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Abstract: An appointment scheduling problem is studied with
the consideration of customer impatience. On the assumption
that both the time of leaving queue and the time of service are
exponentially distributed, in order to minimize the joint cost,
the optimal appointment schedule of the fixed number of
customers is studied. The joint cost function is composed of
customers’ expected delay time and service availability time.
The expected delay time of each customer in the queue is
recursively computed in terms of customer interarrival time.
Furthermore, the effect of impatience on the optimal schedule
as well as the total operating cost is studied. The results show
that as the impatience rate increases, the optimal interarrival
time becomes shorter and the interarrival time of the last few
customers gradually approaches that of the customers in the
middle. In addition, impatient behaviors can increase the joint
cost.
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ppointment scheduling has been extensively studied

over the past sixty years'"'. Wang'” studied the op-
timal arrival time intervals for the appointment in a sin-
gle-server system with exponential service time. He found
that the optimal interarrival time presents a dome pattern.
Kuiper et al. ™ investigated the problem with general
service time distribution and confirmed the dome pattern

! studied the case

of the optimal schedule. Zhang et al. "
of unknown random service time distribution. They point-
ed out that different optimization objectives lead to differ-
ent time interval structures. Some appointment scheduling
studies considered customer behaviors such as no-show

[5-6]

and unpunctuality ™. The results indicate that customer

behaviors have certain impact on the optimal interarrival
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time. Those studies focused on appointment scheduling
without involving impatient behavior, though impatience
is common in the appointment system. Due to the uncer-
tainty of service time, customers who arrived may find
that the previous customer is still receiving service, so
they have to queue; however, they will leave if they are
not served within a certain time after joining the queue.
Such queueing systems include appointment systems in
banks, hospitals, and car maintenance etc.

Meanwhile, there is much research on the waiting time
Mo-

vaghar'”' investigated the waiting time for the multi-server
18]

of the queueing system with impatient behavior.
M/M/s queue with impatience. Choi et al. = considered
the M/M/1 queue with impatience and customer priority.
Daley' studied the waiting time of the G/G/1 queue with
impatience. Choi et al.""” considered performance meas-
ures including the waiting time of the MAP/M/c queue
with impatient customers. Sakuma and Takine'"' studied
the waiting time of a multi-class M/PH/1 queue. Wang
and Wu'"” considered the waiting time for a M/M/1 queue
with constant impatience and the last-in first-out rule.

As the service environment is not always constant, the
queuing theory can bring useful insights to appointment
system design. Thus, in this paper, an S(n)/M/1 queue-
ing model is established for the appointment scheduling
problem with customer impatience. The expected delay
time ( waiting time plus service time) is calculated with
impatience, when the interarrival time is no longer sub-
jected to a distribution but decision variables. Moreover,
the impact of impatient behaviors on appointment schedu-
ling is investigated.

1 Model

Assuming that there is a single server providing serv-
ices in the appointment system, N is denoted as the num-
ber of customers to be scheduled. The service time for
each customer is independent and identically distributed
(i.i.d.) following an exponential distribution. Custom-
ers may leave the system due to impatience. That is, if
an impatient customer has a deadline, he/she will keep
the deadline until the beginning of service. When the
waiting time of an impatient customer exceeds his/her

deadline, the customer will leave the system. The
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customers’ deadlines are assumed i.i. d. following an ex-
ponential distribution with parameter 6, and 6 is the impa-
tient rate. Usually, the impatient rate § will not exceed
the service rate . Thus, it is assumed that  <u. Cus-
tomers will arrive punctually by appointment and there is
no rescheduling. There is a fixed number of customers to
be scheduled at the beginning. The objective is to deter-
mine a schedule for customers, thus minimizing the sum
of expected delay time ( waiting time plus service time)
cost of customers and expected availability cost of the
server. Customers’ delay cost per unit time is denoted as
¢, and the service cost per unit time is denoted as c,.

The interarrival time between the i-th and (i + 1) -th ar-
rival is denoted as x,. The objective function is a combi-
nation of expected delay cost and expected server availa-
bility cost. The goal is to determine the interarrival vector
X = {x,, X5 o0y Xy, 3T by minimizing the objective cost
function. The general form of the problem is

min @, (x, w) =c,ew +c(ex +e,w)
X

s.t. x=0 (D

where w; denotes the expected delay time of customer i;
w = {w,, w,, ..., wN}T is the vector of expected delay
time; e is a row vector of order N with all the elements
equal to one; e, is a row vector of dimension N with the
N-th element equal to one and all others equal to zero.
The first term in the objective function is the total cus-
tomer delay cost, while the second term is the total server
availability cost, which is the departure time of the last
customer. Without losing generality, the objective func-
tion can be simplified by dividing (¢, + c¢,). Therefore,
the simplified objective can be written as

min @(x, w) =aew + (1 —a) (ex +e,w)

s.t. x=0 (2)

c
where « = 7_:(0 <a<1) is the relative cost factor of
c, +c

w s

customer delay.
2 Expected Delay Time

The purpose of this section is to establish the structure
of the expected delay time w,, and w;, is represented as a
function of interarrival time vector x. First, we need to
give the departure rate for a system with impatient cus-
tomers. In a stationary queuing system with m servers,
the probability that a customer misses his/her deadline

253
when the total customer number 7 in the system is
0 if n<
r={ = (3)
(n-m)o if n>m

Assuming that there is a single server in the system
with service rate y, the departure rate including impa-
tience is w, =u + r,, where n is the number of customers
in the system and r, =(n - 1) 6.

