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Abstract: To improve the accuracy and robustness of rolling
bearing fault diagnosis under complex conditions, a novel
method based on multi-view feature fusion is proposed.
Firstly, multi-view features from perspectives of the time
domain, frequency domain and time-frequency domain are
extracted through the Fourier transform, Hilbert transform and
empirical mode decomposition (EMD). Then, the random
forest model (RF) is applied to select features which are highly
correlated with the bearing operating state. Subsequently, the
selected features are fused via the autoencoder ( AE) to
further reduce the redundancy. Finally, the effectiveness of
the fused features is evaluated by the support vector machine
(SVM). The experimental results indicate that the proposed
method based on the multi-view feature fusion can effectively
reflect the difference in the state of the rolling bearing, and
improve the accuracy of fault diagnosis.
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he rolling bearing is one of key parts in a wind tur-

bine drive train. Due to the harsh operating environ-
ment of the wind turbine, rolling bearing failures occur
frequently. According to statistics, 30% of the rotating
machinery failures are caused by rolling bearings'” and a-
bout 80% of the wind turbine gearbox failures are caused
by bearing failure'” . Therefore, bearing fault diagnosis is
essential for efficient and reliable operation of the wind
turbines.

Traditionally, the fault diagnosis of wind turbine roll-
ing bearing is based on the spectrum analysis of vibration
signals™. The key technology of it is to extract the fault
characteristic frequency from noisy signals. Methods of
spectrum analysis include the Fourier transform'', Hilbert
transform along with some joint time-frequency analysis
methods such as empirical mode decomposition (EMD) "'
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and variational mode decomposition (VMD). The tradi-
tional methods only study the bearing vibration signal
from a certain perspective, and the features are manually
extracted depending on much prior knowledge about sig-
nal processing techniques and diagnostic expertise!®,
which cannot meet the requirements of real-time and por-
tability of fault diagnosis in the era of big data.

In order to comprehensively analyze the difference be-
tween faults, it is necessary to examine the vibration sig-
nal of the bearing from multiple perspectives, so as to
grasp the overall state of the bearing. In this paper, both
the spectrum analysis of the vibration signal and the time-
frequency analysis are performed. Then, the features are
extracted from the time domain, frequency domain ( fre-
quency spectrum and envelope spectrum) and time-fre-
quency domain ( EMD). Although multi-view features
are highly complementary, these features tend to be re-
dundant, which is not conducive to fault diagnosis.
Therefore, feature selection and feature fusion before
classification are necessary.

Feature selection is the process of selecting some of the
most effective features of the original features to reduce
the dimension of the feature set, and it is an important
means to improve the performance of the learning algo-
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rithm' . The way to select features is to sort them based

on certain evaluation criteria, and then determine the
number of features selected according to needs. Common-
ly used evaluation criteria are feature missing values, fea-
ture variance, Pearson correlation coefficients, etc. In re-
cent years, many studies have used the random forest

(RF) model for feature selection™™ .

Random forest de-
rives the importance of features based on the performance
of the training data, by calculating the importance of each
feature in each tree, then taking a weighted average to
achieve the final feature importance assessment.

Feature fusion is to reduce feature redundancy after
feature selection. The methods can be divided into linear
fusion and nonlinear fusion.
methods are principal components analysis ( PCA) and
linear discriminant analysis ( LDA). Locally linear em-
bedding (LLE) and autoencoder are typical nonlinear fu-
sion methods. In the case of autoencoder ( AE), com-
pression and decompression of features are implemented

Common linear fusion

. . . [10]
in an unsupervised manner via a neural network' . Fea-
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ture selection and fusion make it easy to train the model
and visualization. The deeper meaning is to transform
raw features into a new and concise representation''" .

The multi-view feature set can make full use of the in-
formation of the original signal to reflect the difference
among states. The extraction of multi-view features and
the reduction of redundancy by feature fusion are two es-
sential components in this model.

In this paper, a new strategy for rolling bearing fault
diagnosis using multi-view features is proposed. The
scheme consists of two parts including feature extraction
and feature fusion. Specifically, features are extracted
from the time domain, frequency domain and time fre-
Then, the random forest model ( RF)
and autoencoder are employed for feature selection and
feature fusion, respectively. Finally, the support vector

feature
feature

quency domain.

