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Abstract: In order to improve the incipient fault sensitivity and
stability of degradation
performance degradation evaluation process,

index in the rolling bearing

an embedding
selection-based neighborhood preserving embedding (ESNPE)
method is proposed. Firstly, the acquired vibration signals are
decomposed by variational mode decomposition (VMD), and
the singular value and relative energy of each intrinsic mode
function (IMF) are extracted to form a high-dimensional
feature set. Then, the NPE manifold learning method is used
to extract the embedded features in the feature space.
Considering the problem that useful embedding information is
easily suppressed in NPE, an embedding selection strategy is
built based on the Spearman correlation coefficient. The
effectiveness of embeddings is measured by the coefficient
absolute value, and useful embeddings are preserved in the
early stage of bearing degradation by using the first-order
Finally, the degradation
established using the support vector data description( SVDD)
model and bearing performance degradation evaluation is
achieved. The proposed method was tested with the whole life
experiment data of a rolling bearing,
compared with the feature extraction methods of traditional
principal component analysis (PCA) and NPE. The results

difference method. index is

and the result was

show that the proposed method is superior in improving the
incipient fault sensitivity and stability of the degradation
index.
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olling bearings are the core components of rotating
Rmachinery. According to statistics, 30% of rotating
machinery faults are related to rolling bearings'". There-
fore, the evaluation of rolling bearing performance degra-
dation is of great significance. Performance degradation
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evaluation attempts to extract features from acquired data
information to identify and quantify history and ongoing
degradation processes' . Since the degradation process of
a rolling bearing is relatively slow, detecting the incipient
fault effectively and describing the health status accurately
are the core concerns of rolling bearing intelligent mainte-
nance.

In recent years, much research has focused on the eval-
uvation of rolling bearing performance degradation.
Boskoski et al.' extracted the Jensen-Renyi entropy
based on the wavelet packet transform coefficients to
characterize the degradation performance of the bearing.
Rai et al. "' used the ensemble empirical mode decompo-
sition(EEMD) to extract the singular values and energy
instantaneous entropy of each intrinsic mode function
(IMF) as the fault characteristics. Jia et al. ™ used the
diffusion map (DM) to reduce the original features di-
mension nonlinearly and used it for the fault detection and
performance degradation evaluation of the device. Wang
et al. ' used locally linear embedding (LLE) dimension
reduction and fuzzy C-means( FCM) to complete the deg-
radation assessment, and the results show that LLE has
strong nonlinear dimensionality reduction capability.
However, the DM and LLE do not provide an explicit
mapping matrix from high-dimensional space to low-di-
mensional embedded space,
needs to recalculate the training samples when the new
samples are processed, thus they are not suitable for on-
line evaluation. Widodo et al. "' used the PCA method to
reduce the original bearing characteristics. Lu et al.™
used EMD decomposition to extract IMFs energy as the
feature vector, and reduced the dimension using PCA.
Liao et al. ' extracted the wavelet packet decomposition

and dimension reduction

(WPD) node energy and performed the PCA transforma-
tion to extract the principal component fault characteris-
tics. However, the PCA method only captures the global
structure of the dataset and selects the first few principal
components with larger variance as the fault features, and
local structure information are ignored.

Although effective signal processing techniques like
EMD, EEMD etc., are commonly used to denoise and
retain impulsive features from the bearing signals, they
suffer from the issues of false IMFs, mode-mixing occur-
rence and end effects, etc. VMD is a signal decomposi-
tion method that decomposes the signal into different
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IMFs in the variational framework'”', which can suppress
mode-mixing and end effects more effectively compared
to traditional EMD and EEMD methods. As an effective
signal decomposition tool, VMD has been successfully
used in fault diagnosis in recent years'''"*'. Therefore, in
this paper, VMD has been utilized for fault feature ex-
traction from the raw bearing signal for performance deg-
radation evaluation.

