between two nodes is calculated as the Euclidean
distance. Based on the definition, the valid paths between
each OD pair for CGVs can be quickly obtained by the
following steps:

Step 1 Create a partial path set B and a whole path
set F; then put the origin node into B and set it as the
current path.

Step 2 Search the new nodes that directly link to the
last node of the current path and these must be closer to
the destination node than the last node of the current path
based on the Euclidean distance. The current path is then
replicated as many times as the number of the new nodes
minus one and the tails of the current path and the replica-
ted paths are, respectively, added into one of the new
nodes. Then, the replicated paths are added into the par-
tial path set B.

Step 3 Transfer the current path from B into F' and go
to Step 4 if the last node in the current path is the destina-
tion; otherwise, go to Step 2.

Step 4 Stop if B is empty; otherwise, select a path
from B as the current path and go to Step 2.

For BEVs, the limited battery capacity limits its driv-
[l However, the charging stations in the traf-
fic network can supplement fuel for BEVs.

ing range
Based on
these features, we definite the valid path of BEVs as fol-
lows: A valid path between an OD pair for battery elec-
tric vehicles consists of valid links and the rest of its driv-
ing range at any node that is not less than 0. The defini-
tion of the valid link is the same as that of CGVs. The
constraint can be expressed in a mathematical equation as
follows:

r, =0

VjeN (1)
and the remaining driving range is given as
V(iijed (2

where r; is the remaining driving range when the battery
electric vehicle arrives at node j; N is the set of nodes
that belong to a valid path; L, is the length of valid link
(i,j); A is the set of valid links that belong to a valid
path; D, represents the maximum driving range of a bat-

r,=r,—L;+(D,.-1)Y,

max

tery electric vehicle with a full charge; Y, indicates

whether node i is a charging station or not. If yes, its
value is 1; otherwise, its value is O.

Based on the definition of the valid path of BEVs, we
can infer that the valid path of the BEVs between an OD
pair must be that of the CGVs. Also, the valid paths of
CGVs between each OD pair in a given traffic network
can be quickly obtained by the above procedures. There-
fore, we proposed a check-based method to obtain the
valid path of the BEVs. Its process is described in the fol-
lowing:

Step 1 Calculate its remaining driving range at each
node according to formulae (1) and (2) for a valid path
of CGVs between an OD pair;

Step 2 Record the valid path if the remaining driving
range at each node is no less than 0;

Step 3 Repeat Steps 1 and 2 until all the valid paths
of the CGVs between the OD pair are checked.

2 Day-to-Day Traffic Assignment Model
2.1 Path adjustment process

Travelers’ path choice is a continuous adjustment
process. When a traveler finishes a trip in the traffic net-
work, he/she will be able to learn the travel cost of the
chosen path and form an opinion about the state of the
path. Furthermore, he/she will infer the state of the
whole traffic network based on the experience and predict
the travel cost the next day. On a certain day, the differ-
ence between the expected travel cost and experienced
travel cost contributes to his/her utility for the choice and
motivates him/her to adjust the path choice probability,
which is exactly the reason why the traffic dynamics ex-
ists. Fig. 1 shows the adjustment process. As the main
travel cost for travelers is time, the travel cost is replaced
with the travel time in Fig. 1 and in the rest of the paper.

Path adjustment process Traffic network
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travel time
]
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Path choice Traffic flow

Fig.1 Path adjustment process

2.2 Path adjustment model

The above description of the path adjustment process
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shows that travelers’ path choices depend on the choice
probabilities of the alternatives. The probability is contin-
uously updated based on the difference between expected
travel time and perceived travel time. We clearly elabo-
rate on the three key elements in the next section.
2.2.1
We represent a traffic network as a directed graph G =
(N, A), where N is a node set and A is a link set. Among
nodes, there are origin nodes O, destination nodes D and
charging nodes C. There are several OD pairs denoted as
W in the traffic network. An OD demand, d (we W), is
equal to the sum of the number of the drivers of CGVs
and BEVs. The valid paths of BEVs between an OD pair
are denoted as R, while the valid paths of CGVs are deno-
ted as R'(R! eR,). Let f;"(keR,) be the traffic flow
on path k between OD pair w and V) (a e A) be traffic
flow on link a on day ¢, respectively. The travel times of
path k between OD pair w and link a on day ¢ are, respec-
tively, represented as 7, and H,. 8, is the link-path in-
dex. Let §, be equal to 1 if link a belongs to path £ and