When the i-th customer arrives and finds that there are
n(0<n<N -1) customers in the system, his/her delay
time will be the absorption time of the departure process
with n + 1 phase. The absorption state is the state when
all n + 1 customers leave the system. In this case, the
distribution of delay time for customer i is the phase-type
(PH) distribution of absorption time.

Letp, = {p,(0), p,(1), ..., p,(N=1)} be a row vector.
p,(j) represents the probability that there are j customers
in the system just before the i-th arrival. Note that p,(j)
=0 for j=i.

Proposition 1 The delay time distribution is described
by (p,, T), where

T =
M
n+o  —(u+0)
~[u+(N-2)6]
u+(N-1)6 —[u+(N-1)6]
(4)
According to the conclusion of Neuts'”, the n-th mo-

ment of the PH distribution ( 131., T) is given as

E[x'] =(-1)"nlpT "¢ (5)

Let n =1, and the expected delay time for customer i
can be derived directly by Eq. (5).
—pT'e (6)

w, = E[W,]

Next, the probability row vector p, is derived. The recur-
sive formula for the probability row vector p, is obtained
by the following proposition.

Proposition 2 The probability row vector for custom-
er i is the multiplication of the probability row vector for
customer i — 1 and departure matrix D(x,_,).
i>1

(7)

where p, is the probability vector and the initial vector

p, ={1,0,...,0}. The description of departure matrix is

ii :I;i-ID(xi-l)

ros,(x) d,(x) 0 0 0 .
s, (x) d, (x) dyy(X) 0 0
Dl = stz'(x) dN—Z,A;—S('x) dez.N.—4('x) dez.N'fs(x) O ®)
Sy (X)) dy v () dy () dyy i (X) dy (%)
L 0 0 0 0 1 i
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where d, ;(x) represents the probability that there are j de-
partures in time interval x as i customers who are at the

beginning of x. Furthermore, s,(x) =1 - 2 d;.,;(x).
j=0

The proposition can be directly obtained by the defini-
tion of probability vector p, and departure matrix D( x).
Note that at any time interval [¢, |, ), there is only one
entry at the initial time ¢, ,, and the transient process at
time interval [¢,_,, t;) can be regarded as a pure death
process. With such a recognition, the elements in the de-
parture matrix D(x) can be represented as follows.

Proposition 3 The elements in the departure matrix
are

d (x) = {liiHjl ;;;ﬁ' (9)

e

1

where A, = and u, =p +(i-1)6.

i

H (Mk _/J«m)

k=i—j k#m

Proof There is no entry at any time interval x Let
7;(t) denote the probability that there are i persons at
._,- In this case, the transfer
process can be regarded as the pure death process with the
transition rate 7, ,_,(h) =w,h + o(h). The corresponding
transition matrix is

n-1°

time ¢ in time interval x

0 0
My M
Z= Mo T (10)

I‘Lm _I‘Lm

It is assumed that there are m persons at the initial
time, which means that 77,,(0) =1. We can write the cor-
responding differential equation as

(1) = -p,m,(1)
' . (11)
(1) = —uam (1) +u; 7, (D 1<sj<m
We can first derive the boundary solution as
a, (1) =e™ (12)

Eq. (12) corresponds to d,, ,(t) in the departure ma-
trix.

Using the L-S transform, Eq. (11) can be transferred
as

1

T($) = s+, (s)

(13)

(S+I"l’j)7Tj(s) :Mj+177j+1(s) I<j<m

Then, do the inverse L-S transform for 7;(s). The
probability that there are j persons in the system at time ¢
with initial m people in the system is

m

77'/( t) = (Mj+1"'/1vyy1) ZAie_H" (14)

1
(/-Lj —p) (g =) (s =) - (s, — )
Eq. (14) corresponds to d () in the departure ma-
trix.

where A, =
m,m-—j

Finally, the expected delay for customer i can be de-
rived by previous propositions and it is presented in Theo-
rem 1.

Theorem 1 The expected delay for customer i is

i-1

w, = E[W] =-p []D(x,)T"e"  (15)

Theorem 1 shows that the expected delay for customer i
can be represented by the time interval vector x.