Neighborhood preserving embedding (NPE) is a linear
approximation of the LLE nonlinear dimension reduction
algorithm'”'. NPE reveals the local structure information
of the observed dataset and finds more meaningful infor-
mation than PCA. Compared to nonlinear dimension re-
duction methods, such as DM, LLE and Isomap, NPE
provides a specific embedding matrix for new sample di-
mension reduction, and thus it is more suitable for online
process monitoring'“"*'. However, the problem of NPE
that useful embedding information is easily suppressed by
irrelevant embedding information still persists, which will
lead to the loss of fault sensitive information in the bear-
ing performance degradation evaluation process.

To overcome the problems mentioned above in this pa-
per, VMD is used to decompose the vibration signal, and
the features such as singular values and relative energies
of the IMFs are extracted to form the feature set. Then, a
novel embedding selection-based NPE ( ESNPE) method
is proposed to extract useful embedding features for the
bearing degradation index performance improvement.
Firstly, the NPE method is used to extract the embedding
matrix of the observed normal dataset. Secondly, given
that fault has no definite projection for a certain embed-
ding, the Spearman correlation coefficient is employed in
the ESNPE method to calculate the trend value and evalu-
ate the effectiveness of each embedding. Then, useful
embeddings are preserved and irrelevant embeddings are
abandoned through the first-order difference method in the
early degradation stage of bearing degradation. Finally,
the SVDD model is used to construct the degradation in-
dex of the rolling bearing performance. The analysis of
the rolling bearing experimental data verifies that the pro-
posed method has superiority in improving the incipient
fault sensitivity and stability of the degradation index.

1 Feature Extraction

1.1 VMD theory

In contrast to the traditional recursive decomposition
method, VMD decomposes the signal in the variational
framework. Through constructing the constrained varia-
tional problem, the center frequency and bandwidth of
each IMF are continuously updated during the search for
the optimal solution. The corresponding constrained vari-
ational model is'"
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where f is the time domain signal; u, and w, are the mod-
el function and the center frequency of the k-th IMF, re-
spectively; K represents the number of IMFs; 9, repre-
sents the partial derivative of time #; ¢, is a unit pulse
function; * denotes a convolution calculation.

To solve the constraint variation problem, the Lagrang-
ian multiplier A(#) and the penalty term « are introduced,
and the augmented Lagrangian function is obtained as

2
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The Lagrangian function is solved by the variable alterna-
ting iterative optimization method'"", and finally the
mode functions u, and frequency band center w, of the
corresponding IMF are obtained.

1.2 Feature extraction

In this section, VMD is used for fault feature extraction
due to its special advantages. Suppose that a signal f with
N points is decomposed by VMD and modal functions u,
(k=1,2,...,K) are obtained, the relative energy of each
IMF can be expressed as

e = — (3)

k=1
N

2
where p, = ) x;; denotes the energy of u,, u, =[x, x,,,
1

=
ceo Xyl
According to the matrix theory, the singular value is an
intrinsic feature of a matrix and is unique''”. Each modal
function u, performs a Hilbert envelope analysis, and ma-
trix S,y is constructed with each envelope signal ar-
ranged in a row-wise manner. Matrix S, , performs sin-
gular value decomposition to obtain K singular values as

S =UQV" 4)

where U'U =1, V'V=I, Qis a K x N diagonal matrix,
0 =diag(s,, s,, ..., s5¢), and s, (k=1,2, .., K) are the
singular values of matrix S, ,. Then the singular values
can be used as fault features.

In the VMD decomposition process, the existence of
the penalty term « can effectively reduce the Gaussian
noise, which makes the IMFs sparse. Therefore, the re-
constructed signal f' has a higher signal to noise ratio
compared to original signal f.

re g

The indicators in the time domain of the reconstructed
signal f' =[y,, ¥,, .- Y;» --» ¥y] are extracted as fault fea-
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tures as well. Finally, the fault features of signal f are
obtained as shown in Tab. 1.

Tab.1 Fault features based on VMD

Feature Expression

N
Absolute mean Xom = %]Z{ ‘)’1 ‘

Peak to peak X,, = max( ‘ ¥, ‘ ) —min( ‘)’1 ‘ )
R <,
oot mean square( RMS) Ximns N 2
A
. 1 < 4
Kurtosis Xkur 2 ()l _y)
ms [ =1
X,
Shape factor Xy = ==
Xam
max
Crest factor X, = ( ‘ i ‘ )
eri
1 Z r
Kurtosis coefficient N &7

© 7 (std(y))*

=maX( \yl \)

Impulse factor X,

Xz\m
Relative energies [e), e, ..., exl
Singular values [s1, 85, ..o, s¢]

Note: y is the mean value of the reconstructed signal.

