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Abstract: To solve the problem of variations in radio
frequency characteristics among different devices,
learning is applied to transform device diversity to domain

transfer

adaptation in the indoor localization algorithm. A robust
indoor localization algorithm based on the aligned fingerprints
and ensemble learning called correlation alignment for
localization ( CALoc) is proposed with low computational
complexity. The properties  of
fingerprints in the offline and online phase are needed to be
aligned. The real-time online calibration method mitigates the
impact of device heterogeneity largely. Without any time-

second-order statistical

consuming deep learning retraining process, CALoc online
only needs 0. 11 s. The effectiveness and efficiency of CALoc
are verified by realistic experiments. The results show that
compared to the algorithms, a significant
performance gain is achieved and that it achieves better
positioning accuracy with a 19% improvement.
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‘ x T hen online terminals are different from those used

to build the fingerprint database in the off-line
phase, the signal changes are caused by different trans-
mission power levels. The difference of received signal
strengths( RSSs) from different devices exceeds 25 dB
even at the same position'"’, which will transfer the risk
of mapping to different physical locations.

Different wireless chipsets, wireless antennas, hard-
ware drivers, encapsulating materials and even operating
system (OS) will lead to different RSSs. Wi-Fi chipsets
on different terminals have different sensitivities to differ-
Since the antenna can be in-
stalled in different positions on the phone, the RSSs in
different directions can be different. Wireless devices in

ent APs and channels .
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the same reference point (RP) will not read equal RSSs
due to heterogeneous reception characteristics of network
interface controllers (NICs) . Such heterogeneity can be
attributed to a lack consistency in various standards
among hardware vendors'”. Two different devices using
the same wireless network card can also receive different
RSSs when the rear case materials are different' . More-
over, the detection rate and amounts of APs are likely to
differ with different OSs'”. Given different OSs, hetero-
geneous spectrums of the same terminal may be spawned.

To handle the device dependency, several studies have
proposed methods to improve the robustness as below.
Differences can be reduced by the linear relationship of
different devices with massive manual calibration'” . Sig-
nal strength difference (SSD) selects RSSs from one AP
and each of other RSSs is deducted to eliminate the gain
1 The RSS ratio is similar in ignoring other
factors such as wireless network cards,
0Ss'"”". The complexity and cost of the expectation maxi-
mization (EM) positioning system is much higher and
can be affected by the added noise and local optimum'""'.

The relative rank of APs may be the same, resulting in
12

of antenna
antennas and

low granularity of localization
gerprints of labor-intensive crowdsourcing is needed to
avoid low stability due to heterogeneous devices or wrong
positions'”'. Cosine similarity based on KNN is proposed
to replace the Euclidean distance, which is limited in
application scope''. Source and target domains can be
projected into the low-dimensional manifolds to bridge the

gap of the subspace while the first k-dimensional eigen-
5]

. Filtering incorrect fin-

vectors cannot represent all features

are treated as multi-task learning, which requires similar
161

. Multiple devices
potential features’ ~' . Source data is extrapolated to target
data with inflexible symmetric transformation, ignoring
the difference between the two domains'"”’. The channel
state information ( CSI) shows frequency diversity and
spatial diversity properties while CSI can only be collect-
ed by mobiles with an impractical Intel 5300 network in-
terface card (NIC)" .

It is expensive to recollect RSSs for calibrating all
kinds of devices. A more practical method would be in-
tegrating RSS of unknown devices with fingerprints col-
lected before on other devices adaptively. To implement
we proposed an easy
practical method named correlation alignment for localiza-

device independent localization,
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tion( CALoc).
1 Preliminaries

The RSSs are not compatible with the off-line radio-
map in practice, leading to accuracy degradation and lim-
iting the applicability of the Wi-Fi fingerprinting localiza-
tion system.
problem and avoid the off-line calibration effort, the pro-
posed CALoc system is based on domain adaptation on-
line. First, we study the effect of device dependency.
Secondly, we propose correlation alignment (CORAL) to
align across diverse devices.

In order to overcome the heterogeneous

1.1 Device diversity

To illustrate the signal variation over different devices,
we empirically study different signal sensing capacities
and yield different data distributions.

