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Abstract: In order to study the influence of the structural
parameters of the rubber bush on its radial stiffness, the
constitutive relation of rubber materiel is used to obtain the
calculation formula of the dimensionless radial stiffness
coefficient. The obtained theoretical result is consistent with
previous research results in both long rubber bushes and short
rubber bushes. The simulation case was conducted by the
finite element method to verify the correctness of the theory.
The axial compression experiment was conducted to obtain the
parameters needed in the simulation. The result shows that the
percentage difference between the theoretical result and the
simulation one is only 2. 75%. A series of simulations were
conducted to compare with previous work, and the largest
magnitude of the percentage difference is only about 5% .
Finally, the radial stiffness experiment was conducted by using
a dynamic vibration absorber, and the influence of the
structural parameters of the rubber bush on its radial stiffness is
obtained. The result shows that the radial stiffness of the
rubber bush increases with the increase in the length and the
inner radius, but decreases with the increase in the outer
radius.
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he rubber bush is widely used in many mechanical
T products working as a kind of spring for vibration
isolation or comfort requirements'"’. Its main function is
to join the rigid structures. In most cases, the axial stiff-
ness of the rubber bush is the focus, but in some special
cases, the radial stiffness needs to be considered”™ . Due
to the increasing interest of multibody simulations, it is
important to develop models to represent the static stiff-
ness of these rubber products™ . Many scholars have tried
to study the radial stiffness of the rubber bush. However,
due to the complicated rubber material, geometry and
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contact, this problem has not been effectively solved'*™ .
Stevenson'"' studied the boundary problem of two-dimen-
sional elastic materials, established the boundary equa-
tion, and obtained the dimensionless calculation formula
Adkins et al. "™ studied the radial
stiffness of rubber bushes with different sizes based on the
classical linear elastic theory. The reduced radial stiff-
ness, B, and B, of long and short bushes with inner and
outer radii A and B are given by

for radial stiffness.

5 - 411-(AB+B ) o
(A +B2)ln(X) — (B -AY)

80m(A® + B)

Bs = (2)

25(A% + Bz)ln(%) ~9(B* - A?)
1. "' obtained an exact expression of the
radial stiffness of the rubber bush and derived a conven-

Horton et aj

ient approximation. The calculation results were com-
pared with the experimental data in Ref. [10]. Hill'"! ob-
tained an exact expression for small radial deformations of
the bonded cylindrical rubber bush of finite length by
using the truncated Fourier and Fourier-Bessel series. Qin

1. " established a finite element model and obtained

et a
the relationship between the radial stiffness and the pa-
rameters of the rubber bush. Li et al. """ conducted a two-
dimensional finite element simulation of the rubber bush
and the axial compression of the rubber bush was studied
to discover its effect on radial stiffness. The result shows
that when the axial compression increases, the radial stiff-
ness increases nonlinearly. In existing research, the rub-
ber bush is usually considered to be of finite length, re-
sulting in a certain limitation of the theoretical formula.
In addition, the existing research lacks necessary simula-
tions and experimental verification. In this paper, the
constitutive relation of rubber materiel is used to conduct
a theoretical analysis to obtain a more general reduced ra-
dial stiffness 8. The theoretical result is consistent with
previous research results in both long rubber bushes and
short rubber bushes. Then, the simulation and experiment
are conducted, and the results show that the errors be-
tween the theoretical result, the simulation result and the
experiment result are very small, which provides a calcu-
lation approach to meet target radial stiffness.
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1 Theoretical Method

Fig. 1 shows the structure of the damping boring bar
equipped with a passive dynamic vibration absorber
(DVA) consisting of mass block damping oil and a rub-
ber bush. The mandrel is fixed with the bar. When the
bar vibrates, the vibration energy will transfer from the
mandrel to the mass block through the rubber bush.
Then, the vibration energy will be consumed due to the

vibration absorbing effect of the damping oil.

Mandrel

Damping oil

Rubber bush

Cutting head Mass block Boring bar

Fig.1 The structure of the DVA used in a damping boring bar

In order to obtain a better vibration absorption effect, the
DVA needs to resonate when vibration occurs.
the natural frequency of the DVA needs to be designed to
match the natural frequency of the bar. As the radial stiff-
ness of the rubber bush has a direct influence on the natural
frequency of the DVA, in order to resonate with the DVA,
the radial stiffness of the rubber bush needs to be designed.