2 Proposed ESNPE Method
2.1 NPE theory

The original feature space is high-dimensional, and
usually contains redundant information that is unrelated to
the bearing fault, which affects the performance degrada-
tion assessment results. NPE aims to optimally reduce the
high dimension by preserving the local manifold structure
of the given dataset'”. Given dataset X = {x,, x,, ..., x, }
e R” with n samples and m dimension, the weight matrix
W is computed by minimizing the following error func-
tion:

min 3 - w0 [ ©

i=1 i j=1 W[jxj
where coefficient w, in W represents the linear combina-
tion coefficient to reconstruct x, by its k nearest neigh-

bors, which follows that z w, = land w; =0 if X; is not
j=1

a neighbor of x,. The objective of NPE is to find an em-
bedding transformation matrix P = [p,, p,, ..., p,] € R”
that maps high-dimensional data X into d dimensional fea-
ture space Y =[y,,¥,, ...,y,] e R", d<m,y, =x,P. The
minimizing objective function is as follows:

n k
Puptimul = arg min z Hy, - Z Wi/'yj
i s e

arg mini HxiP - zk: wljijH (7
i= iz

Then, the calculation of the transformation matrix P is
converted into solving the eigenvalue problem:

XMX'P = \XX"P (8)

where M = (I - W) (I - W); ) is the eigenvalue. Eigen-
vectors with corresponding d smallest eigenvalues form
the embedding transformation matrix P = [p,, p,, ..., P,]
eR".

2.2 Spearman correlation coefficient

During the gradual degradation process of the rolling
bearing performance, the trend of useful features changes
over time as degradation develops. The Spearman correla-
tion coefficient"”’, which is one of the three correlation
coefficients, is commonly used to quantify the correlation
between two variables. The greater the absolute value of
the coefficient, the stronger the correlation. In this study,
the size of the coefficient is used to describe the trend val-
ue of the feature sequence, and the formula is as

63 (R(O) ~R(T))*| (g

1 - 2
N(N -1)

(O, T | =

where R(O,) and R(T,) are the ranks of feature sequence
O and time sequence 7,0 =[0,,0,, ..., 0,1, T=[T,,
c(0,

T,,...,T,]; N denotes the length of time series;
T \ is the trend value.

2.3 Simulation analysis

To analyze the fault reflection capability of embedding
information acquired by NPE in the performance degrada-
tion evaluation process, a simple simulation process is de-
signed as

e, =s+n,
e, =5 -3s+n, (10)
e, = -5 +35 +n,

where e, denotes independent features, i =1, 2, 3; n, is
the individual Gaussian noise, n, ~ N(0, 0. 01); s e
[0.01,2]. A feature dataset X with 300 samples is gener-
ated by Eq. (10). Feature e, is nonlinearly increased from
sample point 151 to sample point 300 by adding
e” " VU7 " where j is the sample number. The first 150
samples in X are denoted as normal samples and the NPE
algorithm is performed to obtain the transformation matrix
P. Then dataset X is embedded into P to obtain each em-
bedding.

The embedding results are shown in Fig. 1. The second
and the third embeddings increase obviously when fault
occurs, which can be regarded as useful embeddings.
Yet, the first embedding fluctuates with a large variance
and cannot reflect the fault situation effectively, which
can be regarded as irrelevant information. Therefore, the
useful information of the second and the third embeddings



Rolling bearing performance degradation evaluation by VMD and embedding selection-based NPE 411

will be suppressed by the useless first embedding if the
first embedding is retained in the evaluation process. At
the same time, the Spearman correlation coefficient is
calculated for each embedding feature, and it can be seen
that the coefficient can effectively quantify the trend of
and useful embedding features have
corresponding higher trend values. Thus, it is possible to
find useful embeddings and abandon irrelevant embed-
dings using the Spearman correlation coefficient when
employing NPE for the monitoring process.

