Journal of Southeast University (English Edition)

Vol. 35, No. 4, pp. 431 —439

Dec.2019 ISSN 1003—7985

An effective copy-move forgery detection algorithm using fractional
quaternion Zernike moments and improved PatchMatch algorithm

Chen Beijing"*®’  Gao Ye'

Yu Ming'

Wu Peng'  Shu Huazhong'

('School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China)
(*Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,

Nanjing University of Information Science and Technology, Nanjing 210044, China)

(*Key Laboratory of Computer Network Technology of Jiangsu Province, Southeast University, Nanjing 210096, China)

(*Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China)

Abstract: An effective algorithm is proposed to detect copy-
move forgery. In this algorithm, first, the PatchMatch
algorithm is improved by using a reliable order-statistics-based
approximate nearest neighbor search algorithm (ROSANNA)
to modify the propagation process. Then, fractional quaternion
Zernike moments ( FrQZMs) are considered to be features
extracted from color forged images. Finally, the extracted
FrQZMs features are matched by the improved PatchMatch
algorithm. The experimental results on two publicly available
datasets (FAU and GRIP datasets) show that the proposed
algorithm performs better than the state-of-the-art algorithms
not only in objective criteria F-measure value but also in
visual. Moreover, the proposed algorithm is robust to some
attacks, such as additive white Gaussian noise, JPEG
compression, rotation, and scaling.
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ver the past years, digital images have played a ma-
O jor role in communication through the internet and
other broadcast media. Moreover, digital images are one
of the most important evidences for criminal investiga-
tions in courts. Unfortunately, with the rapid develop-
ment of sophisticated multimedia processing technology,
digital images can be tampered easily with invisible
traces. Due to this fact, many researchers have begun to
deal with the problem of digital image forgery. Copy-
move forgery constitutes one of the most preliminary
types of digital image forgeries, where regions of an im-
age are cut and pasted onto some other locations within
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the same image'".

In recent years, passive forensics approaches have been
extensively and successfully used in copy-move forgery de-
tection”™. They detect traces of tampering without using
prior information, while active approaches need to embed
information into a source image. Passive approaches usual-
ly consist of four main steps': 1) Pre-processing. Some
pre-processing operations, such as low pass filtering, color
conversion, image resizing, subdivision, and key-points
extraction, etc., are very necessary; 2) Feature extrac-
tion. The suitable features are extracted from the overlap-
ping or non-overlapping blocks for block-based approach,
and obtained from the neighborhood of each key-point for
key-points-based approach; 3) Feature matching. The po-
tential copy-move pairs are detected by searching image
pixels or patches with similar features; 4)Post-processing.
False alarms are removed and the missing regions are re-
stored. Moreover, the copy-move regions are highlighted.

Feature extraction is one of the most important steps in
copy-move forgery detection. So, many works have been
proposed for extracting suitable features. These features
can be grouped in two categories: spatial-based features
and transform-based ones. The spatial-based features in-
clude the red, green and blue components', histogram
of orientated gradientsm, and the multi-level dense de-
scriptor'® . The transform domain-based features can be
categorized as frequency-based, moment-based, and di-
mensionality reduction-based. Frequency-based features

. . . 1
include discrete Cosine transform'",

71

discrete wavelet

, Fourier-Mellin transform'™', and polar Co-

. 9 .
sine transform!’. Moment-based features include the
[10-11]

transform

, Tchebichef moment'?, and polar

. 3 . . .
complex exponential moment'"”. Dimensionality reduc-
(14]

Zernike moment

tion-based features include singular value composition
"I The spatial-based
features usually have less computational complexity and

and principal component analysis'

perform better in a plain case than the transform-based
features, while the transform-based features are usually
more robust to some additional operations than the spatial-
based features. So, in order to take the advantage of both
the spatial-based features and the transform-based ones,
some researchers use fractional transforms to extract the
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features of the region of interest'"*"”'

Mathematically,
fractional transforms can be regarded as a rotation of sig-
nals in the time (or space)-frequency plane, and, there-
fore, have attracted much attention'"”. Moreover, all the
spatial-based features and transform-based features men-
tioned before are extracted from the graying versions of
color forged images or from three color channels inde-
pendently. As a result, they ignore the importance of col-
or information or the correlation between color channels

and the entirety of the three channels''*?"