Parameters

to 0 otherwise. M denotes the vehicle type that traveler i
(ied,) uses. M equals 1 if traveler i uses the battery e-
lectric vehicle and O if he/she uses the conventional gaso-
line vehicle.
2.2.2 Expected travel time

With the accumulation of travel experience, a traveler
will further know the state of the whole traffic network
little by little and subsequently update his/her expected
travel time. Due to the limitation of human being’s mem-
ory, the experience obtained at different times has a dif-
ferent impact on his/her cognition. As the recently ob-
tained experience can be clearly memorized, its impact
should be more significant compared to the older one.
Therefore, we give a greater weight value to the recently
experienced travel time when calculating expected travel
time. Assuming that the weight exponentially weakens
over time, the travel time that the traveler expects the
next day can be written as

2 wt—n-%—] h:l

E{+l — n=1 (3)

i t

z l/,r—n+l

n=1

where E;*' is the expected travel time of traveler i on day
t +1; ¢ is a constant that represents the extent of memory
decay; h/ is the travel time that traveler i experiences on
day n.

Although travelers do not have any experience on day
1, he/she can know the topology of the traffic network.
Therefore, we set the expected travel time of travelers on
day 1 as the minimal free-flow travel time of all potential-
ly chosen paths.

2.2.3 Perceived travel time

Without traffic information,
traveler to acquire the path travel time is to travel within

the only way for the

the traffic network. Therefore, the path travel time that
the traveler perceives totally depends on his/her experi-
enced path travel time.

t
Xy,
n=1

t
—n+l

2 UTE

n=1

t

8 = Vke MiR, +(1 -M)R,

(4)
where g, is the perceived travel time of path k of traveler
i on day #;  and h] are the same as mentioned above; &,
indicates the path choice of traveler i on day n. & equals
1 if traveler i chooses path k on day n and O otherwise.

As the traveler just travels one path once, the following
constraint should be met.
§71< =1 (5)
ke M/P +(1-M)P,
2.2.4 Path choice probability
A traveler finishes a trip and grasps the real travel time
of his/her chosen path. Then, he/she will evaluate his/
her choice and update the path choice probabilities. If
his/her expected travel time is greater than the experi-
enced travel time, he/she will obtain a positive utility
from the choice and increase the choice probability of the
chosen path; otherwise, he/she will obtain a negative
utility from the choice and reduce the probability, which
matches well with reinforcement learning“”. In addition,
due to the bounded rationality of the human beings that
are not able to recognize the minor difference, the dis-
crepancy between the expected travel time and the experi-
enced travel time that can motivate the traveler to adjust
the path choice probability must be beyond a certain
range. Therefore, according to the bounded rationality
theory, we modified the Bush-Mosteller model, a rein-
forcement learning model, as our path choice probability
model. It is displayed as

1+1
ik

_ {Pik +(1 =P)IS" §'=0
P, + PIS;

S <0
Vke MR, +(1 —M)R!, if & =1 (6)

i
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where P is the probability that traveler i chooses path k
on day 7 +1; [ is a constant that represents the learning
efficiency; S; is the utility of traveler i for the choice on
day #; @ is a proportion that reflects travelers’ cognitive
thresholds; and the rest is the same as the above.

Without loss of generality, travelers’ cognitive thresh-
olds are set to be the same in our model. Of course, the
model can be extended to describe heterogeneous cogni-
tive limitation among travelers by simple modification.
For example, the cognitive threshold is related to travel-
ers and is set to be §,. The cognitive threshold is mainly
presented in two ways in literature: a constant or a fixed
proportion'"*". A fixed proportion is adopted here since
many empirical studies show that the indifference band
expands with the cognitive base number.

