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Abstract: In order to study the spatiotemporal characteristics of
the dockless bike sharing system ( BSS) around urban rail
transit stations, new normalized calculation methods are
proposed to explore the temporal and spatial usage patterns of
the dockless BSS around rail transit stations by using 5-
weekday dockless bike sharing trip data in Nanjing, China.
First, the rail transit station area ( RTSA) is defined by
extracting shared bike trips with trip ends falling into the area.
Then, the temporal and spatial decomposition methods are
developed and two criterions are calculated, namely,
normalized dynamic variation of bikes ( NDVB) and
normalized spatial distribution of trips (NSDT). Furthermore,
the temporal and spatial usage patterns are clustered and the
corresponding geographical distributions of shared bikes are
determined. The results show that four temporal usage patterns
and two spatial patterns of dockless BSS are finally identified.
Area type (urban center and suburb) has a great influence on
temporal usage patterns. Spatial usage patterns are irregular
and affected by limited directions, adjacent rail transit stations
and street networks. The findings can help form a better
understanding of dockless shared bike users’ behavior around
rail transit stations, which will contribute to improving the
service and efficiency of both rail transit and BSS.
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he bike sharing system (BSS), also known as the
Tpublic bicycle system, has been introduced as a part
of urban transport systems to provide the missing link be-
tween public transport facilities and the desired destina-
tions' ™. The number of the cities which have started bike
sharing programs is estimated at over 1 000 around the
world”™' . The dock-based BSS has been implemented in
hundreds of cities in China until 2016 when Mobike, a
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bike sharing company, announced its operation in the
dockless BSS. For the dockless BSS, instead of picking up
or returning bikes at bike stations, there are no bike sta-
tions and users can park them anywhere and lock them to
finish their trip. Due to the flexibility of dockless shared
bikes, the dockless BSS has become a prevailing transfer
mode to connect to public transport, especially for urban
rail transit'”. The huge demand and the high turnover rate
of dockless shared bikes make those bikes around urban
rail transit stations form a certain regularity in the temporal
and spatial characteristics. Analyzing the temporal and
spatial usage patterns of the dockless BSS can promote the
cooperation between shared bikes and urban rail transit.

Due to its relatively short history, there are very few
studies focusing on the dockless BSS. Pal and Zhang'”
made the first effort to solve the static rebalancing prob-
lem of the dockless BSS using single and multiple vehi-
cles. Wang and Ouyang'” indicated that dockless shared
bikes presented disequilibrium in rail transit station areas
and explored the influencing factors of the disequilibrium
using 5-weekday dockless bike-sharing OD data in Bei-
jing. However, few studies have analyzed the spatiotem-
poral characteristics of dockless shared bikes. Fortunate-
ly, some earlier studies regarding the modelling of usage
patterns for a traditional dock-based BSS provide us with
inspiration to analyze the usage patterns of the dockless
BSS. Froehlich et al. "' developed the normalized availa-
ble bicycles (NAB) to characterize bike stations, and ap-
plied the K-means clustering method to identify usage
patterns of the dock-based shared bike. The criteria, nor-
malized available bicycles (NAB), was further used by
Lathia et al. " to analyze the impacts on the change of
the user-access policy to the shared bike scheme in Lon-
don. In addition, O’Neil and Caulfield""" examined how
bike sharing users integrate their trips with public transit
and classified bike stations into three types: go-from sta-
tions, go-to stations and self-sustainable stations. Chab-
choub and Fricker'” claimed that NAB had the drawback
that rebalancing operations will affect the clustering of BSS
stations. They used cumulative arrivals and departures to
characterize stations and normalized the criteria by dock
station capacity. Similar criteria were also put forward by
de Chardon et al. """ who defined rebalanced effective us-
age (REU).

The studies mentioned above analyzed the usage pat-
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terns of dock-based shared bikes based on the station level
data. The capacity of a bike station plays a critical role in
the clustering process. However, as there are no bike sta-
tions for the dockless BSS, the temporal and spatial dis-
tribution of the bikes are more irregular. Given this con-
text, this study focuses on the surrounding area of urban
rail transit stations where the demand of shared bike trips
is huge and the bike turnover rate is high nowadays. The
temporal and spatial decomposition methods are proposed
to explore the usage patterns of the dockless BSS. The re-
sults can provide helpful information for planners and
managers to improve the service quality and transfer effi-
ciency of both systems.