. 820
ternion-based method!"*™”,

. So, the qua-
where the three channels of
color image are encoded into the imaginary parts of the
quaternion representation ( QR), is also used to process
color forged images efficiently. Finally, the fractional
quaternion-based feature, i. e., fractional quaternion
Zernike moments ( FrQZMs), is considered in this paper.

Besides feature extraction, feature matching also plays
an important role. Exhaustive search is the simplest and
most straightforward algorithm to find the best matching
feature, but it has extremely high complexity. Therefore,
some researchers have paid much more attention to find-
ing an effective feature matching algorithm. Approximate
nearest-neighbor search strategy” * """ becomes a good
solution to this problem. In Ref. [8], simple lexico-
graphic sorting is used to speed-up feature matching, but
it is very sensitive to noise. In addition, some sophisti-
cated fast search algorithms, such as kd-tree search” and
locality sensitive hashing (LSH)"", are considered to
improve the robustness. However, these algorithms are
still too slow when computing the nearest-neighbor field
for the large images generated by today’ s cameras. A
much better result can be achieved by the PatchMatch al-
gorithm in Ref. [10]. Bi et al.'* improved the Patch-
Match algorithm by considering the priority-based matc-
hing based on the reflective offset priority and the position
priority. Nonetheless, the PatchMatch algorithm'*'" is
still affected significantly by its random initialization.
When random initialization is not well, many iterations
are needed and some mismatching arises. So, the approx-
imate nearest neighbor field obtained by the reliable or-

(n=| m[)/2

0
n

der-statistics-based approximate nearest neighbor search
algorithm ( ROSANNA) is used to improve the random
initialization in the PatchMatch algorithm.

1 Some Preliminaries

In this section, we recall some quaternion color repre-
sentation, FrQZMs and ROSANNA.

1.1 Quaternion number and quaternion color repre-
sentation

Quaternions are the generalizations of complex num-
bers. A quaternion has one real part and three imaginary
parts given as

g=a+bi+cj+dk (D)

where a, b, ¢, d €R, and i, j, k are three imaginary
units obeying the following rules
==k =-1,
Jk= -k =i,

ij = -ji=k

ki= -ik=j 2

If the real part a = 0, g is called a pure quaternion.

Let f{r, #) be an RGB image defined in polar coordi-
nates, and each pixel can be represented as a pure quater-
nion by the quaternion representation

fr ) =fo(r, )i+ fo(r,0)j +f(r, 0)k (3)

where f,(r, 6), fo(r, ) and f,(r, @) are respectively
the red, green and blue components of the pixel (x, y).

1.2 Fractional quaternion Zernike moments

Let f{r, ) be an RGB image represented by Eq. (3),
and the right-side FrQZMs is introduced as

1 27

FrQZM,, () = fﬂ f Ro(DfCr, 0)e "' rdodr.  (4)

where « is the fractional parameter, o« eR"; n and m are the
order and the repetition, respectively, satisfying the condi-
tion that |m|<n and n — Im| are even; u is a unit pure qua-
ternion such asu =ai + bj + ck, a, b, c R, ”MH =1.
R, ,(r) is the real-valued radial polynomial given as

r=20

(-D*n -k ko1 (3

Ran,m(r) = { +1 \/& Z

I

For a digital RGB image f(x, y) of size N x N, the
right-side discrete DFrQZMs can be written as

DFrQZM,, () = 3, 3, Ry u(r, )fix, y)e™™ (6)

where r_ and 6, are given as

r =

c,y+c
. (clx+cz)2+(cly+c2)2,0),‘y:tan"(ily 2)

X+,

(7)

K((n+ |mD/2 -0 ((n=|mD/2 -kt

0<r=<li

with ¢, =2/(N-1), ¢, = = 1//2.
1.3 ROSANNA

The ROSANNA algorithm first proposed by Verdoliva
et al. " is a fast approximate nearest neighbor search al-
gorithm based on the properties of ordered vectors. It is
used to search the approximate nearest neighbor field for
some applications, such as image retrieval, and feature
matching. In order to speed up the search, ROSANNA



An effective copy-move forgery detection algorithm using fractional quaternion Zernike moments ...