In order to study the radial stiffness, the rubber bushes
used in DVA can be modeled as shown in Fig. 2. The
rubber bush is placed between the inner and outer metallic
hollow cylinders. A, B and L are the inner radius,
radius and the length of the rubber bush, respectively.

Therefore,

outer

Outer
cylinder

Rubber
bush

Inner
cylinder

Fig.2 The structural model of the rubber bush

We create a coordinate system as shown in Fig. 3. Let
the coordinates of a point in the rubber bush in the Carte-
sian coordinate be (x, y, z), while in the polar coordinate
be (r, 6, z). The relationship between the two coordinates is

X = rcosf
yzmmO} (3)
2=z

The radial, tangential and axial components of the dis-
placement of the point P are denoted by u, v, w,
tively. Then, the radial, tangential and axial normal
strain components are, respectively, given by

respec-

(4)
and the shear strain components are
B L aw u
1 ow  ov
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Assuming that the rubber material is isotropic, the con-
stitutive equation of stress and strain are

1
&, E[U'rr —ploy, +o.)]
1
e =plow-u(o, +7.)] (6)
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where E is Young’s modulus; G is the shear elastic modu-
lus. Assuming that the rubber material is incompressible,
E . E
21 +,u)’1'e"G_ 3
0,=0.+2G(2¢, +&,), 04y =0 +2G(s, +2¢,)

(8)

By considering the equilibrium in the direction of the z-

then Poisson’s ratio u =0.5, G =

axis, the following equation of equilibrium must be ful-
filled:
do.. do, a0 ,,
r U“+&+ah+ 9r _o (9)
0z a0 ©oar

Suppose that the inner cylinder is fixed and the outer
cylinder is loaded by a force F' acting in the direction of
the positive y-axis to create a displacement d. The main
object is to find the expression of the stiffness, F/d. The
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displacement d can be obtained by the superposition of the
displacement created in two separate situations. In the
first situation, the rubber bush is subjected not only to the
load F but a specific axial stress in z direction to prevent
the plane ends from distorting. An expression can be
found for the radial displacement, d,, of the outer cylin-
der. In the second situation, the plane ends are subjected
to loads equal and opposite to those in the first situation.
An expression can be found for the radial displacement,
d,, of the outer cylinder. Then, d =d, + d, can be ob-
tained.

In the first situation, suppose that the plane ends are
subjected to an stress o, = W(r), then the corresponding

displacement components at point P are
u=U(r)singd, v=V(r)cosd, w=0 (10)

It follows from Eq. s (4) and (5) that the non-zero
strain components are given by

dU .

a,.,—drsmﬂ
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For small strains, the assumption of incompressibility
implies that

8" +‘966 +‘922 :0 (12)
Then
V=U+ rd£ (13)
dr
And Egs. (7), (8) and (11) yield
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For the first situation, Eq. (9) thus reduces to
97 _g (15)
0z

Considering a cylindrical surface of radius r along the
z-axis, we have

L/2 /2
F=2 j f (o,sinf + o, cosf) rdodz  (16)
=L/2Y —7/2

Evaluating this by substituting o, = Wsinf into Eq.
(14), then

U ,dU_ F W
== _ _ 1
"4 4 TGl G (7
Stevenson'’ once pointed out that
F (1 2r
=——+
W =5t F) (18)

U and V can be obtained by substituting Eq. (18) into
Eq. (17).

U=
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() B
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The outer cylinder does not move in the x direction, so
U(B) =V(B) =d,. Then, we have

(19)

E) B -A° (20)

d —L[ ln( -
"T4mGLL U\ A) A+ B
In the second situation, by using the same method as
above, we have

F B
= 1 0 + 5
4 101TGL[ n( A) A+ B

where D = —[ln(%)+# +0[(i)2], then

L
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The radial stiffness calculation formula of the rubber
bush can be obtained.