1 Data Description and Statistical Analysis
1.1 Urban rail transit system data of Nanjing

By the end of June, 2017, six urban rail transit lines
had been built and put into operation in Nanjing, China,
namely line 1, line 2, line 3, line 10, line S1 and line
S8. The total length of the rail transit network was 225
km and the number of rail transit stations reached 113.
The urban rail transit station data used in this paper in-
cluded the name of the station, the corresponding rail
transit line, station number, longitude coordinates and
latitude coordinates, as shown in Tab. 1.

229
Tab.1 The urban rail transit station data
Station ~ Name of the Rail transit Longitude Latitude
number station line coordinate coordinate
1 Olympic Centre 10 118.718 306  32.009 078
2 Yuantong 10 118.721 454  31.995 474
3 Zhongsheng 10 118.727 722 31.990 112
4 Xiaohang 10 118.738 281  31.984 497
5 Andemen 1 118.762 113 31.990 863
6 32.

Zhonghuamen

1

118.774 470

006 751

1.2 Bike sharing system data of Nanjing

The shared bike data used in our research was the auto-
matically collected transaction information of Mobike, the
major dockless BSS in Nanjing, of five weekdays in one
week from Sept 18 to Sept 22, 2017. The dataset included
user id, bike id, trip start time, trip end time, and the ori-
gin and destination of each trip with latitude and longitude
coordinates, as shown in Tab.2. On the whole, the aver-
age daily activate users and bikes’ number are about
300 000 and 150 000, respectively. We found that in each
weekday, 8:00—9:00 and 18: 00—19: 00 are the peak time
periods for picking up and returning bikes. It can be clearly
inferred that the BSS is mainly used for work related trips as
bike usage has a strong link to weekday peak hours.

Tab.2 The dockless shared bike trip data

. L Trip start Trip end Origin Origin Destination Destination
User id Bike id X . . . . .
time time longitude latitude longitude latitude
45¢98...88bd2 862...68 18:25:35 18:28:39 118. 808 254 32.052 393 118.815 083 32.231 037
c2d73...2e849 862...97 18:25:47 18:34:38 118.733 422 31.987 824 118.730 417 32.226 853
Oel14...57b96 025...40 18:25:52 18:49:07 118.743 041 32.093 384 118.742 262 32.039 587
d5059...71feb 025...34 18:25:34 18:58:34 118.750 067 32.064 541 118.748185 31.999 629
1.3 Rail transit station area Sl f
g,
o <
To intuitively describe the geographic distribution of L\v-.,,%
dockless shared bike use in Nanjing, we plotted the ker- o o
O o
nel density map of the dockless shared bike use on Sept o B :
SRS 3 \ Urban rail

22, as shown in Fig. 1. The dockless shared bike use is
mainly distributed around the central urban area of Nan-
jing, and also represents a considerable proportion around
urban rail transit stations. In this paper, the rail transit
station area ( RTSA) is defined as a round area with a
central geographical point of the rail transit station and a
radius of 150 m. In Ref.[11], a radius of 200 m is used
to calculate public transport facilities around dock-based
BSS stations. As dockless shared bike users can park the
bike as close as possible to the destination, we can infer
that the value of the radius for the dockless BSS is less
than 200 m. Moreover, we further explored the distribu-
tion of shared bike trips with the trip end falling into the
100, 150 and 200 m area around rail transit stations in
Nanjing, respectively. We found that the distribution
of bike trips is the most intensive in 150 m area, and the
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Fig.1 Kernel density map of dockless shared bike use

distribution becomes uneven and sparse beyond 150 m.
Therefore, the value of a radius of 150 m is finally adopt-
ed in this study.

