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Abstract: In order to enhance the image contrast and quality,
inspired by the interesting observation that an increase in noise
intensity tends to narrow the dynamic range of the local
standard deviation (LSD) of an image, a tree-structured group
sparse optimization model in the wavelet domain is proposed
for image denoising. The compressed dynamic range of LSD
caused by noise leads to a contrast reduction in the image, as
well as the degradation of image quality. To equalize the LSD
distribution, sparsity on the LSD matrix is enforced by
employing a mixed norm as a regularizer in the image
denoising model. This mixed norm introduces a coupling
between wavelet coefficients and provides a tree-structured
group scheme. The alternating direction method of multipliers
( ADMM ) and the fast

algorithm ( FISTA) are applied to solve the group sparse

iterative shrinkage-thresholding

model based on different cases. Several experiments are
conducted to verify the effectiveness of the proposed model.
The experimental results indicate that the proposed group
sparse model can efficiently equalize the LSD distribution and
therefore can improve the image contrast and quality.
Key words: local standard deviation; group sparse; image
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mage restoration is a major subtopic in image science

and has been extensively studied over the past dec-
ades. The purpose of image restoration is to reconstruct a
high-quality image from its degraded observation. It is
typically treated as an ill-posed linear inverse problem that
can be generally formulated as

b=Hx +n (1)

where b is the degraded observation; x is the desired true
image; and n is Gaussian white noise with a zero mean.
Note that H is a matrix representing a linear degradation
operator.
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To address the ill-posed nature of the image restoration
problem, image prior knowledge is usually employed to
regularize the solution of the following minimization
problem:

min%” Hx -b | +AD(x) (2)

where the first term is the data fidelity term and the sec-
ond term @ (x) is known as the regularization term,
which regularizes the solution by enforcing certain prior
constraints. In addition, A >0 is the regularization pa-
rameter, which controls the balance between the fidelity
and regularization terms.

How to select a good regularization term is an active
area of research. Traditional regularization methods in-
U1 and total variation (TV)
The total variation measure has been

clude Tikhonov regularization
regularization'” .
shown to be suitable for preserving sharp edges. Although
TV regularization has been proven to be very useful in
many applications, it is flawed in that it removes textures
and creates staircase artifacts. Texture preserving methods
such as sparse representations, non-local methods"™™'

the deep convolutional neural network ( CNN)-based

and

method'”” have been introduced as image restoration ap-
proaches. Sparse regularization is a recent and successful
method to solve image restoration problems*™ . Most
sparse-based methods represent signals from a given dic-
tionary and then process the coefficients of expansion in-
dividually. However, in addition to sparsity, signals may
exhibit a “group sparsity” structure. Group sparsity is u-
sually modeled by introducing a coupling between coeffi-

U2 5 the framework of

cients in the same structure set
variational formulation, this type of coupling may be in-
troduced by a suitable regularization term'"”' . In this stud-
y, we introduce a mixed norm regularization term, which
enforces the sparsity on the LSD matrix of the restored
image.

LSD is an important measure for the structural infor-
mation of the image''*™'.
ments, we observed that the dynamic range of LSD de-
creases with an increase in noise intensity. Enforcing the
sparsity of LSD matrix can efficiently equalize the LSD
distribution. In this study, we examine the wavelet char-

acterization of the LSD matrix of an image, and then

Through numerical experi-

propose a group sparse optimization model in the wavelet
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domain.

We describe the wavelet characterization of the LSD
matrix, and then introduce the tree-structured group
sparse model in the wavelet domain. Secondly, we give
the solution of the proposed model based on different ca-
ses through the ADMM and FISTA techniques.
some numerical experiments are presented to verify the
potential of the proposed model.

Finally,

1 Wavelet Characterization of LSD Matrix

In this study, an image is interpreted as a function de-
fined on the unit square I/ =[0, 1] . Let Q be the collec-
tion of dyadic cubes contained in /.

o-{o.-0.. 25 <[5 5 o

where j=0,1,...;k=(k,, k) eI, ={0,1,...,2 - 1}°.