O L

feature sequence,
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Fig.1 Simulation analysis results of NPE. (a) Simulation feature
e;; (b) Simulation feature e,; (c) Simulation feature e;; (d) First em-
bedding feature; (e) Second embedding feature; (f) Third embedding
feature; (g) Spearman correlation coefficient of each embedding

2.4 ESNPE method

Although NPE has the advantage in preserving dataset
local structure, the problem that the fault has no definite
projection to a certain embedding still exists and useful
embeddings are easily suppressed by irrelevant embed-

dings. the ESNPE method based on the
Spearman correlation coefficient is proposed. Fault sensi-
tive embedding features are extracted by preserving useful
embedding information and abandoning irrelevant embed-
ding information, which aims to improve the performance
of the degradation index in the evaluation process of roll-
ing bearings.

The performance degradation of rolling bearings is a
relatively slow process and most of the time is taken up
during the material damage accumulation. The RMS indi-
cator is commonly used for indicating the bearing degra-
dation process for its stability, but it is insensitive to in-
cipient faults. Thus,
extracted by NPE through the trend analysis in the early
degradation stage before the RMS indicator reaches the
3¢ threshold. The larger the trend value,
portant the embedding. Therefore, we use the trend value
as the index to select useful embeddings.
we use the Spearman correlation coefficient to select the
useful embeddings of NPE. The ESNPE process for the
bearing performance degradation evaluation is as follows.

1) Set f,(i=1,2,...) as the vibration signal of the i-th
continuous sampling of the vibration sensor. The RMS
value of f; is calculated, and when the RMS of f,,.(j =1,
2, ..., m, m < n) does not satisfy the 3¢ principle as
shown in formula (11), determine Y =[f,, f,, ..., f,] as
Y is extracted

In this section,

we can find effective embeddings

the more im-

In this paper,

an early embedding selection signal set.
features in Tab. 1 and an m-dimensional feature dataset

E=[x,,x,,...,x,] e R"is obtained.

| RMS, (11)

where . and ¢ are the mean value and standard deviation
of the RMS of Y.

2) A normal dataset A is divided from E and normal-
ized, A =[x,,x,,....,x,] eR",
mension. The NPE algorithm is performed to obtain the
embedding transformation matrix P = [p,, p,, ..., p,] €
R"”, where d is the dimension of the embedding space.

3) E is normalized and embedded into matrix P . Then
the embedding feature matrix F is obtained as

ey | >30

with ¢ samples and m di-

F=[F,F,,..F =E'P (12)

d]nxd

4) F is normalized and the trend value of F, is calculat-
ed as Eq. (9),1 <i<d. Then the trend values are ar-
ranged in a descending order as C = { | ¢,

R oA I

e, | , Q<.
5) The first-order difference method is performed in C

as

i=1,2,..,d-1 (13)

d':‘c _‘Ci-v-l‘

and D={d,, d,, ..., d,_,} is obtained.
6) Find the maximum extreme point d,in D, 1 <[l <d,
and preserve the / embedding eigenvectors P, in matrix P
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P, =[p’.ps,....p'], P,CP. Then P, is considered to be
the useful embedding transformation matrix.

7) As for the new sample x, embed x into P, to obtain
the /-dimensional embedding feature y as

y=x" P, (14)
Furthermore, y needs to be standardized to obtain the [-
dimensional feature y’.

Y M (15)

Y T e
where p and o are the mean value and standard deviation
of each embedding feature in F,., F, = A'P, corre-
sponding to the normalized normal dataset A. Then, y’ is
the embedding feature obtained by the ESNPE method
from high dimension to low dimension.

3 Rolling Bearing Performance Degradation Ev-
aluation Process

In this section, the SVDD model is used to obtain the
performance degradation index and complete rolling bear-
ing performance degradation evaluation. SVDD is com-
monly used in the health monitoring of equipment, which
constructs a minimum hypersphere that contains most tar-
get samples in the high-dimensional feature space. The
distance between the monitor sample and center a is con-
sidered as the degradation index used to describe the sta-
tus deviation from the normal state. When the distance is
smaller than radius R of the hypersphere, it represents the
normal state of the equipment. As the distance exceeds
radius R, it indicates the early degradation of the equip-
ment performance. Large distance means the severe deg-
radation of the performance. Therefore, the distance is
used to monitor the health status of the rolling bearing,
and for more details about SVDD, please refer to Ref.
[18].