The RTSA is used for extracting those shared bike trips
with trip ends falling into this area. The shared bike trip
database contained 1 830 733 bike trips in Nanjing on five
weekdays. Moreover, the bike trips in the RTSA con-
tained 448 530 records, which accounted for 24. 5% of
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the total trips in Nanjing. Each trip in the RTSA can then
be identified as an arrival or departure state based on
which trip end is located in the RTSA. For example,
when the trip end of origin falls into the RTSA, the trip is
identified as a departure state. Similarly, the trip end of
the destination corresponds to the arrival state.

1.4 Statistical analysis

The general spatiotemporal characteristics of shared

bike trips (trip time and trip distance) in the RTSA can
be calculated as shown in Tab. 3. The average trip time
ranges from 6 to 15. 1 min with a mean of 8. 6 min and
the average trip distance ranges from 640 to 1 978 m with
a mean of 1 024 m. We also calculate the average value
of the parking time of shared bikes in the RTSA, which
ranges from 6 to 8 h, indicating that the turnover rate is
approximate 3 to 4 times/day.

Tab.3 Description of trip time and trip distance

Parameter Minimum 1st quarter Median Mean 3rd quarter Maximum Standard deviation
Trip time/min 6 7.7 8.3 8.6 9.2 15.1 1.3
Trip distance/m 640 922 989 1024 1106 1978 193
2 Methodology
2.1 Temporal decomposition 2 — Arrivals fr-o )
B - - - Departures 2 Accumulation
To demonstrate the temporal dynamics of shared bikes S %
Q
usage, we discretized 24 h of one day into 15-minute & 0 »
. . . . . . . = S
bins, resulting in 96 bins per day. The criterion defined =z \mn
in this paper, dynamic variation of bikes (DVB), was —

the cumulative sum of bike arrivals minus departures
within time intervals. The average of DVB for a weekday
can be calculated by averaging DVB at the same time bins
of each day. In Chabchoub and Fricker’s research'”, the
capacity of the dock-based shared bike station was used
for normalization to balance the difference of all bike sta-
tions. Since there is no bike station in a dockless BSS,
the maximum values of DVB were used as the denomina-
tor to compare different rail transit stations on the same
scale. For each station, we divided the average DVB se-
ries by its maximum values for normalization. The result,
termed as the normalized dynamic variation of the bikes
(NDVB) ranges from [ —1, 1]. For each station i, A
and p, , are the average numbers of arrivals and departures
in time interval ¢ (between ¢ and ¢ + 1) of weekdays. A
-, , is the corresponding dynamic variation of the bikes
and the normalized dynamic variation of bikes (NDVB)
can be given as

it

it

A =M
NDVB, , =
Pomax(A, g ) or

Fig.2(a) presents an illustration about the distribution
of the number of arrival trips and departure trips. Some
features can be found by examining the NDVB curve as
shown in Fig. 2(b). For instance, a positive NDVB value
(NDVB € [0, 1]) means more arrivals than departures
and the shared bikes in the RTSA are accumulating. Sim-
ilarly, a negative NDVB value ( NDVB e[ -1, 0]) in-
dicates that the shared bikes in the corresponding RTSA
are dispersing. The slope of the NDVB curve is the rate
of accumulation or dispersion and the area of s, and s, are
the total arrivals and departures, respectively.

(a) (b)
Fig.2 Using arrivals and departures to generate the distribution

of NDVB. (a) Distribution of arrivals and departures; (b) Distribution
of NDVB

2.2 Spatial decomposition

The criterion for spatial characteristics of shared bikes is
further defined as the spatial distribution of trips (SDT). It
indicates the number of shared bike trips within space par-
titions. For each station i, the whole space around the sta-
tion is divided into eight parts evenly, i.e., p,, p,, ...
Ps» as shown in Figs.3(a) and (b). s, , denotes the num-
ber of trips falling into part p. We took the average of the
number of trips with the trip end (the starting point or the
.p- Asthe
number of trips with the starting and end point coordinates