Let ¢ and ¢ be a univariate wavelet constructed out of
V,, which is an r-regular multiresolution approximation of
L*(R*) with r=1 (for the exact conditions, see Ref.
[16]). Two dimensional wavelets can be constructed by
a tensor product

) - (2'x, - k)

where je Z, k= (k, ,k,) e Z’,e e E=(&,,8,)°/1{0,0}
with g, =0 or 1,4 =¢, and ' =¢.

One can easily construct periodic wavelets on L’ (1)
that can be used to decompose periodic function f on
L*(I).

For a compactly supported wavelet ¢;,, we define its
periodic version, which is still denoted here by

= le]k(x—l)

leZ

lp;(xl X))t = lpje,k(xl s Xy) :Zjlﬁgl(zjxl

lp;(xl 7x2) .

For the wavelet decomposition of functions in L’(RY),
we do not need to translate all of these periodic wavelets.
On level j, we need only the translates k e I";. Because
the translates of the scaling function form a partition of u-
nity, we can obtain ¢ =y,, which is the characteristic
function of 1. The wavelet expansion for a function fe
L’(R?) is

f= z<f¢lk>€0rl(+25;2,£<f¢/k>dfjk (4)
FEr Ty i
and the L’ norm of f can be characterized by wavelet coef-
ficients ;

A Y S S a1

Kel, j=J kel, sk
(5)

In this subsection, we derive the wavelet characteriza-

1Az =

tion of the LSD matrix of f on dyadic region Q, . The
LSD matrix is defined as

1 ) 172
P =——+ - 6
0 = (gl o =m0
where J=0,1,--+, and K= (K, ,K,) e I, = {0,1,---,2’
—1}7 are the indices for characterizing the dyadic cube

= ‘Q ‘jf(x)dxls

the mean of f on the dyadic region Q, .; \ 0« | denotes
the volume of Q, , and | Q, | =27.

The LSD matrix characterizes the local oscillating prop-
erty of the image. Different components of an image may
have different LSD. In a homogenous region, the LSD is
rather small,

Q, ¢ defined in Eq. (3); m,

while in an edge and texture region, the
LSD becomes large. Generally, the LSD of noise is
much smaller than that of texture. Thus, LSD is often
used to separate homogeneous and textured regions in nat-
ural image denoising.

In Ref. [ 17
ization of the LSD matrix, which can be described by the
following theorem.

Theorem 1 The LSD matrix of f on dyadic region
O, x can be characterized by wavelet coefficients as fol-

], we derive the discrete wavelet character-

lows:

21/2_

2"y 2 £ 1)

P, (f) =
cek 0,0

2’y ¥ ¥ \f,,m)‘“ (7)

eek j=J ke A(K)

Proof Let C(Q, ) denote the mean value of f(x) on
0, «,then

C(0,4) = 5 fxrdx =

2[ f()p(2'x = K)dx =2"(f,0, ) (8)

(C(Qyx) ¢sx) = LC(Q/,K) - 2'0(2'x —k)dx =
C( QJ,K) <27 ‘ Q/,K ‘ = 2J<f’§~01,1<> N
<f5;DJvK> (9)

We write f(x) as f(x) =f, (x) +f,(x) + C(Q,x),

where

C
A = fI) 7RG )
otherwise
By Eq. (9), we can obtain
<fl’;bj.l<>:<f_C(QJ,K)a§:)J,K> =0 (11>

Since f,(x) =0 if xe Q, ,, and the support of ¢ , is
contained in Q, ,, we have (f,,§; ) =0. Thus,

- C( QJ,K) v‘]fj,K> = <fl 712’5,1(>
(12)

<f1 v;ﬁj,K> = <f_fz

Then,
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To Tk 1@ - e, Pas =2 15 )1 =