433

first divides the search space into some small subspaces
and then processes the search in subspaces. Moreover,
Verdoliva et al. ”"' present a new method to ensure that
the space partitions effectively. This new method is based
on the index and the sign of the largest components. Tab.
1 shows an example of space partition for fourteen 3D da-
ta (x,, x,, X;).

Tab.1 An example of space partition for fourteen 3D data

)4 c x1 X2 X3
-33 22 -5

0 -23 -20 13

1 -11 8 10
68 44 -17

! 99 -32 23

0 -2 -19 10

-1 -13 0
2 23 32 -11

1 22 43 2

-1 45 32
11 14 -20
0 22 11 -32
3 32 -2 -45
1 11 3 32

i F
Overlapping [ i FrQZMs
blocks L feature
division i extraction
T
it

In Tab. 1, the fourteen 3D data are first classified into
three classes (p =1, 2, 3) according to the position of
the largest components. Then, each class is further divid-
ed into two subclasses; i.e., ¢ =1 for the positive val-
ues, and ¢ =0 for the negative values. Finally, the four-
teen data are divided into six subspaces according to p and
c. Experimental results in Ref. [21] show that ROSAN-
NA works very well for both unstructured data and real-
world structured data.

2 Proposed Copy-Move Forgery Detection Algo-
rithm

This section describes the proposed algorithm in detail.
Fig. 1 shows the framework of the proposed algorithm.

The proposed algorithm also includes four stages: the
pre-processing stage, feature extraction stage,
matching, and post-processing. In the feature extraction

feature

stage, FrQZMs features are extracted from the overlap-
ping blocks. The reason of using FrQZMs feature is that
FrQZMs has the following advantages: 1) FrQZMs uses
the QR to process color images and the main advantage of
the QR lies in that a color image can be treated holistically

Random offsets Reflective Patch priorit
and ROSANNA |—= offsets [ prionty
: f computation

offsets computation| computation

Feature matching

Mapping Updated ;

offsets offsets ]
Priority-based| i
feature Rantinm Iteration>N; )

: searching i
matching i

False alarms
removal

Morphological
dilation

i [Optimal offsets

regularization

Post-processing

Fig.1 The framework of the proposed copy-move forgery detection algorithm

as a vector field; 2) FrQZMs can utilize the advantages
of both the transform-based features and spatial-based fea-
tures; 3) FrQZMs uses all the four components of each
FrQZM coefficient to consider the magnitude information
as well as the phase information. In the feature matching
stage, the potential copy-move block pairs with the same
or similar features are identified by the matching algo-
rithm. In this paper, the improved PatchMatch algorithm
and the ROSANNA algorithm are combined for effective
feature matching. The improved PatchMatch algorithm
used in Refs. [4, 19] considers the priority-based matc-
hing based on the reflective offset priority and the position
priority. The improved PatchMatch has demonstrated bet-

ter performance than most of the current matching algo-
rithms, such as the kd-tree algorithmm , the locality sen-
sitive hashing algorithm'"! and the original PatchMatch
algorithmm]. However, as described in subsection 1. 3,
the random initialization in the improved PatchMatch al-
gorithm affects the performance of PatchMatch signifi-
cantly; moreover, the ROSANNA algorithm is used to
search the approximate nearest neighbor field for feature
pre-matching, thus the probability of obtaining the opti-
mal matching patch from the ROSANNA algorithm is
usually higher than that from the random algorithm. So,
in this paper, the approximate nearest neighbor field ob-
tained by ROSANNA is used to improve the random ini-
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tialization in the PatchMatch algorithm.

The detailed steps are summarized as follows.

1) Overlapping patches division. In order to achieve
pixel-level accuracy, the forged image is divided into
numbers of overlapping patches with a step of 1 pixel,
and each block is then represented by a pure quaternion
matrix using the QR shown in Eq. (3). Moreover, in or-
der to make the proposed algorithm robust to scaling and
rotation distortion, a multi-scale strategy is considered
here by dividing the forged image into two overlapping
circular patches with the size of radius 4 and 8 pixels for
each position.

2) FrQZMs feature extraction. The FrQZMs feature up
to the 5th order is computed for each circle patch.