Traditionally, RSS difference can be generally consid-
ered additive deviations to RSSs"”'. In Fig. 1, we collect
instantaneous RSSs from AP c4: ca: d9: 7b: db: 60 for 10
min by HUAWEI 5X, MI 5, MI 5s, ZTE Nubia Z17 and
MEIZU Pro6. Different terminals collect RSSs from the
same AP at the same place. RSS collected by M5s is dis-
tributed from -52 to —46 dBm and the signal distribution
of the Z17 device is —64 to —57 dBm. The RSS differ-
ence is more than 20 dB. We introduce the impact of
WLAN chip on the statistical characteristics of RSS.
According to IEEE 802. 11, the range of the received sig-
nal strength indicator( RSSI) is defined between 0 and 255.
The nonlinear map between the actual RF energy and RSSI
is different and vendors will not expose its mapping rela-
tionship in detail. RSSs from the same AP at the same lo-
cation can be roughly recovered from another by translation
or scaling, which verifies the effect of device heterogeneity.
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Fig.1 Difference of RSSs collected by different terminals

Moreover, the RSSs of different devices show different
noise statistics, and their distributions are also significant-
ly different. The main difference in RSSs is not only the
linear difference between RSSs, but also the local devia-
tion and distribution of RSSs. Fig.2 shows the difference
of RSSs in the histogram distribution. Such heterogeneity
in devices can be attributed to a lack of consistency in the

various standards among hardware vendors, such as

differences in the hardware and software used for different
devices. The inability of RSS to match heterogeneous de-
vices clearly reveals the problem of device diversity. It is
easy to misjudge the location when matching the off-line
database with the fingerprints using Euclidean distance.
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Fig.2 Different distributions of RSSs collected by different

terminals

Thus, the design of localization systems, which can in-
ter-operate across different types of devices, is challenged
by variations in RF characteristics between various devices.

1.2 Transfer learning

Machine learning is unable to work well when the dis-
tributions of training and test sets are different, which is
easily affected by the shift of the learning domain. More-
over, supervised learning only performs well with a large
amount of labeled training data. Many domain adaptive
algorithms based on the labeled data easily compensate for
the performance degradation caused by domain move-
ment. However, unsupervised learning is necessary as la-
beled data is not easy to obtain in reality.

CORAL™ align the second-order statistics of the
source and target domain, which can confuse the source
domain and target domain. Specifically, CORAL recon-
struct the source characteristics with the covariance of the
source features. Based on the covariance of the source
domain and target domain, features in the source domain
can be whitened with linear transformation to fill the gap
between the domains. Although deep learning is widely
used, a large number of parameters, such as the number
of hidden neurons, need to be adjusted to apply them in
new environments, which is costly.

In Fig. 3, the rhombus represents the target domain and
the dot represents the source domain. In the leftmost sub-
graph, we normalize the source and target domains with
the Z-score normalization.

/y

Introduction of CORAL in domain adaptation

Fig.3
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The middle sub-graph illustrates that the source domain
and the target domain are fused by whitening source fea-
tures to remove the correlation of source features. As the
rightmost sub-graph shows, the distributions of the source
and target features can be well aligned when the target
correlation is added to the source features. The classifier
trained on the target domain can be expected to perform
well in the adjusted source domain.

The target training data is given as RSS; = {rss,, ...,
rss, }, where rss, e R”, and the source test data is repre-
sented as Rg = {r,, r,..., r,}, where r, € R". Both the
source domain and the target domain are characterized by
n dimensional vectors. The mean and covariance matrices
of the eigenvectors of these two domains are denoted as
Ms, mp and Cg, C.. After normalization, wg =u, =0,
while C3#C.

In order to reduce the gap between the second-order
statistical characteristics of the source domain and the tar-
get domain, namely, the distance between Cg and C.,
the distance between the changed source domain features
and the target feature covariance needs to be minimized.
We choose a linear transformation A to the source fea-
tures. The objective function is given by

min, || Cs = Cy || ¢ =min, |A"CA-C; |1 (1)

where C represents the covariance matrix of the trans-
formed source domain features.

If the rank of the target domain is less than that of the
source domain, the linear transformation A can be used as
the alignment transformation to realize Cy = C.

Theorem 1"
the rank of r, and r, satisfy the condition r,<r,, we can
do the singular value decomposition (SVD) of matrix Y:
Y=U,3,V,, where Uy, ., 3,.,, Vy., are the left sin-
gular vector of Y, the largest r singular values and the
corresponding right singular vector. Then, the optimal
solution of min, | X -Y || is X" =U, ., 3., Viig-

The linear transformation A does not increase the rank
of A"C,A, namely, re, <7. As the covariance matrix is

If the two real matrices Y and X with

symmetrical, it is easy to derive that C; = U3V, and C,
=U,3.V, with conduction of SVD on C; and C,. Since
the rank of the covariance matrix of the source domain
and the target domain is uncertain, the following two ca-
ses are described.

If ro >rc, the optimal solution is

CS :CT :UTZTVT :UT[l:r]ET[l:r] Vi[l:r] (2)

where r=r .
If Fe. <rc, according to Theorem 1, the optimal solu-
tion is
T
CS :UT[l:r]ET[l:r] VT[I:r] (3)

where r=r .