N
22!( ; ‘ <f15§~01,1<> ‘2 + 2’5 Z’ka ‘<f1’lzlfk> ‘2) =
Jm%&ﬁ

S gl =YY Y
(13)

22!

ek Q,,C0,« ek j=J keA(k

Then, we can obtain

PJ,K(f) = (221 2 z

ecE j=J keA(k

o 1)
)

2 Group Sparse Model in The Wavelet Domain

Let fe R"™" be an image. We assume that f has the
multi-scale wavelet expansion as indicated in Eq. (4).
Then, the support of %Jf;ké ;... Partitions the image into
different scales of dyadic regions. At scale J, I = U

Kerl’
0, «, where Q, , =sup ¢ .. As indicated in Eq. (4), f
is decomposed into low-frequency component and high-
frequency component, which are denoted by f, and f,,
respectively.

For fixed scale J, let G, = { (j,k,&):0,, S Q, «,J
=J,kCT;,seE} denote the index set. Then, a, =
[{fo) :(jk,e) e G| is a group collecting all the
descendant wavelet coefficients of af , = (f, 45 ,) *
lag | ¢ forms a non-overlapping partition of all
high-frequency coefficients. Note that the wavelet co-

efficients in each group { e, | have a parent-child

Kerl,
relationship with the tree structure ( see Fig. 1 ). With
this grouping strategy, we can rewrite the LSD matrix

P, . as follows:

P, (f)=2"| a

) Kel, (14)

| b s
J= =0.0.0
Q1 0.1 Ql‘l‘l ‘Z’f;.
J=1
QI,U,U QI,I,U
=203 QZ.I} =223 QZ}} -
B 2 =202 QZ_IJ_ QZZJ QZ 32 ‘//; k
J=
QZ.U.I Qll,l Ql,ll QZ,U
=200]=2,10[=22]1|=230)]

Fig.1 Tree-structured wavelet coefficients

In this study, we introduce the prior that the LSD ma-
trix P, . is sparse. This can be obtained by minimizing

the [/, norm of the LSD matrix. In other words, we use
the following weighted [, |, norm as a regularizer:

lal ., =22 o lagl, (15)
Kel,

where w, are weights associated with each group. Proper-
ly choosing weights may result in improved recovery per-
formance. In this study, we choose w, as

PJ.K
_m,?xP,’K (16)

wy =1

The mixed norm in Eq. (15) explicitly introduces the

coupling between wavelet coefficients instead of the usual

independence assumption of [, norm sparse optimization

problems. Thus, we consider the following regression
problem to recover the group sparse solution:

min z wy || ag
* Kel,

1
2 +ﬁ||HWTa—bH 1: (17)

where b, is the high-frequency component of observed
image b, and W is the wavelet transform. e, controls the
group sparsity level adaptively. While the image regions
are dominated by texture and edges, P, , is relatively large
and @, is relatively small. Then, the wavelet coefficients
group a; is less penalized such that the edges and texture
are well preserved during denoising. Conversely, in hom-
ogeneous image regions, P, . is relatively small and wy is
relatively large. Then, a; has more intense shrinkage to
enhance the denoising process.

Because most of the noise is concentrated in the high-
frequency component, we must only recover the high-fre-
quency component of the image. If @” is the solution of
model (17), then the final restored image isb* = W'a*
+b,, where b, is the low-frequency component of the
observed image.

Our intent is not to seek a state-of-the-art denoising
method, but rather to investigate the sparsity of LSD as
signal priors and compare it to the TV-based, frame-
based and non-local mean methods.