end point) falling into part p on 5 weekdays as s

in the same dimension was very small, this type of trip
was not considered in this paper. Then, an eight-dimen-
sional vector was used to represent the distribution of
shared bike trips around the rail transit station i. In order
to compare different stations of the same scale, the vector
was reordered according to the values of s, , to eliminate
the direction effects, generating s, , where o is ordered in-
dices 1, 2, ..., 8. Next, each vector was divided by the
maximum value of s, , to eliminate the scale effects and the
normalized spatial distribution of trips ( NSDT) is ob-
tained. Fig.3(c) presents the calculation process.
Therefore, for each station i, s, is the number of
shared bike trips with one of the trip ends falling into the
space partition o(o0 € 1, 2, ..., 8). maxs,, is the maxi-
mum value of s, , The normalized spatial distribution of
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(2) (b)
Soatial Number of trips Ordered Number of trips Ordered Normalized trips
patial part——¢ B rdere Y B rdere A B

b, 5 1 1 6 6 ) 1 1.00 1.00
P, 6 0 Reorder P 5 5  |[Normalized ) 0.83 0.83
Dy 3 3 3 4 3 3 0.67 0.50
P, 2 1 4 3 2 4 0.50 0.33
Ps 4 6 N 3 2 5 0.50 0.33
Ps 1 4 6 2 1 6 0.33 0.17
b, 3 2 7 2 1 7 0.33 0.17
Py 2 2 8 1 0 8 0.17 0.00

(©)

Fig.3 A numerical example of the spatial decomposition method. (a) Space partitions of Station A; (b) Space partitions of Station B; (c)

Calculation process of the NSDT value

trips can be given as

\)

Pi, 0

NSDT, , = ————*"———
o max(s;,) ooy s

Obviously, NSDT is positive and the range of the val-
ues is [0, 1]. The value of NSDT closer to 1 indicates
that the distribution of the shared bike trips in the RTSA
is uniform. Instead, the value of NSDT closer to O illus-
trates that the distribution of the shared bike trips in RT-
SA is extremely non-uniform and there are some major
directions for shared bike trips.

2.3 K-means clustering method

The K-means clustering algorithm is applied in this pa-
per to classify RTSA into groups and each group shares
similar bike usage patterns. The two criterions, the Sil-
houette coefficient ( SC) and Calinski-Harabaz index
(CHI) are used to obtain the optimal number k of clus-
ters. For the two criterions, the corresponding number of
clusters achieves an optimum result when the value of the
criterion becomes the maximum.

3 Results and Analysis
3.1 Temporal usage pattern

3.1.1
The Silhouette coefficient and Calinski-Harabaz index

Number of clusters

are calculated for different number k of clusters in R soft-
ware and the results are shown in Figs. 4(a) and (b).
The clustering algorithm finally identified 90 rail transit
Some stations in the exurban area were not
identified since very few dockless shared bike trips were
distributed in the corresponding RTSA. As the optimal
cluster number is not the same for the two criterions, the
value of SC tends to be stable at 4 and the value of CHI

stations.
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Fig.4 Results of cluster number for temporal usage. (a) SC in
NDVB; (b) CHI in NDVB

1416

reaches a maximum of 3. It indicates that the optimal
cluster number should be over 3. We further utilized the
method of visualization and compared the cluster numbers
of 3, 4 and 5 by visualizing the distribution of NDVB.
Finally, four clusters were determined in this paper to re-
present the temporal usage patterns of dockless bike sha-
ring, since each cluster has relatively unique characteris-
tics of accumulation and dispersion in the RTSA. The
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number of the rail transit stations for different clusters are
15, 33, 16 and 26, respectively.
3.1.2 Temporal usage pattern analysis

The visualization results of NDVB with the cluster
number of 4 are shown in Figs.5(a) to (d). The tempo-
ral characteristics of the four clusters are described as fol-
lows:

Cluster 4-1
morning and the trend holds until the beginning of the
evening peak hours then disperses late at night. Therefore,
daytime on a weekday presents an accumulating pattern of
shared bikes and morning peak hours is the time when the
accumulation rate is the highest. When it comes to evening
(after 16:00), the situation is just the opposite.

Cluster 4-11 It is shown as a mirror of Cluster 4- |
in a vertical direction. During morning peak hours, the
shared bikes around the rail transit station disperse after a
small accumulation at the beginning, while the case is the
opposite in the evening time. Similar to Cluster 4- [ , the
highest accumulation/dispersion rate appears during peak

Shared bikes accumulate in the early

hours.