Time domain,frequency domain and
time-frequency domain

machine (SVM) " is introduced to evaluate the features.

The main contributions are summarized as follows:

1) The technology of feature extraction from multiple
perspectives is proposed in this work, which takes the ad-
vantages of signal processing in feature extraction.

2) Aiming at the redundancy of multi-view features, a
novel feature fusion strategy based on the random forest
and the autoencoder is developed.

3) The validity and superiority of the proposed method
in practical applications are verified through experimental
analyses.

1 Signal Processing and Feature Extraction

The flow chart of the proposed method is shown in
Fig. 1. The main part of the method includes feature ex-
traction and feature fusion.

Multiple features

(¢

I of rolling bearing
Entropy & | | Feature
fractal extraction
dimension
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i Feature selection and fusion
DD Fusion feature with
Feature Feature  (— ) less redundancy
selection fusion
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Fig.1 The framework of the proposed method

In this section, the method of feature extraction of the 1 N ,
vibration signal from the time domain, frequency domain 4 = «/ N—1 ; (x(n) =p,) (4)
and time frequency domain is introduced.
Square root amplitude
1.1 Time domain features
Ly maT) (5)
The original vibration signal contains the information 5 7 (ﬁ; x(n) )
about the normal vibration component, fault vibration
component and environmental noise. In order to reduce Skewness
dependence on prlor. k.nowledge, 43 statistical features are P 1 XNI x(n) - p, (6)
extracted from the timing waveform. Some features are as $ TN -1~ N
follows: !
Mean Kurtosis
N 4
1 — _ (X(n) —pl) (7)
=N 2 (D h=NT1 o
Maximum amplitude Clearance factor
1 ¢ /i (8)
N PREC) (2) =5
Maximum peak )
1.2 Frequency domain features
1 .
o= ?( max(x(n)) — min(x(n))) (3) The data points in the time domain must first be trans-

ferred to the frequency domain by the Fourier transform

Standard deviation and Hilbert transform, and then the signal can be ana-
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lyzed in the frequency domain. The frequency domain
features include all the basic 43 statistical features, and
other features are constructed for the frequency, shown as
follows:

Average frequency

_ Ly
fi = -2 X0) (9)

fft j=1

Center frequency

f= S UHx01] 3 X0 (10)
Frequency root mean square

=S uoxon Txg
Frequency standard deviation

fo= S ~fel X T xG) ()

1.3 Time frequency domain features

EMD decomposes signals into a finite number of sig-
nals defined as intrinsic mode functions ( IMFs) from
high frequency to low frequency of unequal bandwidth
adaptively. The internal volatility of the signal is reflected
in the extracted IMFs which include real physical infor-
mation of the signal. Except the basic 43 statistical fea-
tures, entropy features and fractal dimension are also ex-
tracted from selected IMFs.

1) Entropy feature. Entropy usually reflects the degree
of chaos in the signal, which is a function that characteri-
zes the uncertainty of the signal. Assuming that the IMF
sequence is X = {x, x,, ..
data point occurring is p, = P(x(i)).

zpi=l

i=1

., x,}, the probability of each

(13)

Then, the information entropy of the IMF signal can be
expressed as

N,
F=-73% plp, (14)
i=1

2) Fractal dimension. Box dimension is the degree of
irregularity and complexity of characterizing fractal sets at
different scales.
structural features of signals. Specific calculation methods
can refer to Ref. [13].

The fractal dimension can describe the

2 Feature Selection and Fusion

2.1 Feature selection

In this step, a random forest is applied to the training

data, then the decision of all trees in the forest is aggre-
gated for all the data based on the most voting for the
classification'""'. The feature importance assessment using
RF is to calculate contributes of each features to each tree
in the random forest, then take the average and finally
compare the contribution between different features'”'.