In order to minimize the objective cost function, the
derivative is taken with respect to the interarrival vector x
by the chain rule.

dd(x,w) _ad(x,w) [Iw] . ad(x,w)
LW _IPL, [T] 4+ I (16)
dx aw ox 0x

The optimal interarrival vector x“ can be obtained by
setting the first-order derivative equal to zero vector.

As it is difficult to obtain the explicit solution for the
optimal interarrival time vector, the numerical solution
calculated by software Matlab is used as an alternative.
The sequential quadratic programming method is used in
order to find the optimal interarrival time vector.

3 Results

In this section, the optimal interarrival time for impa-
tient customers and the influence of impatience on an op-
timal schedule are investigated. The number of customers
to be scheduled, the relative cost factor for the delay time
and the service rate are set to be 10, 0.5 and 1, respec-
tively, in the numerical simulation.

3.1 Optimal interarrival time for impatient customers

In the numerical simulation, the sequential quadratic
programming method is used to find the optimal schedule
that minimizes the objective function (see Fig. 1). The
horizontal axis is the sequence of interarrival numbers,
and the vertical axis is the interarrival time. The results
show that the optimal schedule with impatience still has a
“dome” pattern, i.e., the first few and the last few cus-
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Fig.1 Optimal interarrival time with different impatience rates
(N=10,a=0.5,u=1)
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tomers have almost zero interarrival time and the other
customers have almost the same interarrival time. Howev-
er, as the impatience rate increases, the shape of the
“dome” becomes less conspicuous. Furthermore, the op-
timal interarrival time for each customer increases when
the impatience rate decreases.

An apparent explanation is that when the impatience
rate increases, the probability that a customer leaves the
system in unit time increases; therefore,
schedule should cut down the interarrival time to com-

an optimal

pensate for the time waste induced by the impatient be-
havior.

3.2 Impact of impatience

The optimal schedule without impatience has a longer
interarrival time than the schedule with impatience ( see
Tab. 1). For the schedule with impatience, customers
have the possibility to leave without getting service, leav-
ing the system empty or reducing the waiting time for the
later customers. The shortened interarrival time of the op-
timal schedule will reduce the waste time caused by impa-
tience. As the impatient rate decreases, the optimal inter-
arrival time with impatience is shorter than that without
impatience.

Tab.1 Comparison on optimal schedule under different 6

Interarrival time Without impatience 0=0.2 0=0.4 0=0.6 0=0.8
X 1.005 990 268 0.689 103 251 0.464 669 100 0.285 494 301 0. 133 782 000
X, 1.509 248 190 1.152 831 013 0.919 941 158 0.749 957 427 0.623 465 733
X3 1.589 487 454 1.228 351 533 0.990 729 262 0.815 130 305 0.680 378 432
X4 1.611 149 100 1.249 757 684 1.008 812 368 0. 830 056 489 0.692 506 749
X5 1.609 995 736 1.254 446 875 1.013 317 737 0.833 746 973 0. 695 449 375
Xo 1.590 836 669 1.248 796 207 1.011 130 311 0.832 737 211 0.694 897 396
P 1.545 477 937 1.228 163 201 0.999 771 567 0.825 650 328 0. 690 006 680
Xg 1.441 725 780 1.169 019 379 0.962 336 843 0.800 174 243 0.671 507 939
Xy 1.125 311 506 0.945 559 816 0.798 307 965 0.676 727 767 0.576 514 163

Next, the influence on the cost formed by impatience is
considered. The cost gaps between optimal schedules with
and without impatience are shown in Fig. 2.

It is clear from Fig. 2 that ignoring impatient behavior
will lead to an increasing cost for the system, and the cost
increases as the impatient rate increases. An appointment
system should take the impatient behavior into considera-
tion when scheduling the customers.

20r
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Fig.2 The cost gaps between optimal schedules with and with-
out impatience (N =10, =0.5,u=1)

4 Conclusion

An appointment scheduling for impatient customers is
studied in this article. The optimal interarrival time to the
fixed number of impatient customers will minimize the
joint costs of expected delay and expected service availa-
bility. The delay time ( waiting time plus service time)
distribution for the S(n)/M/1 queue is investigated, and
the recursive expression of expected delay time with im-
patience is given. Furthermore, the optimal schedule is
calculated numerically by the sequential quadratic pro-

gramming method. Numerical results of the optimal
schedule are investigated. The “dome” pattern of optimal
schedule gradually becomes less obvious as the impatience
rate increases, and the higher the impatience rate, the
shorter the interarrival time. Moreover, a comparison of
the systems with and without impatience is given. The
optimal schedule for systems with impatience has shorter
arrival time intervals for each customer than the systems
without impatience, thus avoiding the time waste induced
by impatient behavior. Additionally, it is noted that a
large cost will be borne if impatience is overlooked. In
such a case, customer impatience should not be ignored.
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