2.3 Traffic system

The traffic system should meet the following constraints
every day.

d, = Yf" YweWw 9)
keR,

v, = 2 Y8t VYaeA (10)
weWkeR,

T = Y §,H, VkeR,weW (11)

aeA

Eq. (9) demonstrates that an OD demand is distributed
over all the paths between the OD pair; Eq. (10) indi-
cates that the traffic flow on a link is equivalent to the
sum of the traffic flow of all paths that the link belongs
to; and Eq. (11) constrains that the travel time of a path
is equal to the sum of travel times of all links that the
path consists of.

3 Numerical Experiments and Analyses

Due to the complexity of the proposed day-to-day traf-
fic assignment model, the equilibrium path choice proba-
bility cannot be analytically solved. Therefore, we ana-

lyze the dynamic nature of the proposed system by nu-
merical examples in this section. In the experiments, the
learning efficiency and memory decay of travelers are set
to be 0.3 and 1, respectively. The evolution day is set to
be 1 500.

3.1 Network characteristics

The Nguyen-Dupuis network shown in Fig. 2 is used
here to analyze the traffic dynamics with conventional
gasoline and battery electric vehicles. The network con-
sists of 13 nodes and 4 OD pairs. Among the nodes,
node 5 and node 10 are charging stations. The link free-
flow travel time and capacity are from Wei et al'”'. The
link distance is assumed to be 1.5 times of its free-flow
travel time'”. The BPR function is adopted to calculate
the link travel time'”'. The maximum driving range of
the BEVs with full charge is set to be 40 so the BEVs
need to recharge during the trip.

The OD demands of Zhang et al. '™ are adopted here,
displayed in Fig.2. As the adopted network is small and
does not have coordinate information, we find all paths
between an OD pair as the alternatives of CGVs instead of
the valid paths. It is noted that the valid path should be
used in a real network. Then, the valid paths of BEVs in
Tab. 1 are obtained by the proposed method here.

Fig.2 Nguyen-Dupuis network

Tab.1 Valid paths

OD pair (1, 2) (1, 3) (4, 2) 4, 3)
1(1-10-19) 1(2-5-8-12) 1(4-7-11-17) 1(4-8-12)
2(2-6-9-16-19) 2(2-6-9-15-18) 2(3-6-9-16-19) 2(4-7-11-18)
3(2-6-9-15-17) 3(2-6-14-11-18) 3(3-6-9-15-17) 3(3-5-8-12)

Valid paths of CGVs

4(2-6-14-11-17)
5(2-5-7-11-17)
6(1-13-9-16-19)
7(1-139-15-17)
8(1-13-14-11-17)

4(2-5-7-11-18)
5(1-13-9-15-18)
6(1-13-14-11-18)

4(3-6-14-11-17)
5(3-5-7-11-17)

4(3-6-9-15-18)
5(3-6-14-11-18)
6(3-5-7-11-18)

Valid paths of BEVs

2(2-6-9-16-19)
4(3-6-9-15-18)
5(3-6-14-11-18)
6(3-5-7-11-18)

2(2-6-9-15-18)
3(2-6-9-15-17)
4(2-6-14-11-17)
5(2-5-7-11-17)

1(4-7-11-17)
3(2-6-14-11-18)
4(2-5-7-11-18)

2(4-7-11-18)
2(3-69-16-19)
3(3-69-15-17)
4(3-6-14-11-17)
5(3-5-7-11-17)
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3.2 Impact of cognitive threshold

Most studies on traffic dynamics assumed that travelers
are perfectly rational. In contrast to them, travelers are
boundedly rational here, which is also validated by many
empirical studies. We investigated whether the bounded
rationality of travelers has an impact on traffic dynamics
and what the impact is. Therefore, we conducted a series
of experiments with different cognitive thresholds. The
results are displayed in Fig.3.