3) Random offsets and ROSANNA offsets computation:
Each patch is assigned by random mapping offsets and RO-
SANNA offsets. The random mapping offsets are obtained
from independent uniform samples across the full image,
while the ROANAAN offsets are derived from the approxi-
mate nearest neighbor field by the ROSANNA algorithm.

4) Reflective offsets computation. For each patch, two
types of reflective offsets are calculated from random off-
sets and ROSANNA offsets: random reflective offset
ROy, .0om an1d ROSANNA reflective offset ROpoganna- Tak-
ing ROgqganna @s an example, suppose that P;(x;, y;) and
P,(x,, y,) are the corresponding patches for P,(x,, y,)
and P (x;, y,), respectively, according to their corre-
sponding ROSANNA offset MO(P)) = (x;, y;) —(x;, ;)
and MO(P)) =(x,, y,) —(x;, y;,). The reflective offset
of a target patch P, according to the ROSANNA offset can
be achieved by the following equation:

ROgosawna(P)) = MO(P)) + MO(P_,-) (8)

The reflective offset ROy, ,,..(P;) according to random
offset for the patch P, can be obtained using a similar
way.

5) Patch priority computation: For each target patch
P, two types of candidate patches to be matched for P,
are found and their priorities are then calculated. As for
the two types of candidate patches, the first type Cands,
are obtained by the random offsets of the patches in the
neighborhood of P;, while the second type Cands, , is ob-
tained by the ROSANNA offset of P, itself.

The priorities of Cands, ; are determined by the patches
Neigh, ; in the neighborhood of P;, which is used to find
Cands, ;. In detail, they are determined by the random re-
flective offsets and the positions of the corresponding pat-
ches Neigh, | according to the following equation:

Pr(Cands, ,)=Pr(RO (Neigh, |))+Pr(Position(Neigh, ,))

Random

(9)
where
1 RO,, Neigh. <2
PH(RO,  (Neigh ) = ) | Oman(NiEh
’ 0 otherwise
(10)

174 dist(P,, Neigh, ) =1

1/2  dist( P,, Neigh, ;) =2

3/4 dist(P,, Neigh, ;) =2

1 dist( P,, Neigh, ) =22
(11)

Pr(Position(Neigh, |)) =

where dist( P;, Neigh, ) represents the physical Euclidean
distance between the target patch P, and each patch
Neigh, | in the neighborhood of P;.

The priorities of Cands,  are decided by the random
ROSANNA offset and the position of P, according to the
following equation:

Pr(Cands, ;) = Pr(ROyusuwa(P;)) + Pr(Position( P;))
(12)

where Pr(Position(P,)) = 1.

I IROposmua(P) [ <2 )

Pr(RO P)) =
( rosanna () {0 otherwise

where the objective of setting Pr( Position( P;)) to 1 is
that, the candidate patches Cands,, can have higher
priorities than the candidate patches Cands, , when they
have the same random offset priorities, 1i. e.,
Pr(ROgosanna(P;)) =Pr(RO (Neigh, ).

6) Priority-based feature matching: The patches are
matched in order of priorities according to their corre-
sponding FrQZMs features. If the feature distance be-
tween a candidate patch and the target patch P, is smaller
than that between the current optimal matched patch and
P,, this candidate patch is used to update the current opti-
mal matched patch and then the feature matching ends.
Finally, the offset of each patch is updated according to
the optimal matched patch of each patch.

7) Random searching: In order to minimize the risk of
local minima, random searching is carried out around the
target patch P, to check whether there is a better matched
patch or not. If there is a better matched patch, the offset
of P, is further updated.

8) Propagation: If the number of iterations from Steps
4) to 7) is greater than threshold N,, the updated offsets
obtained in the previous step are regarded as the final op-
timal offsets and the iteration ends; otherwise, the upda-

Random

ted offsets are used to replace the random offsets and the
ROSANNA offsets of Step 4) and then the steps from
Steps 4) to Step 7) repeat. Note that, only one type of
offsets, i. e., the updated offsets, are considered in a
new iteration. The random offsets and the ROSANNA
offsets are not used in the new iteration. In addition, the
priority computation refers to the method of the first type
given in Eq. (9).