This paper presents a performance degradation evalua-
tion method based on VMD and ESNPE for rolling bear-
ing. The specific process is as follows.

3.1 Offline modeling

Offline modeling involves the implementation of the
ESNPE method and the construction of the SVDD model
for bearing performance degradation evaluation.

1) The RMS value of each vibration signal is calculat-
ed, and the embedding selection signal set Y is deter-
mined according to the 3¢ principle. The vibration signal
is decomposed by VMD and the features in Tab. 1 are ex-
tracted, and a m-dimensional feature dataset E =[x, x,,
....x,] e R" is obtained.

2) A normal feature dataset A =[x, x,, ...,x,] e R"is
divided from E and normalized, ¢ < n. The NPE algo-
rithm is performed in A to extract the embedding transfor-
mation matrix P.

3) The embedding feature matrix F =[F |, F,, ..., F ]
is obtained as Eq. (12), and the trend value of each F, is
calculated using the Spearman correlation coefficient, 1 <
i <d. The useful embedding space P, is selected accord-
ing to the first-order difference method.

4) A is embedded into P, to obtain the training feature
dataset A’, and A’ is normalized. The SVDD model is
constructed to obtain the center @ and radius R of the hy-
Then, radius R is set as the health
threshold to monitor bearing early degradation.

persphere model.

A =P A (16)

3.2 Online monitoring

In the online monitoring process, the monitoring signal
is input into the built model and converted into the degra-
dation index to indicate the performance state of bearing.

1) Each monitoring signal f is decomposed by the
VMD method. The features in Tab. 1 are extracted and
m-dimensional sample x is obtained.

2) The embedding feature y’ of sample x is obtained by
embedding x into space P, as Eqgs. (14) and (15).

3) The distance between the monitor sample y' and the
center a of the SVDD is obtained.

4) The distance index is used as the degradation index
of the rolling bearing performance evaluation process and
the performance degradation curve is plotted.

4 Experimental Verification and Analysis
4.1 Experimental data description

In this paper, the experimental data of the bearing ac-
celerated degradation test published by IEEE PHM2012
Challenge is used for analysis and verification. The ex-
perimental data comes the PRONOSTIA
bench!™® . The structure distribution and sensor arrange-
ment of the test bench are shown in Fig. 2. The PRO-
NOTSTIA test bench is designed to perform related tests
such as abnormality detection, fault diagnosis and predic-

from test

tion of bearings. The main purpose of the test is to collect

NI DAQ
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Pressure Cylinder
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reéulator
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* motor' sensor
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* Torquemeter '

Fig.2 PRONOSTIA test bench
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the experimental data of the bearing from the normal state
to failure state.

The experimental system is driven by a motor, and the
torque is transmitted to the rotating shaft through the re-
ducer at a speed of 1 800 r/min. The experimental bear-
ing is mounted on the rotating shaft, and the thermocou-
ple is mounted on the outer ring of the bearing to monitor
the bearing temperature in real time. The test bench ap-
plies 4 000 N radial load to the bearing through the hy-
draulic device. The vibration acceleration sensor is in-
stalled in the horizontal and vertical directions of the bear-
ing. The sensor type is DYTRAN 3035B, and the vibra-
tion signal is collected by the NI acquisition card. The
sampling frequency is 25.6 kHz. The sampling time lasts
for 0.1 s and is repeated every 10 s.

4.2 Performance degradation evaluation

This section analyzes the full-life vibration data of a
bearing numbered 1-3, and the parameters of this bearing
is shown in Tab. 2. The number of sampling points of the
sensor is 2 560. A small number of samples during the
initial running—in the period that the equipment is ig-
nored, and 1 752 samples of bearing 1-3 are analyzed.

Tab.2 Parameters of bearing 1-3

Ball di Ball b Outer race Inner race
all diameter all number diameter D,/ diameter D,/
d/mm VA
mm mm
3.5 13 29.1 22.1

The RMS trend in the whole life of the bearing vi-
bration signal is shown in Fig. 3. The RMS is stable at
the beginning and then increases with the degradation of
the bearing performance. According to the 3¢ principle,
1 220 samples were chosen for the embedding selection
for the ESNPE method from bearing 1-3, in which the
first 500 samples were divided into a normal sample set
for this bearing.