K= - 101TG;2 e (23)
lln(*) —i % +D
2 A 2\B +A

This leads to a non-dimensional representation of the
reduced radial stiffness 8 in the form

K 104
- £ 24
P 1677, By _spowy
2H(A)_2(BZ+A2)+

Compared with the results of Adkins et al. """ shown in
Egs. (1) and (2), it can be seen that

B—B., L— (25)
As L—0,
(A+B)’ (26)
V60AB(A® + B*)
Hence,
5 107 _
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80m(A® + B)
28(A? +Bz)ln(%) —12(B* - AY)

(27)

It means as L—0, B is extremely close to 3,.

2 Simulation of the Radial Stiffness of Rubber
Bush

2.1 Case study

A simulation case by using the finite element method is
carried out to verify the correctness of the theory. The
most important of the finite element method is to establish
an accurate model and obtain the accurate parameters of
the rubber bush. In order to obtain the parameters of the
rubber bush required in the simulation, the axial compres-
sion experiment is conducted, as shown in Fig. 4.

— —

Force and
displacement ¥
sensors

o
Rubber |
bush

Fig.4 The axial compression experiment of the rubber bush
The axial stiffness for a rubber bush is

E (D’ -d)

k, = 4h

a (28)
where D, d and h are the outer diameter, inner diameter
and length of the rubber bush. E, is apparent Young’ s
modulus.

E =iG

a

(29)

where G is the shear elastic modulus; i is the geometric
shape influence factor, i =3.6(1 + 1. 655%); S is the
ratio of the loaded bonded area to the force-free lateral

D-d
surface area, S = i

obtained, the shear elastic modulus of the rubber bush can
be obtained by

Clearly, if the axial stiffness is

4k,h

T D ) e

Fig.5 shows the force-displacement curve of the axial
compression experiment. By deriving, the radial stiffness
of the rubber bush can be obtained as k, =120 N/mm. In
this case, D=24.2 mm,d=11.5 mm, 2 =7.1 mm, and
then G=0.5 MPa, E=3G =1.5 MPa.

The three-dimensional simulation model is established
in the finite element software Abaqus as shown in Fig. 6.
The inner and outer cylinders are set as a rigid body,
while the rubber bush is set as an elastic body.
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Fig.5 The force-displacement curve of the axial compression
experiment
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Fig.6 The finite element model of the rubber bush

As shown in Fig. 7, the inner cylinder is fixed and the
outer cylinder is loaded by force F, which will lead to a
displacement d. The main objective here is to find the
value of the stiffness K = F/d.

Fig.7 Calculation model

Define material properties as the calculated results
above. Using reduced-integration hybridization elements,
a total of 22 357 elements are obtained. By loading the out
cylinder and fixing the inner cylinder, the radial displace-
ment of the rubber bush can be obtained, and then the ra-
dial stiffness calculated through simulations can be ob-
tained as 67. 14 N/mm. Compared to the theoretical result
69.04 N/mm, the percentage difference is only 2.75% .

2.2 Contrast with previous work

A series of simulations were conducted to compare with
previous work. The simulation parameters selected were
the same as those in Ref. [10]. Tab. 1 shows the results.
The seventh column gives the experimental values ob-
tained by Adkins et al. 19 " and the simulation values are
listed in the sixth column. It can be seen that the experi-
mental values are very close to the simulation values, but
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slightly lower than them. This is because, in the simula-
tion, the inner and outer cylinders were set as rigid
bodies, which means that they will never be deformed.
However, in the experiment, the cylinders were made of
compressible metal. The metal cylinders and the rubber

bushes were deformed at the same time. Larger deforma-
tion leads to lower radial stiffness in the simulation.
However, it is interesting to note that the largest magni-
tude of the percentage difference, listed in the eighth col-
umn, is only about 5% .