3  Solution of the Proposed Model

We apply the ADMM to solve model (17) when H is
identity and W" is a linear operator ( for the ADMM algo-
rithm, see Ref. [ 18 ]). To accomplish this, we introduce
an auxiliary variable and transform model (17) into an
equivalent form

Wb, 10 ()

min 3" w, | Z,

Kel,

s.t. Z=a (19)

The augmented Lagrangian problem takes the form:
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B

IynﬁakHZQHz—MVZ—a)+**HZ all;+
¥ Kel,

B Wa -

ull (20)
where y >0 is a multiplier and 3, is a penalty parameter.
We then apply the ADMM to minimize the Lagrangian
problem alternately with respect to Z and a.
The « subproblem is given by
minpa + 5 | Z - |2+ | Wamb, )13 (21)
Note that(21) is a convex quadratic problem. There-

fore, its solution is

@ = (BZ-p +B,Why) (22)

BI +ﬁ2
For the Z subproblem, it is reduced to minimize (20)
with respect to Z:

B

minl 2, -w'Z+5 [ Z-ali}  (23)

By simple manipulation, (23) is equivalent to the fol-
lowing problem :

: - BI 1 2
min 3 oo 1261+ 1 2o~ a0 = g 1
(24)
This can be solved by group-wise soft shrinkage :
Yk 2
Zszmax{ | 7« ||2——0}7 K=1,2,---,2
Fyells
(25)
1
where y, =a; + F(M)GK.
1
The multiplier g is updated by
pep+7(Z -a) (26)

where 7 is the step length. In summary, we obtain the al-
gorithm for solving model (17) by ADMM as shown in
the following ;

Algorithm 1
identity

Input: b,,Z°, u’, B, .B.s 7

Iteration;For k =1,2,---, until a stopping criterion is

ADMM for model (17) when H is

reached ,
=3 +/3 (B2 -p' +B,Why)
1 2
k-1
A GShrink(aek +H ,2)
B B
Mk :Mk—l +’T(Zk _ak)
Output; o

Note that regularizer | - ||, ~is non-smooth but con-
vex, whereas the fidelity term is smooth and convex.
Thus, in the following we apply the iterative shrinkage-
thresholding algorithm (ISTA) to solve the general case of

model (17). The general step of ISTA is described as

:Proxhg(aek—tkWHT(HWTﬂfk—bH)) (27)

) =A
tional proposed in (15), and Prox is the proximal op-
erator. The proximal algorithm is an efficient tool for
non-smooth minimization problems. In proximal algo-
rithms, the base operation is to evaluate the proximal

(£ 9%

where g ( is the mixed norm func-

operator of a function, which involves solving a small
convex optimization problem. The proximal operator is
defined by
2
H

operation in (27) can be ex-

Prox,(x) = arg muin{f(x) + % | x—u
Therefore, the Prox,,
pressed as

Prox, (x) =arg min{g(x) +% | x—u| f} (28)
u k

The Prox operation can be easily solved by group-wise
shrinkage, that is

Prox,  (x) = GShink (x,At,w) (29)

Although ISTA has the advantage of simplicity, it has
also been recognized to be a slow method. The fast itera-
tive shrinkage thresholding algorithm (FISTA) is the ac-
celerated version of ISTA'’
computational simplicity, but also exhibits a significantly
faster convergence rate than standard gradient-based meth-
ods. Algorithm 2 summarizes the FISTA for solving mod-
el (17), which is described as follows;

Algorithm 2 FISTA for model (17)

Input: b, a =0,r, =1 vy =a’ L.

Iteration; For k=1,2,---
reached,

'. It not only preserves the

, until a stopping criterion is

- %WHT (HW'y* -b,) )

1+ /1 +41

Lo = B

k k
a =Prox,, ( y

I _l(ak _ak—l)

k+1
Output ; a*
4 Experiments

In this section, we present various experiments to show
the performance of the proposed method for image de-
noising. In all the experiments, we chose the periodic

“sym4” wavelet and scale J =6. First, we describe the
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group sparse approximation performance of the proposed
model based on a noiseless case, as shown in Figs. 2 and
3. Fig. 2 (a) shows the original “Baboon” image and
Fig.2(b) shows the plot of the vectorization of its LSD
matrix. The vectorization is obtained by stacking the col-
umns of the LSD matrix on top of one another. From the
plot of vectorized LSD matrix, we can easily observe its
sparsity.