In conclusion, the optimal solution is
CS :UT[]:r]ZT[l:r] VI‘[I:r] (4)
where r = min( Tes ’”c,) .
Since C; =A"CA:
UT[I:r]ZT[l:r] V:[l:r] =ATCSA :ATUSESVSA =
(UsA)'3(UsA) =E'3E (5)

172 y4T 172 T
Suppose that E =35 “UsUy,, X1 Unpye s
mal solution of linear transformation matrix A is given by

the opti-

" 1
A :USE:(USE ? U;-)(UT[l:rJE'lF/[z]:rJ U;[I:rj) (6)
s

In the above formula, the first part U3’ Us is the
process of whitening the source data, and the second part
Uy, EIT/[ZI:,] Ui[l:,] is the process of aligning the source da-
ta with the target covariance.

CORAL does not simply normalize features of source
and target domains, but also aligns different distributions
of these two domains. As correlation alignment only chan-
ges source features, it can be applied to any basic classifi-
er. In this paper, we use ensemble learning to estimate the
location. It is efficient and simple to adapt to the target da-
ta without subspace projection and dimension selection.

2 Localization Algorithm Architecture

The CALoc system is based on the Wi-Fi RSS finger-
print database, as shown in Fig. 4. The labelled data
collected by Device 1 is divided into training, validation
and testing data. The proposed approach is learnt on
training data with performance checks on validation sets.
As usual, the final accuracy of the indoor positioning
system can be predicted based on the testing sets collect-
ed by Device 2.

In this paper, the proposed CALoc algorithm adds an
intermediate phase of online adjustment phase between the
off-line phase and the online phase. In the extra added
phase, we firstly calculate the test covariance and whiten
the correlation of the source features with the inverse
square root of the test covariance C,..”
ance of the training data, we can recolor test data with the
inverse square root of the train covariance C, . This
asymmetric transformation aims to bridge the two device

. Given the covari-

domains, so that the method can reduce the position error
caused by the hardware difference between the training
equipment and the test equipment. Here, the online ad-
justment process is introduced, as shown in the adjust-
ment process of Algorithm 1.

After the adjustment, the trained ensemble learning
system can be trained on the adjusted test features and
predict the actual location. Because the online adjusted
alignment changes only the characteristics, it can be ap-
plied to any base Wi-Fi localization system. Usually, the
transformation takes 0. 11 s, which is less than 1 min.
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Fig.4 Localization Algorithm Architecture

Thus, the algorithm is extremely advantageous when the
test domain changes rapidly.

Algorithm 1 Domain adaptation for heterogeneous
devices

Require: Received signal strengths from APs {rss;,
rssf, ..., 1887} , the labelled positions (x;,y,).

Ensure: The predicted positions(x,, y;).

while training do

Normalize RSS data and divide fingerprints with com-
monly used 10-fold cross-validation.

Construct ensemble learning with training data in the
off-line phase to derive the map between fingerprints and
locations. Then, we can save parameters of the trained
model.

Calculate the train covariance and save it.

end while

while adjusting do

Whiten test data collected by unknown devices to re-
move feature correlations of source data in the online ad-
justment phase.

Align whitened data with the train covariance.

end while

while testing do

Localize with adjusted test data by the trained model in
the online phase.

end while

3 Implementation and Localization Performance

In this section, the experiment environment is first
briefly introduced, and then we analyze the performance
of the proposed positioning algorithm.

3.1 Description of the experiment

Extensive experiments were conducted in the corridor
on the second floor of a multi-functional lab, covering
an area of 25 m x 3 m. These fingerprints are evenly
distributed in the area to be tested, with an interval of
1.6 m. In the off-line phase, fingerprints at each RP are
collected for 2 min, while in the online phase, finger-

prints at each RP are collected for 1 min. As the RSS
collecting rate is 1 sample/s, we can obtain 120 train-
ing samples and 60 test samples at each reference
point. In addition, we collected data at the same RP
for one week, which results in large training and test
sets. The performance was evaluated with 3 heteroge-
neous devices, i.e., MEIZU Pro6, HUAWEI Honor8
and HUAWEI 6X. To avoid the effects of different di-
rections of the device, all devices are facing the same
direction when RSSs are collected at the same time.
Due to the different sensing capabilities of different de-
vices, the number of APs received by each device is
different, and only the common MAC features at both
online and off-line stage can be selected as candidate
features.

These three terminals can be combined into nine do-
main shift environments to verify the role of the proposed
method. For instance, 6 X-H8 means that the off-line ra-
dio-map is created by 6X but the positioning device is
Honor8. The training and testing data are randomly sam-
pled from the stored database.

3.2 Localization performance

We evaluate the performance of CALoc on the positio-
ning of device diversities and compare it with direct local-
ization, SMN and TKL.