Cluster 4-I In the morning hours (6: 00—10: 00),
shared bikes first accumulate and then disperse on nearly
the same scale, indicating that there is a balanced state
during this time period. The same trend can be found in
the evening hours (16:00—20: 00) on the same scale. In
other words, the RTSA for Cluster 3 shows the temporal
characteristics of accumulation and dispersion both in

1.0 1.0r
0.5¢ 0.5¢ } '
& z;}\ ;
2 o o—zﬁw—ﬁ; g
Z I &
-0.5f -0.5r
—l.O'I I I 1 1 —l.O'I I I 1 1
0:00 6:00 12:0018:0024:00 0:00 6:00 12:0018:0024:00
Time Time
(a) (b)
1.0

-1.0 J -1.0f
0:00 6:00 12:0018:0024:00 0:00 6:00 12:0018:0024:00
Time Time

(c) (d)

Fig.5 NDVB visualization of 4-cluster cases. (a) Cluster 4-1 ;
(b) Cluster 4-11; (c¢) Cluster 4-; (d) Cluster 4-1V

the morning and evening.

Cluster 4-1V It has the same trend with Cluster 2 be-
fore 16: 00. While for the time period after 16: 00, the
NDVB values fluctuate slightly around 0. Therefore, the
temporal characteristics of accumulation and dispersion
only emerge in the morning, while the distribution of
NDVB becomes irregular with abnormal fluctuation in the
evening.

It is worth noting that the completely opposed trends in
Cluster 4- | and Cluster 4-[[ are probably due to differ-
ent land uses and job-housing relationships in Nanjing.
For Cluster 4- [ , rail transit stations with temporal char-
acteristics of morning accumulation and evening disper-
sion are likely to be located in the workplace area. Simi-
larly, for Cluster 4-1, those stations with features of
morning dispersion and evening accumulation may be lo-
cated in the residence area. Unlike Cluster 4- [ and Clus-
ter 4-1[, there are no significant land use characteristics
for Cluster 4-1 and Cluster 4-]V. One possible reason is
that residents frequently make some business trips or
shopping trips in the corresponding RTSA, since the bike
trips first accumulate then disperse and there is a balanced
state during the whole day.

3.1.3 Geographic distribution of 4-cluster temporal
usage patterns

Based on the cluster results, the distribution of NDVB
for the four clusters shows some geographical agglomera-
ting regularity on temporal usage patterns of the dockless
BSS. The geographical distribution of the identified rail
transit stations in Nanjing is shown in Fig. 6. The stations
of Cluster 4- [ , shown as yellow dots, are mainly loca-
The sta-
tions of Cluster 4- ]I are mainly located in the residence-

ted around the business-oriented urban center.

oriented area. It is accordance with our previous inference
as Cluster 4- [ and Cluster 4- [ characterize a commuting
related tidal pattern on weekdays. However, four excep-
tional stations in Cluster 4-] are located in the urban cen-
ter

O Cluster 1; @ Cluster 2; @ Cluster 3; @ Cluster 4
Fig. 6 Geographic distribution of 4-cluster temporal usage pat-

terns
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area. The reason is that the urban center in Nanjing, as
well as in other Chinese large cities, shows a highly-
mixed land use context, resulting in a highly residential
population in the urban center. Cluster 4-1 and Cluster
4-1V, shown as red dots and green dots, are mainly loca-
ted in the mixed land use area around the urban center and
exurban area.