We can clearly observe from Fig. 3 that path travel time

all quickly converges to the equilibrium under different
cognitive thresholds. However, the variation of travel
time varies with the cognitive threshold. When the cogni-
tive threshold increases from 0% to 40% , each line in
the figure disperses wider, which means that the path
travel time fluctuates more. This phenomenon demon-
strates that the cognitive threshold has a positive influence
on the variation of traffic flow. This can be explained by
the fact that with the increase in the cognitive threshold, a
wider travel time range is the same for travelers.

350§ 350¢ 3505 — Path 1
. —Path 1 H — Path 1 F .- Path2
300} ----Path 2 300} -~ -Path 2 300} ——Path 3
——Path 3 L ——Path 3 L .o -Path 4
= 250 -o-Path 4 = 250} - Path4 < 2501y ——Path 5
e ——Path 5 E ——Path 5 g ‘ -» - Path 6
S 200 ~s - Path 6 3 200 -« Path 6 S 2001} ——Path 7
ETTL ——Path 7 ETTL ——Path 7 ET L -+ -Path 8
B 150 -+ Path 8 5 150 ~-Path 8 < 1500 o
I E g 5
& 100wis = =
50“}'”'" o 50;'AA__A-.«AA-A..A-'A..n-"--‘AV.A.-A--A,.A..A'_.
0 L 1 1 1 J 0 1 1 1 1 ] 0 1 1 1 1 ]
0 30 60 90 120 150 0 30 60 90 120 150 0 30 60 90 120 150
Time/d Time/d Time/d
(a) (b) (¢)

Fig.3 Travel time evolution with different cognitive thresholds. (a) 6 =0;

Tab. 2 shows the average travel time and traffic flow of
each path between OD pair 1-2 during the last 100 days.
The valid paths of BEVs are path 2, path 3, path 4 and
path 5. When the traffic flow reaches the equilibrium, the
paths that travelers choose are path 2, path 3, path 4 and
path 5, which is in descending order. On the contrary,
the travel times of these paths are in ascending order.
This means that the shorter the path travel time, the larger
the number of travelers who will choose it, which is con-

(b) 0=0.2; (c) 0=0.4

sistent with real traffic flow distribution. In other words,
the day-to-day traffic assignment model proposed here is
correct. In addition, it can be observed from Tab. 2 that
the differences between the number of travelers choosing
path 2, path 3, path 4 and path 5 become smaller with the
increase in the cognitive threshold. The reason behind it
is that a larger cognitive threshold represents a smaller
sensitivity to the difference.

Tab.2 Equilibrium traffic flows and travel time with different cognitive thresholds

6=0 0=0.2 6=0.4
Path between . . .
. Traffic flow/ . X Traffic flow/ . . Traffic flow/ . .
OD pair 1-2 . Travel time/min . Travel time/min . Travel time/min
(veh - h™) (veh - h™") (veh - h™)

1 129.98 55.14 156. 64 54.14 126. 14 49.23

2 154.99 110.30 159.96 110. 06 77.08 109.98

3 15.00 114.41 17.68 116.26 42.58 129.32

4 6.00 115.78 4.83 117.32 33.37 143.87

5 25.01 112.34 17.66 113.16 47.62 136.61

6 60.01 76.09 37.53 71.40 72.52 61.49

7 6.01 80.21 5.66 77.60 0.53 80. 84

8 3.00 81.58 0.04 78.66 0.16 95.38

3.3 Impact of penetration rate of battery electric ve-
hicles

We also analyzed the impact of the penetration rate of
battery electric vehicles on the dynamic natures of the
traffic system. To this end, we conduct a group of nu-
merical experiments using different penetration rates of

BEVs (r). Fig.4 show the results.

Fig. 4 clearly shows that traffic systems with different
penetration rates of BEVs are all able to reach their equi-
libriums, but their equilibrium states are different. When
the penetration rate of BEVs is 0%, which means that all
the travelers use conventional gasoline vehicles, the travel
time of all travelers is roughly the same in the equilibrium
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state. However, when some travelers start to use battery
electric vehicles, there are three equilibrium travel times.
Among them, the largest equilibrium travel time is the
convergence of the travel time of the valid paths of the
BEVs, the smallest one is the minimal travel time, and

the rest of them is the free-flow travel time of the rest of
paths. The reason why the equilibrium travel time of val-
id paths of BEVs is the longest is that the limited driving
range of BEVs and the scarcity of charging stations make
potentially chosen paths fewer and longer.