Metrics of contribution include Gini index (or G for
short) and out-of-bag data (OOB). In the evaluation
method, the calculation of the Gini index is

(15)

where K is the number of categories; P,, represents the
proportion of category k in node m. The importance of
the feature X, at node m is the change in the Gini index
before and after branching at node m:

Vit'=G, -G, -G, (16)

where VE" is the importance of the feature X, at node m;
G, and G, represent the Gini index of two new nodes after
branching, respectively. If the node where feature X, ap-
pears in decision tree i is in set m, then the importance of

X, in the i-th tree is

gini  __ gini
v Y

meM

(17)
Assume that the forest has a total of n trees, then
gini  __ gini
RN

All the obtained importance scores are normalized to
obtain the score of the importance of the feature X,:

(18)

(19)

2.2 Feature fusion

Standardization before data input can effectively im-
prove the convergence speed and training effect, since the
autoencoder is a neural network model. All the feature
vectors were standardized by removing the mean and scal-
ing to unit variance. The standard score of a sample x is
calculated as

X—U
N

(20)

z=

where u is the mean of the training samples; and s is the
standard deviation of the training samples.

The autoencoder consists of an encoder and a decoder.
To learn more abstract features, feature fusion can be per-
formed by operating on the trained encoder. The basic ar-
chitecture of an autoencoder is shown in Fig. 2.

The first layer is the input layer, the middle layer is the
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iy ()

Input layer Hidden layer Output layer
Fig.2 Architecture of an autoencoder

hidden layer and the last layer is the output layer. The au-
toencoder compares the output of the feedforward network
with the input and feeds the loss back into a recursive
structure, which is powerful and easy to implement in an
unsupervised manner'"”’. The autoencoder network output
layer has the following relationship with the input layer:
x,~x,. The objective function is
l -  ~ )
J(W, b) =EZ,‘ (x —x) (21)
where W is the weight of hidden layer nodes; b is the bias
of hidden layer neurons; m is the number of hidden layer
neurons.
The trained encoder can conduct a nonlinear transfor-
mation to reduce the dimensionality of high-dimensional
features by back propagation and gradient descent.

3 Experiments
3.1 Datasets

Bearing vibration data is obtained from Case Western
Reserve University!"”'. The test stand is shown in Fig. 3.

()

Torque transducer/encoder

Induction motor self-aligning coupling
Accelerometer sensor

Drive end bearing
Coupling

Fan end

. Dynamometer
bearing Y

(b)
Schematic diagram of the experiment platform. (a) Test
rig; (b) Schematic

Fig. 3

The test stand consists of a 2-hp motor (left), a torque
transducer/encoder ( center), a dynamometer ( right),
and control electronics (not shown). The test bearings
support the motor shaft. Single point faults were intro-
duced to the test bearings using electro-discharge machi-
ning with fault diameters of 2. 13, 4.26 and 6. 39 mm.
An accelerometer was attached to the motor housing at the
drive end of the motor.

Vibration data was collected at a sampling frequency of
12 kHz and each sample contains 4 000 points. In order
to more clearly demonstrate the gain of the proposed
method for classification accuracy, noise is added to the
bearing vibration signal used, with a SNR of —2. The
details about the bearing datasets are shown in Tab. 1.

Tab.1 Descriptions of bearing datasets

Number of samples  Fault diameter/mm Defect Class label
60 0 Normal 0
30 2.13 Inner race 1
30 2.13 Balls fault 2
30 2.13 Outer race@ 3 3
30 2.13 Outer race@ 6 4
30 2.13 Outer race@ 12 5
30 4.26 Inner race 6
30 4.26 Balls fault 7
30 4.26 Outer race@ 6 8

The dataset contains 300 signal samples covering nine
different conditions, i. e., normal condition, ball fault,
inner race fault, and outer race fault. When the model is
trained, the entire sample set is randomly divided into the
training set and the test set. The training set contains 200
samples, and the test set includes 100 samples.

3.2 Signal transformation and decomposition

The feature extraction for the vibration signal is from
three aspects: time domain, frequency domain and time-
frequency domain. The time domain waveform, frequen-
cy spectrum and envelope spectrum of the signal with the
outer race fault are given in Fig. 4.

The waveforms of the first five IMFs containing the
main feature information are given in Fig. 5. Time-fre-
quency domain features are extracted from the first five
IMF components obtained after EMD decomposition.