Tab.1 Radial stiffness of the rubber bush with different parameters

No. L/mm B/mm A/mm G/MPa Kgn/(N - mm™") K./ (N - mm “')  Percentage difference
1 6.35 12.9 6.22 0. 366 57.2 54.21 -5.23
2 12.70 12.9 6.22 0. 462 191.3 185.32 -3.13
3 19. 05 12.9 6.22 0. 344 280.5 271.54 -3.19
4 25.4 12.9 6.22 0. 448 608. 8 584.62 -3.97
5 31.75 12.9 6.22 0.342 689. 5 677. 10 -1.20
6 38.10 12.9 6.22 0.370 1016.4 995. 86 -2.02
7 44. 45 12.9 6.22 0.331 1166.7 1145.32 -1.83
8 50. 80 12.9 6.22 0.369 1597.1 1 542. 05 -3.48
9 96. 50 33.35 7.15 0.476 684. 4 682. 12 -0.33

3 Experiment of the Radial Stiffness of Rubber
Bush

The experiments of the radial stiffness with different si-
zes were carried out to study the effect of sizes on radial
stiffness. The experiments were carried out on the pres-
sure test platform as shown in Fig. 8. The DVA is applied
with a radial displacement. The cut-off force is set to be
120 N and the loading speed is controlled at 1 mm every 5
min. The low cut-off force and slow control speed ensure
that the rubber bush can always work in a linear condition
without hysteresis effects. The sensor can record the force
and displacement data in real time. Then, the radial stiff-
ness can be calculated through the force-displacement
curve. It can be seen from Eq. (23) that when the shear
modulus is constant, the radial stiffness is influenced only
by the outer radius, inner radius and length of the rubber
bush. The case with D =24.2mm,d =11. 5mm,h =7.1
mm is set as a reference.

Fig.8 The experiment of radial stiffness under different sizes

It is worth noting that there are two rubber bushes
placed parallel in a DVA (see Fig. 1). The radial stiffness
of each rubber bush can be calculated by

KDVA
Kexpl = 2

(31)

Fig. 9 shows the effect of the length of the rubber bush
on its radial stiffness. It can be seen that the radial stiff-
ness increases linearly with the increase in length. This is
because the radial stiffness per unit length is constant, so
when the length of the rubber bush increases, it is equiva-
lent to the parallel connection of a plurality of springs.
Fig. 10 shows the influence of the inner radius of the rub-
ber bush on its radial stiffness. It can be seen that the ra-
dial stiffness increases nonlinearly with the increase in in-
ner radius. That is because, with the increase in inner ra-
dius, the thickness of the rubber bush decreases. There-
fore, under the same applied force, the displacement de-
creases, resulting in a greater radial stiffness. Fig. 11
shows the effect of the outer radius of the rubber bush on
its radial stiffness. It can be seen that the radial stiffness
decreases nonlinearly with the increase in outer radius.
This is because, with the increase in outer radius, the
thickness increases, and it is equivalent to the series con-
nection of a plurality of springs. It is worth noting that
the errors between the theoretical curve, the simulation
curve and the experimental curve are very small. This
further validates the accuracy of the previous theory and
simulation study.
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Fig. 9  Effect of the length of the rubber bush on its radial

stiffness
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Fig. 10 Effect of the inner radius of the rubber bush on its ra-
dial stiffness
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Fig.11 Effect of the outer radius of the rubber bush on its ra-
dial stiffness

4 Conclusions

1) The radial stiffness of a rubber bush has a signifi-
cant effect on the natural frequency of DVA. The consti-
tutive relation of rubber material is used to conduct a the-
oretical analysis, and reduced radial stiffness B is ob-
tained. The calculation formula obtained is consistent
with previous research results in both long rubber bushes
and short rubber bushes.

2) The simulation case by using the finite element
method is used to verify the accuracy of the theory. In or-
der to obtain the parameters required in simulations, the
axial compression experiment is conducted. The result
shows that the percentage difference between the theoreti-
cal result and the simulation result is only 2. 75% .

3) A series of simulations were conducted to be com-
pared with previous work. The results show that the sim-
ulation values are very close to the previous experiment
values, but slightly lower than them. However, it is in-
teresting to note that the largest magnitude of the percent-
age difference is only about 5% .

4) An experiment is conducted to verify the accuracy
of the theory and simulation. The results show that the ra-
dial stiffness increases linearly with the increase in
length, increases nonlinearly with the increase in inner ra-
dius and decreases nonlinearly with the increase in outer

radius. In addition, the errors between the theoretical

(1]

[2]

—
[ee]
[

[10]

[11

[

(12]

curve, the simulation curve and the experimental curve
are very small. This further confirms the accuracy of the
previous theory and simulation study.
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