Figs.3 (a) to (d) show the group sparse approxima-
tion with parameters 8, = 0. 001, 0. 002, 0. 004 and

0.007, respectively. Figs.3(e) to (h) show the corre- 5000‘ 50 100 150 200 250 300 350 400 450 500
sponding vectorized LSD matrix. There are a total of (a)
1 024 groups of wavelet coefficients, and the percentages 60r
of non-zero groups of the approximation image with dif- 55 0
ferent parameters are listed in Tab. 1. 8
Fig. 4 shows the evolution of the LSD matrix along 5 40 ‘
with the noise level. Figs.4(a) to (c) show the noisy E 30
Baboon images degraded by three levels of Gaussian noise § 20 _‘\ \ \ ‘ ‘ ' \ |
with a mean of zero and standard deviations of 10, 20, —§ ol H 1
and 30, respectively. Figs.4(d) to (f) show the corre- H
sponding vectorized LSD matrix. We can see that the dy- 0= 100300 500 760 900 1100
namic range of the LSD matrix becomes increasingly nar- Index of dyadic cube
row with each increase in the standard deviation. The dy- (b)
namic range of the LSD matrix is defined as Fig.2  Test image Baboon and the corresponding LSD matrix.

(a) Original 512 x 512 Baboon image; (b) Vectorized LSD matrix of (a)

Ope

50F 50

100 100f

150 150

200 200

250 250 ' L i | :
0 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

(a) (b) (¢) (d)

=] =] [=] =]

8 8 8 8

5 5 5350 5

o o o 0 o

= o= = =

5 5 530l 5 »

= = = = \H

g §20H S20¢ g u \f l

X tE 7'l | 3 °? ‘ .

8 0500 300 500 700 9007100 3 ©700 300 500 700 900Tio0 3 °7100 300 300 700 90071100 3 © 100 300 500 700 900 1100

Index of dyadic cube Index of dyadic cube Index of dyadic cube Index of dyadic cube
(e) () (2) (h)
Fig.3  Group sparse approximation result and the corresponding vectorized LSD matrix on noiseless image Baboon (8, =0.2).
(a) B, =0.001; (b) B, =0.002; (c) B, =0.004; (d) B, =0.007; (e) Vectorized LSD matrix of (a); (f) Vectorized LSD matrix of (b);
(g) Vectorized LSD matrix of (¢); (h) Vectorized LSD matrix of (d)

Tab.1 Group sparse approximation performance with different R= [mKinP 1K ,ml?xP ), «J
parameters
Parameter 8,  Number of non-zero groups  Percentage/% We apply the ADMM algorithm to equalize the LSD
0.001 884 86.33 matrix of the noisy Baboon image (o =15). In Fig. 5
0.002 587 57.32 and Tab. 2, we present the experimental results to show
0.004 348 33.98 how parameters 8, and 8, affect the group sparsity and

0.007 184 17.97 the range of the LSD matrix. We can see that parameter
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0 100 200 300 400 500 0
(a) (b)
g g
£60 560
550 ‘ 550‘
S40H }“l ’ ’\\‘ M H ﬁ A |l 1:,40““‘
530 I} { \ﬁ “ W‘ 30‘| )H il i 530‘“““
gzoi‘m“ ”M Il “H‘I 200! i Ihm“ §20
=10 ' =10
07700 300 500 700 900 1100 100 300 500 700 900 1100 R
Index of dyadic cube Index of dyadic cube
(d) (e)

Fig. 4

i
100 200 300 400 500

(¢)

A

100 300 500 700 900 1100
Index of dyadic cube

(f)

Evolution of the LSD matrix along with the noise level. (a) Noisy image with noise std of 10; (b) Noisy image with noise std of 20;

(c¢) Noisy images with noise std of 30; (d) Vectorized LSD matrix of (a); (e) Vectorized LSD matrix of (b); (f) Vectorized LSD matrix of (c)

B3, controls the group sparsity of the solution and parame-
ter B, controls the range of the LSD matrix. The group