3.3 Feature extraction

The
frequency domain features include statistical features and
four frequency related features based on the frequency
spectrum and envelope spectrum, and the time-frequency
domain features include statistical features, three entropy
features, and a box-dimensional feature. The dimensions

The time domain features are statistical features.

of time domain features, frequency domain features and
time-frequency features are 43, 94 and 235, respectively,
as shown in Tab. 2. Therefore, features with a dimension
of 372 are extracted for each sample.
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Fig.4 Analysis of measured vibration signal. (a) Time domain
waveform; (b) Frequency spectrum; (c) Envelope spectrum
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Fig.5 The first five IMFs yielded by EMD

Tab.2 Feature set

Time domain  Frequency domain Time-frequency domain

TN 215 statistic features
86 statistic features

8 frequency features

43 statistic

15 entropy feature
features

5 fractal dimension

43 features 94 features 235 features

A multi-view feature set can comprehensively reveal
the conditions of the bearing from multiple perspectives.
However, among them there are many features that do
not change with fault conditions, which make fault recog-
nition more difficult. Usually, a good classification result
is not guaranteed if all the features are directly fed to the
classifier without feature fusion.

3.4 Feature selection and fusion

When using the random forest model (RF) for feature
selection, the features and labels of the training set are
fed into the model for training. The trained RF model can
give the value of each feature based on its performance on
the decision tree branches. The specific parameters of RF
are shown in Tab. 3.

Tab.3 Parameters of random forest and autoencoder

Fusion model Hyperparameter Optimization results
n_estimators 100
learning_rate 0.1
Random min _leaf 1
forest Loss Deviance
max_depth 3
min _split 2
Number of hidden layers 1
Node per layer 120-30-120
Antoencoder Regularizer . LI(10~%)
Loss Binary_crossentropy
Epoch 250
Batch_size 32

Fig. 6 shows the importance of each feature from four
different feature sets including time domain features (T),
the frequency domain consisting of frequency spectrum
(FFT) and envelope spectrum ( HT), and the time fre-
quency domain from the IMFs (EMD). The histogram of
feature importance is shown in Fig. 6(b) . For the conven-
ience of observation, the first picture has features re-

moved that are less than 0. 000 1 in importance.
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Fig. 6 The importance of the features given by the random for-
est. (a) The importance of each feature; (b) The histogram of feature
1mp0rtance

As can be seen from Fig. 6(a), the features extracted
from the original waveform and frequency spectrum are
generally more important than those from the envelope
spectrum and IMFs. To more clearly reveal the difference
between states, it is necessary to take the important fea-
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tures and discard useless ones based on feature impor-
tance.

It is evident in Fig. 6(b) that only a few features are of
high importance. However, the optimization of the num-
ber of selected features still needs to be executed since a
small number of important features may fail to guarantee
a good reconstruction of fault characteristics. The optimi-
zation of feature selection is shown in Fig. 7.
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=

~
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T

Accuracy

0.70

0.65 1 1 1 1 1 1
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Number of features
Fig.7 Relationship between the number of selected features

and the accuracy of SVM classification

To find the optimal number of the selected features,
the model is evaluated by setting the validation set, where
the training set is further divided into a small training set
and a validation set. The validation size is set to be 0. 33.
It can be found in Fig. 7 that the classification accuracy is
not the best when the 20 most important features are se-
lected. Therefore, in order to improve the accuracy of the
classifier, it is necessary to select some features that are
not very important. In this experiment, the number of se-
lected features is 120.

The random forest ( RF) can eliminate the irrelevant
features which fusion methods cannot remove completely
and the autoencoder can further reduce the redundancy of
the selected features.

The autoencoder model used in this experiment has a
hidden layer and uses L1 regularization to prevent model
overfitting. Specific parameters are shown in Tab. 3.

As an unsupervised machine learning model, the au-
toencoder has two important parameters to optimize, the
number of hidden layer nodes and the number of epochs.
The results optimized by grid search are shown in Fig. 8.

Accuracy:
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Fig.8 Grid research optimization results
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As shown in Fig. 8, there are three combinations that
allow the SVM to obtain good classification results,
marked as points A, B and C. The number of hidden lay-
er nodes is 10, 20, and 30, and the epoch is 450, 250,
and 450, respectively. To maximize the accuracy, point
C is selected. Therefore, the number of hidden layer
nodes and the number of epoches are determined as 30
and 450. The errors of autoencoder on the training set and
the validation set are shown in Fig.9.