When the same device is used off-line and online,
we can obtain the optimal solution and the highest posi-
tioning accuracy. Fig. 5 illustrates that better positio-
ning performance occurs with the same device. In this
case, the average localization error is 2. 24 m. The
changed test device without any pre-treatment can
cause poor positioning performance, and the mean po-
sitioning error is 3. 27 m if the test device is honor8
and the mean positioning error is 3. 30 m if the test de-
vice is Pro6. Hardware variations significantly degrade
the localization accuracy.

SMN reconstructs relative fingerprints to compensate
for the shift effect caused by device diversity. Particularly,
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Fig.5 Impact of terminal heterogeneities on localization

the RSSs at each RP need to minus the average RSS of all
APs in the acceptance range. Then, the deviation of the
RSS distribution caused by heterogeneities can be made
up by removing the spatial mean. The TKL algorithm
aims to learn how to extract potential features of source
and target domains, then the source and target data can be
matched in general Hilbert space. With the domain invar-
iant kernel, the objective function minimizes the distance
between the distribution of the source and target domains
in Hilbert space.

As shown in Fig. 6, the proposed CALoc approach
achieves better average performance across all nine do-
main shifts compared with the SMN algorithm and TKL
algorithm. When the off-line device is honor8 and the on-
line device is Pro6, the average positioning accuracy of
CALoc under heterogeneous positioning decreases to 2.29
m while the average positioning accuracy is 3.00 m with-
out any pretreatment. In this case, CALoc improves the
positioning performance by 20% , while SMN and TKL
do not work well. Thus, CALoc has an obvious role in
removing the influence of equipment heterogeneity.
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It is necessary to evaluate whether these algorithms pro-
duce side effects on localization under homogeneous de-
vices. In Fig.7, when we use the same device to local-
ize, the accuracy is raised by 10% with CALoc, higher
than localization with SMN, which is raised by 5%.
However, TKL decreases the performance of positioning
with the same devices. When the testing and training data
are both measured from the same device, the performance

of TKL and SMN is clearly below CALoc. It illustrates
that the improvement of SMN and TKL may be gained at
the expense of discriminating information related to the
same device.
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Fig.7 Effect of pretreatment on localization performance with
the homogeneous devices

In detail, Tab.1 records the good performance of
CALoc under other domain shifts. Sometimes, the SMN
algorithm cannot mitigate the impact of heterogeneity on
the positioning performance, which is almost or even
slightly inferior to the positioning effect without any pro-
cessing operation. This is because the actual hardware de-
pendence of device diversity is not only related to the an-
tenna gain of the receiving terminals, but also closely re-
lated to OS or installation materials. Since the SMN algo-
rithm only considers the antenna gain as the main influen-
cing factor, its performance is inferior. Moreover, a
large variance and small dimension are the disadvantages
of SMN fingerprints which can lead to an unstable locali-
zation performance. For TKL, only the top k eigenvec-
tors of the source and target covariance matrices can be
aligned with the burden of subspace dimensionality selec-
tion. Moreover, TKL usually applies the same transfor-
mation to both the source and target domain. These sym-
metric transformation ignores the difference of the distribu-
tion of the source and target domain. Asymmetric transfor-
mation such as CALoc tries to connect two domains in a
simple way. Although CALoc performs slightly better than
TKL, CALoc online only needs 0. 11 s while TKL needs
0.49 s for positioning from the perspective of time. In
terms of performance, TKL can effectively alleviate the

Tab.1 Positioning performance with domain shift —m

Domain Average localization performance
shift None With TKL With SMN With CALoc

6X-6X 2.24 3.16 2.50 2.10
6X-H8 3.27 2.70 3.15 2.74
6X-P6 3.30 2.33 2.80 2.72
H8-H8 2.51 3.10 2.33 2.30
H8-6X 2.74 2.35 2.22 2.27
HS8-P6 3.00 2.37 3.28 2.29
P6-P6 1.82 3.19 2.00 1.58
P6-6X 2.25 2.10 1.91 1.67
P6-H8 2.46 2.14 3.11 2.20
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damage to localization accuracy caused by diversity, but
the performance improvement is unstable. CALoc
achieves better positioning accuracy with performance
optimization ranging from 11% to 28% . It can be seen
that CALoc can be adapted effectively to the second-order
statistical characteristics.

4 Conclusion

The training and test data are usually independent iden-
tically distributed in the indoor location problem. Howev-
er, this assumption is rarely true in practice when the on-
line positioning terminal and fingerprint terminal are in-
consistent. To compensate for device diversity, we put
forward domain adaptation before online positioning.
Without the need of labelled data, the second-order statis-
tical properties of the training and test data are aligned to
minimize domain shift. The only computation of the effi-
cient and easy CALoc method is aligning the whitened
test features with the covariance of the training data. Ex-
tensive experiments demonstrate the superiority of the
method.
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