9) Post-processing of optimal offsets: Since the opti-
mal offsets may be affected significantly under an attack
with noise, compression, geometric deformations, illu-



An effective copy-move forgery detection algorithm using fractional quaternion Zernike moments ... 435

mination changes and look-alike regions, dense linear fit-
ting used in Ref. [ 10] is used to regularize the offsets.
The dense linear fitting of the obtained optimal offsets is
implemented by a mean-squares linear model over a cir-
cular neighborhood of radius 6. If the mean-square error
of a circular neighborhood for a pixel is smaller than 300,
this pixel is regarded as being tampered. The reason is
that the copied part should match the pasted part in copy-
move forgery. So, the pixels in the copied part should
have very similar offsets, thus all of them are mapped to
the pixels in the pasted part. So are the pixels in the pas-
ted part.

10) Post-processing of detected regions: Two operations
are employed to remove false alarms. The first one is used
to remove the very small detected regions (the size is
smaller than 1 200 pixels) because these regions usually
correspond to noise. The second one is to remove the
matched regions very close to each other (the distance be-
tween them is smaller than 50 pixels) because the very
close regions usually correspond to a uniform background.
In addition, a morphological dilation with a circular struc-
turing element of a radius of 10 is used to smooth the de-
tected regions and restore the missing regions.

3 Experimental Results and Analysis

In this section, we evaluate the performance of the pro-
posed algorithm through various experiments. The experi-
mental results are presented as quantitative and visual da-
ta. The quantitative results adopt the following pixel-level
F-measure:

Precision Recall
F=2x Precision + Recall (14)
where Recall represents the probability that a forgery is
detected, while Precision shows the probability that a de-

tected forgery is truly forged. They are defined as

w A

(b)

Fig.2 Some representative copy-move forged images from two datasets under different additional operations and their correspond-

TP
(15)

Prcision =
T, +F,

P
Recall = ﬁ,
where T, is the number of correctly detected pixels; F\y is
the falsely missed forged pixels; and F, is the number of
pixels erroneously detected as having been forged. These
experiments were implemented in Matlab2010 on a Thi-
nkStation P500 with 2.40 GHz CPU and 16 GB RAM.

3.1 Experimental datasets

The experiments are carried out on two publicly availa-
ble datasets. The first dataset FAU"' has 48 original ima-
ges and 43 of them are with a 3 000 x 2 000 resolution.
The second dataset GRIP'" is composed of 80 original im-
ages with a 768 x 1 024 or 1 024 x 768 resolution. Typical-
ly, the forged images in the two datasets are generated by
extracting many snippets from the original images and then
coping and pasting these snippets into their corresponding
source images. In order to evaluate the robustness of the
copy-move forgery detection algorithm, the forged images in
both the datasets undergo some additional operations and at-
tacks. The additional operations and their parameter are lis-
ted in Tab. 2. Some representative tampering images and
their corresponding ground truth images are shown in Fig. 2.

Tab.2 Additional operations and attacks in two datasets

Additional operations

Levels
and attacks evels
Scaling factors vary from 0. 91 to 1. 09 in
Scaling steps of 0.02, and two large factors are 0. 8
and 1.2
Rotati 1 from 2° to 10° in st
Rotation otation angles vary from 0 in steps

of 2°

Standard deviation values range from 0. 02

Gaussian noise t0 0. 10 in steps of 0.02

Quality factors vary from 20 to 100 in steps

JPEG i
compression of 10

K.

(d) (e)

ing ground truth images. (a) Plain; (b) Gaussian noise ( standard deviation 0.04); (c) JPEG compression ( quality factor 40); (d) Rotation (an-

gle 4°); (e) Scaling (factor 1.2)

3.2 Test of the proposed color image forgery detec-
tion algorithm

The proposed algorithm uses some parameters that are
the same as those in Refs. [19, 21] for the feature matc-
hing step, and the same as Ref. [ 10] for the post-process-
ing step. The rest parameters are set according to the ex-
periments. For the FrQZMs feature extraction, the unit
pure quaternion g is the commonly used one (i +j +k)/

V3, and the fractional parameter o will be discussed in

the following test. For the feature matching by the im-
proved PatchMatch algorithm, the number of PatchMatch
iterations N, is 5.