2.0
—— RMS
1.5F ———" 3¢ threshold
%)
E 10T Normal
samples
0.5 Byt i i e S —
0 1 1 1 1 1
2 4 6 8 10
t10° s

Fig.3 The whole life RMS trend of bearing 1-3

To determine the number of IMFs K for VMD decom-
position, the maximum kurtosis method™ is adopted in
this paper. The signal at 15 000 s was selected and de-
composed into different number of IMFs, and the result
of the maximum kurtosis of each IMF is shown in Fig. 4.
It can be seen that the maximum kurtosis curve has
reached its peak when K is set to be 5, and a similar con-

clusion could be drawn at other sample time. Thus, K =5
for VMD decomposition is appropriate for this bearing.

8r

Maximum kurtosis value

Fig. 4
maximum kurtosis

The relationship between the number of IMFs and the

Therefore, 18 original features were extracted in Tab.
1. The NPE algorithm was performed in normal dataset
and the embedding feature matrix of 1 220 embedding se-
lection samples was calculated. The trend value based on
the Spearman correlation coefficient of each embedding
feature is shown in Fig.5. It can be seen that the trend of
each embedding feature in the early stage of the bearing is
different. The maximum extreme point was selected in
the first-order difference plot and the corresponding em-
bedding space was preserved, where the useful embed-
ding space of bearing 1-3 was P, =[p,,p,,Ps].

0.8~

=
N
T

Trend value
o
»

0.2+
0 1 1 1 1 1 1 1 |
2 4 6 8 10 12 14 16
Index of embedding
(a)
0.8

—*— First order difference
—o6— Descending trend value

=
=)

Maximum
extreme point

Trend value
(=]
K-
T

\

(=]
1

1
2 4 6 8 10 12 14 16
Index of embedding

(b)
Fig.5 Trend values of embeddings and first-order difference

plot. (a) Trend value for each embedding; (b) Descending trend value
and first-order difference

After the useful embedding space was specified, the
embedding features of the normal sample set were used to
construct the SVDD model after normalization. The dis-
tance between whole life samples and center a was calcu-
lated. The results are shown in Fig. 6. For comparison,
the distance index based on original features, the features
obtained by the traditional PCA method and NPE features
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——— Original feature
***** Health threshold

1.0
a

0.6F et

1 1 1 ]
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- ——— Health threshold
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20
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ok~ Health threshold 1 677\
=) 1426
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0.2 - __ e
]
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(d)
Fig. 6 Degradation index obtained by different methods. (a)
Original feature; (b) PCA feature; (c) NPE feature; (d) ESNPE fea-
ture

were also calculated, where the PCA method preserved a
85% contribution rate and the NPE method preserved 15
embeddings. The health threshold is the radius R of each
constructed SVDD model.

Several conclusions can be drawn from the comparison
of Fig.3 and Fig. 6: 1) The distance index obtained by
ESNPE features has the greatest incipient fault sensitivity
and stability compared to the NPE method, PCA method
and original features. There is an obvious rise at 8 200 s
in Fig. 6(d), which is much earlier than the RMS indica-
tor in Fig. 3. This demonstrates that the strategy preser-
ving the useful manifold embedding information in ES-
NPE is effective. 2) The distance index obtained by orig-
inal features has a more obvious trend than the RMS indi-
cator, especially in the late stage of bearing degradation.
This indicates that the VMD-based original features con-

tain valid fault information, and can reflect bearing degra-
dation to more extent.

In Fig.6(d), the distance index based on ESNPE fea-
tures is stable and below the health threshold in the early
stage before 8 200 s, which means a normal state of roll-
ing bearing. It begins to show an obvious increase in
8 200 s corresponding to the initial material damage of the
bearing, and monotonically increases nonlinearly with the
crack propagation in the following running process. The
index reaches the maximum in the final, which means the
severe degradation. Therefore, the distance index based
on the VMD and the ESNPE method proposed in this pa-
per can describe the process of bearing performance deg-
radation effectively.