- - - Training set
— Validation set

50 100 150 200 250 300 350 400 430
Epoch

Fig.9 Autoencoder errors

3.5 SVM classification results

To prove the superiority of the proposed feature extrac-
tion and fusion method, the SVM classification results of
the proposed method and other methods are listed in Tab. 4.

From the perspective of error generation,
mainly comes from the outer race fault classification. The
differences of these four outer race faults are merely the
angle or depth of the crack. The time domain features
cannot fully reveal the difference between the faults. Af-
ter introducing the features of the frequency domain and
the time-frequency domain, the classification error is re-
duced.

According to the results in Tab. 4, compared with the

the error

SVM performance of the original features of the time do-
main and all the original features, the improvement of the
classification accuracy is not obvious. The increase in the
features in the frequency domain and the time-frequency
domain will introduce a large number of irrelevant fea-
tures, which cause the difference between faults to be ob-
scured. Therefore, when random forest is used to remove
a large number of less important features, the accuracy of
the classifier has been greatly improved. The accuracy
rate is increased from 89% to 97% . Further-more, when
using the autoencoder to reduce the redundancy of the fea-
ture set, the classification accuracy is improved by 2%
and achieves 99% .

To further reveal the superiority of feature dimension
reduction using the RF and autoencoder, comparisons are
made between three different feature fusion methods, in-
cluding PCA, kernel PCA and locally linear embedding
(LLE) with the proposed methods. The results are shown
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Tab.4 SVM classification accuracy of different feature sets
Normal Balls fault Inner-race fault Outer-race fault Average
Feature set N
Fault 0 Fault 2 Fault 7 Fault 1 Fault 6 Fault 3 Fault 4 Fault 5 Fault 8 accuracy/ %
The original features
. . 43 89.47 100 100 78.57 84.62 60. 00 100 100 58.33 87.02
of time domain
All the original
372 100 100 100 81.25 100 42.86 100 80.00 52.94 89.10
features
RF 120 100 100 100 100 100 85.71 100 80.00 81.82 96.71
PCA 40 100 100 76.92 61.90 100 100 100 50.00 77.78 87.59
KPCA 40 17.95 100 100 65.00 100 100 100 23.08 90.00 91.47
LLE 10 100 100 85.50 100 100 100 100 75.00 88.59 96. 13
RF + AE 40 100 100 100 100 100 100 100 100 90. 00 99.10
in Tab. 4, where N represents the dimension of the fused
References

features.

KPCA selects a better performing polynomial kernel
As for the PCA
and KPCA, parameter n_components is set to be 40.
Limited by the algorithm, LLE integrates the original fea-
tures into 10 dimensions and n _neighbors is set to be
100.

It can be observed that the features of PCA fusion are

function instead of the Gaussian kernel.

the worst in SVM classification, and they even fail to
achieve the accuracy before fusion. In contrast, the KP-
CA shows the difference clearly and the accuracy increa-
ses by 2.3% compared to that of the original features.
LLE demonstrates a great improvement in accuracy,
mainly due to its good nonlinear mapping ability. Among
these models, the proposed RF + AE model has the high-
est accuracy, which further illustrates the robustness of
the methods for extracting effective information and re-
ducing feature redundancy.

4 Conclusions

1) Multi-view features can fully grasp the fault state of
the bearing. After feature selection and fusion, features
from multiple views can clearly reveal the state difference
between normal and fault conditions. Experiments show
that the fault feature set can be constructed well when the
features of the vibration signals are extracted from the
time domain, frequency domain and the time-frequency
domain.

2) Combined with the feature selection and fusion
method of the random forest and autoencoder in this pa-
per, the accuracy of bearing fault classification can be ef-
fectively improved. The classification accuracy reaches
99.10% , which exceeds the accuracy of the feature set
from the single perspective and outperforms other feature
fusion methods.

3) In future studies, more features will be added to
achieve better classification results and the performance of
the fused features can be enhanced by using a deeper au-
toencoder. In addition, the proposed method can be ap-
plied to the fault diagnosis of gearboxes and life predic-
tion of rotating machinery.
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