Tab.2 Impact of parameters 8, and 8, on p and R

The setting of parameters

sparsity can be measured by the group sparsity rate p, B, and B, P R
which is the percentage of the non-zero groups. B, =0.002 56,45 [0.57.05]
In Figs. 6 to 8 and Tab. 3, the denoising performance 0.03 B, =0.003 22.56 [0,56.47]
of Algorithm 1 is compared with that of the wavelet Bu =0. B, =0.005 0 [2.53,56.59]
shrinkage model, TV model, balanced frame-based mod- B, =0.007 0 [5.58,56.69]
el , and non-local mean model”’. We can see that the B =0.1 0 [2.84,56.31]
proposed model outperforms the wavelet shrinkage model B, =0.005 B =0.5 0 [2.65,48.83]
and frame-based model, and achieves a competitive per- Bi=1.0 0 [1.92,35.62]
. = 0 1.09,27.93
formance as compared with the TV model and non-local Bi=15 [ !
mean model.
: =1 (=] (=]
] ] =]
260 £60 £60 £60
>50 350 %50 %50
'U o o
% M "Iu B0 h Wl B0 10
E30! ‘ ‘ J & 0 ‘ &30 15«30
§20 I \" M 5 O " u l §20l it H M j | w H“ 'l ;;; ) HM “ “M l\ \
510 u‘ ’\l H” g lh‘ l‘ '\MIH ‘* 510 w i § ( ‘.m
5 100 300 500 700 900 1 100 S 100 300 500 700 900 1 100 S L 100 300 500 700 900 1 100 3 100 300 500 700 900 1 100
Index of dyadic cube Index of dyadic cube Index of dyadic cube Index of dyadic cube
(a) (b) (¢) (d)
=1 =] =] =]
2 = = =
860 g _§60 _56
550 5 50
=l o
40 i I ( | l "'W ﬁ4o Ni
&30 § ' m ta‘30 i ' “ | 2%‘30 l ‘ ,“
820 820f h } §20 \|| |}‘ ““ gzo‘ I [ h 1
5 oL IRLAI 5 il hﬂ’ 3 1 Ll t whl\ glg ""
S Y100 300 500 700 900 1100 S 00 300 500 700 900 1 100 S 100 300 500 700 900 1100 100 300 500 700 900 1100
Index of dyadic cube Index of dyadic cube Index of dyadic cube Index of dyadic cube
(e) () (2) (h)
Fig.5 Performance of parameters 3, and B, for controlling p and R. (a) g, =0.1,8, =0.005; (b) 8, =0.5,8, =0.005; (c) B, = 1,

=0.005; (d) B, =1.5,8, =0.005;(e) B, =0.03,8, =0.002; (f) B, =0.03,8, =0.003; (g) B, =0.03,8, =

0.007

0.005; (h) 8, =0.03,8, =
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Tab.3 Comparisons of PSNR performance with different models

Model Hill(c =10) House(o =10) Parrot(o =15) Leopard(o =15) Baboon(o =15) Barbara(o =20) Man(o =20)
Soft shrinkage 26.62 26.45 23.64 17.93 21.18 23.12 24.98
Frame 28.09 30.40 25.87 23.74 22.05 24.31 26.74
TV 29.93 31.73 28.61 25.78 26.03 26.32 29.14
Nonlocal mean 30.12 32.41 29.19 25.40 26.77 30.36 29.16
Proposed model 30.75 32.34 29.05 26.36 26.82 26. 86 28.90

(a) (b)

00 400 500
(e) (f)

Fig. 6

100 200 300 400 500
(¢)

Ahe (7 \

100 200 300 400 500 0 100 200 300 400 500
(g) (h)

Comparison of denoising results by different models on the Baboon image ( noise standard deviation ¢ =15). (a) Low fre-

quency component b; by wavelet decomposition; (b) High frequency component by by wavelet decomposition; (c) Restored high frequency by Al-

gorithm 1; (d) Restored image by soft shrinkage model; (e) Restored image by balanced frame-based model; (f) Restored image by TV model;
(g) Restored image by non-local mean model; (h) Restored image by Algorithm 1

0 50 100 150200250 >
(a) (b)

3
250

.