4.3 Evaluation results verification

In order to prove the fault sensitivity capability of the
proposed ESNPE method, the 8 200 s, 14 260 s and
16 770 s samples of bearing 1-3 in Fig. 6 are analyzed, as
these samples are corresponding to the incipient fault, me-
dium fault and severe fault of the bearing. The character-
istic frequencies of bearing 1-3 are shown in Tab. 3.

Tab.3 Characteristic frequencies of bearing 1-3 Hz

fe fe fo fi £
30 13 215 222 168

The three signals are decomposed by VMD. The fault
sensitive IMF which has the maximum kurtosis is chosen
and the IMF envelop spectra are presented in Figs.7 to 9.
It can be found from Fig. 7 that there is an obvious shock
in 170 Hz, which is supposed that the early degradation
has occured at 8 200 s. In Fig. 8, there is a higher impact

. S—Z)
[
T

Amplitude/(m
I
T

ol
-3 1 1 1 1 1
0 0.02  0.04 0.06 0.08  0.10
t/s
()
0.03r
(‘z’n f /fo
g 0.02+ /
3
=
= 0.01
o
g
<
0 1
0 500 1 000 1 500
Frequency/Hz

(b)
Fig.7 Analysis of 82 00 s vibration data. (a) Time domain; (b)
Envelop spectrum
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amplitude in 215 Hz which can be judged to be the medi-
um degradation. The degradation becomes severe in Fig.
9 since the characteristic frequency is more obvious.
Therefore, the degradation process evaluation effective-
ness of the proposed method is verified.
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5 Conclusions

1) Features such as singular values and relative ener-
gies extracted by VMD contain the valid fault information
of the rolling bearing. The distance index fused by the
features performs better than traditional RMS indicator for
rolling bearing performance evaluating process.

2) The ESNPE method proposed in this paper over-
comes the useful embeddings suppression issue of NPE.
The degradation index based on the ESNPE features
shows better incipient fault sensitivity and stability than
the NPE method, PCA method and original features.
This indicates that using the Spearman correlation coeffi-
cient to select the useful embeddings of NPE in the early
degradation stage is effective. The embedding selection
strategy can also be introduced to some other manifold
learning algorithms, such as GLSA and LPP to further
improve monitoring performance.

3) The distance index fused by SVDD based on VMD
and the ESNPE method can effectively describe the per-
formance degradation process of the rolling bearing. Sim-
ultaneously, the evaluation result was verified by the
VMD and envelop spectrum analysis, which is of positive
significance for the intelligent maintenance of rolling
bearing.
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Vibration

E T VMD F#x N1t $F NPE B)iR sh A e B 1L 7T 4h

Fkth WY FRE OHTR
(A RFIMIAZZR, & F 211189)

WE: AT RSAED AR RAFE PR G TR RER R R T, BT A THAREF
A ARIBARHF AN (ESNPE) 77 ik, %48, R A T 0BS540 8 (VMD) 3t 5k #7693k 30 15 5 #4790, 3R IR& R AE
BES W FAAEATEEF MR S G ERFAEE. KRG, KA NPE 74T 5 3 F kR IR AE 52 18] N 49 4%
NAFAE. 41334 %6 NPE A A2 A S NAT B 5 S A7) 69 )2, M T — AP A T Spearman 48 % 2 £ 89# N ik
TR R A K AR R HRNAF AR 69 R 20K, JF il i — U £ 4569 7 ok R S AR B AL 6 T B
B B R B RN SFAE. 5, R L@ EHIER LR (SVDD) B A My 2 M AR SR AL 35 AR, 52 T4 ACHE 4R
BACTRAE . AL AR e AR R, 5 5409 2 80947 (PCA) 77 ik A= NPE J5 ik S5 AR 4R IR 4 #7 45
R AT BIE T AT 77 ik AR F2 IH R AL 3G AR T B S R AR M o A8 2 M 7 vy B R AR
KA AL BACTRAE s R BEES R (VMD) 5 4R3ARF N (NPE) 5 3 &) 2 Ry 4 18
HE 455 : THL7

. (SVDD)