3.2 Spatial usage pattern

3.2.1 Number of clusters

For the spatial usage patterns, the results of the Silhou-
ette coefficient and Calinski-Harabaz index are presented
in Figs. 7(a) and (b), respectively. Both criterions reach
the maximum value with the cluster number of 2. There-
fore, two clusters are determined in this paper to charac-
terize spatial usage patterns of dockless bike sharing. The
number of the rail transit stations for the two clusters are
39 and 51.
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Number of clusters

(b)
Fig.7 Results of cluster number for spatial usage. (a) SC in
NSDT; (b) CHI in NSDT

3.2.2 Spatial pattern analysis

The distributions of NDVB with the cluster number of
2 are shown in Figs. 8(a) and (b). For Cluster 2- [ , the
values of NSDT in nearly all spatial parts are higher than
0. 5. Therefore, Cluster 2- [ presents a relatively bal-
anced spatial distribution of shared bike trips. For Cluster
2-1I, Fig.8(b) shows that there is a tremendous decrease
of NSDT after the first two ordered spatial parts, and the
NSDT values are less than 0.5 in more than half of all the

directions. Morevoer, the variances of 2 clusters are cal-
culated. The variance of Cluster 2- [ is much lower than
that of Cluster 2-]. The low values of NSDT and high
variances for Cluster 2- ]I indicate that the bike trips are
more concentrated in limited directions.

The spatial characteristics of 2 clusters are described as
follows:

Cluster 2-1
shared bike trips around the rail transit station with values
of NSDT over 0. 5. It indicates that there is a homoge-
nous service in the corresponding RTSA.

Cluster 2-11  The values of the NSDT are less than
0.5 in more than half of all the directions. Therefore, the
RTSA for Cluster 2-] may provide a heterogeneous service
and most shared bike users travel in limited directions.

There is a relatively even distribution of

1.00r == 1.00,
0.75 0.75
= =
20.50 2050
Z
025 0.25

oF o-

2 4 6 8 2 4 6 8

Spatial part Spatial part
(a) (b)

Fig.8 NSDT visualization of 2-cluster cases. (a) Cluster 2- [ ;
(b) Cluster 2- 11

3.2.3 Geographic distribution of 2-cluster spatial
usage patterns

Fig. 9 shows the geographical distribution of the spatial
usage patterns. The distributions of the stations for the
two clusters are relatively discrete, since both clusters are

distributed in either the urban center or the suburban area.

@ Cluster 1; @ Cluster 4
Fig.9 Geographical distribution of 2-cluster spatial usage pat-
terns
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Two reasons can be given to explain the discrete phenom-
enon. The first reason is that other stations may act as a
competitor, which attracts more bike trips. The other rea-
son is that for some certain stations, there are not enough
roads connected to them due to the relatively low street
density around the station.

4 Conclusions

1) In this paper, 5-weekday bike-sharing trip data is
used to explore the temporal and spatial usage patterns of
the dockless BSS around rail transit stations in Nanjing,
China. The rail transit station area is defined by extrac-
ting the shared bike trips with trip ends falling into the ar-
ea. To characterize the arrival and departure activities for
the dockless BSS,
methods are developed by calculating two criterions,
namely, the normalized dynamic variation of bikes ( ND-
VB) and normalized spatial distribution of trips(NSDT).
Furthermore,
bined with the visualization method is applied to explore
the spatiotemporal usage patterns and geographical distri-
butions of dockless shared bikes. Four temporal usage pat-
terns and two spatial usage patterns are identified. Tempo-
ral usage patterns show a strong relationship with area
type, i.e., urban center and suburb, while spatial usage
patterns are irregular depending on limited directions.

2) The results can provide helpful information for both
bike sharing operators and local governments to initiate
the relevant measures or policies. For instance, from the
temporal usage patterns perspective, the rebalancing strat-
egies can be taken by observing the accumulation and dis-
persion characteristics of each station. For the two spatial
usage patterns, the problem of limited directions inspires
us to reconsider the arrangement of bike facilities based
on the main directions that the bikes arrive/depart. Some
practical improvements such as optimizing street networks
and widening bike lanes, can be introduced to improve

temporal and spatial decomposition

the K-means clustering algorithm, com-

the service of both the rail transit and shared bikes.

3) This paper mainly focuses on the new methods of
analyzing temporal and spatial usage patterns of shared
bikes, while the analysis of the influencing factors of
these patterns has not been carried out thoroughly. Land
use, street network and other factors such as built envi-
ronment factors, also impact the spatiotemporal distribu-
tion of shared bikes. A questionnaire should be designed
in further study to explore the influencing factors of the
spatiotemporal usage patterns.
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