The fractional orders are different, and the FrQZMs
features are also different. As a result, the performance
of forgery detection is also different. Therefore, the
effect of the fractional order is evaluated for the proposed
algorithm. For the 80 plain copy-move forged images in
the GRIP dataset, the fractional orders vary from 1 to 19
with a step size of 1. The F-measure values of different
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fractional orders are given in Fig. 3. It can be observed
from this figure that the F-measure values are fluctuating
slightly and falling overall with the increase in fractional
orders and the optimal fractional order is 2. Therefore,
the fractional order 2 is considered in the following exper-
iments for the proposed algorithm.

0.971

0.96

0.95|

F-measure

0.94

1
17 19

093 1 1 1 1 1 1 1
1 3 5 7 9 11 13 15

Fractional order

Fig.3 Pixel-level F-measure values of the proposed algorithm
with different fractional orders

In order to evaluate the performance of the proposed
copy-move forgery detection algorithm, the proposed al-
gorithm is compared with some current algorithms, such

as  Bi2017",  Bi2016'',  Zandi2016"',  Cozzoli-
102015""", Chen2018""', and Li2016"™'. Bi et al. " uti-
lized a novel and fast reflective offset-guided searching al-
gorithm. Bi et al. """ used an adaptive polar based filtering
in the last step of the CMFD to improve matching results.
Zandi et al. ™ proposed a new interest point detector by
utilizing the advantages of both keypoint-based and block-
based algorithms. Cozzolino et al. """ proposed an algo-
rithm based on polar Zernike moments and the Patch-
Match algorithm. Their algorithm overall outperforms
some previous algorithms proposed by Christlein et
al. »*™1 Chen et al. " proposed an algorithm based on
FrQZMs and the PatchMatch algorithm. Li et al. "' used
quaternion discrete cosine transform (QDCT) coefficients
as the feature. The comparison results are presented in
Tab. 3 for the plain copy-move forgery. Since some of
the state-of-the-art algorithms report result only in one of
two datasets, the symbols “—” in Tab. 2 represent that
there are no results for Zandi2016 and Bi2016 on the
GRIP dataset. The results in this table indicate that the
proposed algorithm is better than other algorithms except
for Bi2017 for the GRIP dataset.

Tab.3 Pixel-level F-Measure values for the plain copy-move forged images

Dataset Bi2016 Zandi2016 Li2016 Cozzolino2015 Bi2017 Chen2018 Proposed
GRIP — — 0.9235 0.940 6 0.969 8 0.9533 0.960 9
FAU 0.887 2 0.9230 0.936 2 0.9372 0.938 7 0.9355 0.944 9

However, the real challenge is to detect the forged im-
ages under different kinds of additional operations and at-
tacks. In order to evaluate the robustness of the proposed

0.9¢ —e— Cozzolino2015
. -+-Li2016
0.8F -a-Bi2017
——Chen2018
L ——
§ 0.7 Proposed
2
g 0.6
0.5
04 1 1 1
0.02 0.04 0.06 0.08 0.10
Standard deviation of Gaussian noise
(a)
1.00
—e—Cozz0lin02015
-w-L1i2016
-a-Bi2017
——Chen2018
0.95 —s— Proposed
o
2
3
& +.
0.90 Sl S
0.85 Il 1 1 )
2 4 6 8 10
Rotation angel/(°)
(¢)

algorithm, four different additional operations and attacks
listed in Tab. 2 are considered. The results of F-measure
values for two datasets are shown in Fig. 4 and Fig. 5,

1.0
0.9
0.8
207 _g=F
< =
g 06 7 -=-Li2016
& 0.5F -a-Bi2017
—o—Chen2018
0.4¢" —s— Proposed

1 L 1 1 L Il L J

0.3
20 30 40 50 60 70 80 90 100
Quality factor of JPEG compression

(b)
1.00
0.95
[
2 .
S 0.90%:Z
5
- —e—Cozz0lino2015
--Li201
0.85 -a-Bi2017
—o—Chen2018
—=— Proposed
0.80 L L )

1 1
093 097 1.01 1.05  1.09
Scale factor

(d)