3
250 250

0" 50 100 150 200 250

0 50 100 150200250
(f) (g)

Comparison of denoising results by different models on the Leopard image ( noise standard deviation o =15). (a) Original
image; (b) Noisy version; (c¢) Low frequency b, by wavelet decomposition; (d) High frequency by by wavelet decomposition; (e) Restored high

250

Fig.7

0 50 100 150 200250
(h)

(d) (e)

25057750 100 150 200 250 230050 100 150 200 250

(1) ()

frequency by Algorithm 1; (f) Restored image by soft shrinkage model; (g) Restored image by balanced frame-based model; (h) Restored image
by TV model; (i) Restored image by non-local mean model; (j) Restored image by Algorithm 1

Fig. 9 shows the results of Algorithm 2 on the woman
image. The test image is contaminated by salt and pepper
noise with noise intensity d =10% . After wavelet decom-
position, most of the noises are concentrated in the high
frequency component, which can be seen in Fig. 9(c).
Fig.9(d) shows the restored high-frequency component
by the proposed model. One can see that most of the noi-

ses are removed and the textures are well preserved.
Figs.9(e) to (g) compare the restored image by our
method with that by the balanced frame-based method and
non-local mean method. Particularly in the tagged re-
gion, we can see that the proposed method preserves
more textures and achieves a better subjective visual
effect.
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5000 100 200 300 400 500 i

0100200 300 400 500 >0

100 200 300 400 500 0

Fig. 8

100 200 300 400 500 >0
() (g) (h)

Comparison of denoising results by different models on the Hill image (noise standard deviation ¢ = 10). (a) Original im-

0
100F
200
300
400

3000100 200 300 400 500

T00 200 300 400 500 > 0100 200 300 400 500
(i) (J)

age; (b) Noisy version; (c) Low frequency component b, by wavelet decomposition; (d) High frequency component by by wavelet decomposi-

tion; (e) Restored high frequency component by Algorithm 1; (f) Restored image by soft shrinkage model; (g) Restored image by balanced frame
based model; (h) Restored image by TV model; (i) Restored image by non-local mean model; (j) Restored image by Algorithm 1

0
50

150Las %
W@

i %
M "

50 100 150 200 250
(b)

150

{ N 200
50 100 150 200 250 250550

(e)
Salt and pepper noise removal by Algorithm 2. (a) Original image (256 x256) ; (b) Image contaminated by salt and pepper noise
(noise intensity d =10% ) ; (c) High-frequency component of (b); (d) Restored high-frequency component; (e) Restored image by balanced
frame-based model; (f) Restored image by the non-local mean model; (g) Restored image by Algorithm 2

Fig.9

5 Conclusions

1) Based on the wavelet characterization of the LSD,
we find that the /, norm of the LSD matrix is equivalent
to a [,, mixed norm of the wavelet coefficients. This
mixed norm introduces a coupling between wavelet coeffi-
cients and determines a variable group scheme.

2) We find that enforcing the sparsity of the LSD can
efficiently equalize the LSD distribution. Thus, we pro-
pose a novel group sparse optimization model in the
wavelet domain for image denoising. Encoding the group
information in addition to sparsity leads to better signal
feature selection.

3) The group sparse optimization problem is more dif-
ficult to solve than the conventional /, norm regularized
problem. We applied the ADMM and FISTA to solve

100 150 200 2

0 50 100 150 200 250 ) 50

100 150 200 250
(g)

2500 5 :

the group sparse model efficiently based on different ca-
ses.

4) Several experiments reveal that the proposed group
sparse model outperforms traditional wavelet-based mod-
el and frame-based model, and has competitive perform-
ance with TV and non-local mean image restoration
models.
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