250 4001 700~
B —Path 1 —Path 1
K .- Path?2 L o Path2 600 —Path 1; ——Path5
L g d ----Path2; ---Path6
200} ——Path 3 : ——Path 3
' . 300 ——Path 3; ——Path 7
- ] o - Path 4 - . o - Path 4 500
‘g y ——Path 5 ‘g : ——Path 5 § ,J
< 150R% - - Path 6 ) : - - Path 6 S 400
g —— Path 7 g 200EY —— Path 7 =
< ) s --~-Path 8 =
: z - B 300
= N EN g
3 100 =200
50+
100
0 1 ! ! I 1 0 I I 1 1 | 0 = . ) ) X .
0 30 60 90 120 150 0 30 60 90 120 150 0 30 60 ) 120 150
Time/d Time/d Time/d
(a) (b) (c)

Fig.4 Travel time evolution with different penetration rates of battery electric vehicles (BEVs). (a) r=0; (b) r=0.5; (¢) r=1

We report the average traffic flows and travel time of
the paths between O-D pair 1-2 from day 1 401 to day
1 500 and the total travel time with different penetration
rates of BEVs in Tab. 3. The total travel time increases
from 32 644. 6 to 147 550. 1 when the penetration rate
changes from 0% to 100% . This data shows that the effi-
ciency of the traffic system becomes significantly lower as
the penetration rate of BEV increases. In other words,
the use of battery electric vehicles leads to the poor per-
formance of the traffic system, which can be partly attrib-
uted to fewer alternative paths for BEVs. The fewer the

alternatives, the more travelers who will choose the same
path, leading to longer travel time. Another reason might
lie in the shortage of charging stations. The shortage of
charging stations leads to the fact that BEVs must travel
on a longer path with a charging station to complete a
trip. Therefore, it is necessary to build sufficient char-
ging stations in the traffic network when travelers start to
use battery electric vehicles. This approach will avoid the
need for a detour of BEVs for recharging, thus improving
the performance of the traffic system and successfully sav-
ing energy resources.

Tab.3 Equilibrium traffic flows and travel time with different penetration rates of BEVs

r=0

r=0.5 r=1

Path between

OD pair 1-2 Traffic flow/

Travel time/min

Traffic flow/

Traffic flow/

Travel time/min Travel time/min

(veh - h™h) (veh - h™h) (veh - h™h)
1 332.03 81.18 134.99 54.83 0 33.98
2 56.78 83.06 156.74 110.97 349.37 369.15
3 0.28 85. 10 11.93 115.73 19. 60 369.25
4 0.14 87.82 7.11 116.47 2.08 383.23
5 0.19 86.32 25.22 112.22 28.95 364.33
6 10.29 87.13 55.00 75.14 0 68.01
7 0.18 89.17 7.24 79.90 0 68.12
8 0.11 91.89 1.77 80. 64 0 82.10
Total travel time/min 32 644.68 34 687.15 14 7550.1

4 Conclusions

1) The cognitive threshold and the penetration rate of
BEVs have no influence on the convergency of traffic
flows.

2) A large cognitive threshold can lead to small differ-
ences between traffic flows and their intensive variations
since the sensitivity of travelers for differences has a neg-
ative relationship with the cognitive threshold.

3) The efficiency of the traffic system becomes low as

the penetration rate of battery electric vehicles increases.
One reason is that the limited driving range constraints
potentially used paths, thus leading to the concentration
of travelers. The other possible reason is that the shortage
of charging stations forces drivers of battery electric vehi-
cles to detour for recharging. Therefore, it is necessary to
build sufficient charging stations in a traffic network in
order to improve the performance of the traffic system and
successfully save energy sources.
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