Fig.4 Pixel-level F-measure values for four types of additional operations and attacks on GRIP dataset. (a) Gaussian noise operation;
(b) JPEG compression operation; (c) Rotation operation; (d) Scaling operation
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0.95

F-measure

10 1 1 1 Y
0.02 0.04 0.06 0.08 0.10
Standard deviation of Gaussian noise

(a)

o
0
[
T
/
/
/

F-measure
(=]
o0
S
T

0.75F *
0.70
1 1 1 \I‘
0'652 4 6 8 10
Rotation angel/(°)
(¢)

1.0

0.2 4 1 1 1 1 1 1 1 J
20 30 40 50 60 70 80 90 100

Quality factor of JPEG compression
(b)

1.001

0.65 L

1 1
0.93 0.97 1.01 1.05 1.09
Scale factor

(d)

—e— Cozzolino2015; -+-Li2016; --+-Bi2016; ——Zandi2016; -=-Bi2017; ——Chen2018; —=—Proposed

Fig.5 Pixel-level F-measure values for four types of additional operations and attacks on FAU dataset. (a) Gaussian noise operation;
(b) JPEG compression operation; (c) Rotation operation; (d) Scaling operation

respectively. In addition, in order to demonstrate the per-
formance of using a multi-scale, Tab. 4 presents the re-
sults for the scaling additional operation with the large
factors (scaling factors 0.8 and 1.2). It can be observed
from these results that: 1) F-measure values usually de-
crease with the increase in the additional operation levels
and attack levels; 2) The proposed algorithm achieves an
overall better performance than other compared algo-
rithms, especially for the GRIP dataset. In order to better
comprehend these results, the visual results are provided
in Fig. 6, where red indicates correct detection, and the
false alarms are in green. The columns of each subfigure,
from left to right are blank, with Gaussian noise with
standard deviation 0.04, JPEG compression with quality
factor 40, rotation with an angle of 4°, scaling with fac-
tor 1.2. The results in Fig. 6 show that the proposed al-
gorithm performs well in false detection and detecting de-
tails.

Tab.4 Pixel-level F-measure values for the scaling additional
operations with large factors on GRIP dataset

Factor 0.8 Factor 1.2
Dataset
Chen2018 Proposed Chen2018 Proposed
GRIP 0.748 9 0.844 2 0.884 8 0.920 9
FAU 0.901 2 0.9255 0.929 6 0.939 0

Therefore, the proposed algorithm performs better than
other compared algorithms not only in F-measure values
but also in visual data. The main reasons are as follows:
1) The FrQZMs feature in the proposed algorithm not on-
ly considers color information but also uses the quaterni-

on-based method to utilize both the magnitude and phase

(a)
(b

)

(c

)

(d)
(d)
Fig. 6 Visual results correspond to the copy-moved forged im-

ages shown in Fig. 2 under different additional operations for the
proposed algorithm. (a) Localization results for Fig. 2(a); (b) Lo-
calization results for Fig. 2(b); (c) Localization results for Fig.2(c);
(d) Localization results for Fig.2(d); (e) Localization results for Fig. 2

(e

information, while four compared algorithms ( Cozzolino
2015, Bi2016, Zandi2016 and Bi2017) extract features
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from the gray image; 2) The proposed algorithm adopts
the fractional feature FrQZMs using the advantages of
both the spatial-based feature and the transform-based fea-
ture and uses a more effective matching algorithm—the
improved PatchMatch algorithm, while the compared
quaternion-based algorithm Li2016 is based on the QDCT
feature and classical lexicographical matching; 3) Com-
pared to the FrQZMs-based algorithm Chen2018, the pro-
posed algorithm introduces ROSANNA to improve the
propagation process of the PatchMatch algorithm.

4 Conclusion

In this paper, we proposed a robust copy-move forgery
detection algorithm based on FrQZMs and the improved
PatchMatch algorithm. FrQZMs have been considered for
extracting features from color forged The
FrQZMs feature not only uses the quaternion-based meth-
od to utilize color information effectively, but also makes
use of both the advantages of the spatial-based features
and the transform-based ones. The PatchMatch algorithm
has been improved by using ROSANNA offsets during the
first propagation stage.
that the proposed algorithm outperforms some current al-
gorithms not only in F-measure value but also in visual
data.

images.

The experimental results show
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