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Abstract: For further exploring the confidentiality of optical
communication, exponential synchronization for the delayed
nonlinear Schrodinger equation is studied. It is possible for
time-delay systems to generate multiple positive Lyapunov
exponents without the limitation of system dimension. Firstly,
the homoclinic orbit analysis is carried out by using the
bifurcation theory, and it is found that there are two

homoclinic orbits in the system. According to the
corresponding relationship, solitary waves also exist in the
system. Secondly, the Melnikov method is used to prove that
homoclinic orbits can evolve into chaos under arbitrary
perturbations, and then chaotic signals are used as the carriers
of information transmission. The Lyapunov
spectrum, phase diagram and time series of the system also
Thirdly,

synchronization controller is designed to achieve the chaotic

exponent

prove the existence of chaos. an exponential
synchronization between the driving system and the response
system, and it is proved by the Lyapunov stability theory.
Finally, the error system is simulated by using MATLAB, and
it is found that the error tends to zero in a very short time.
Numerical simulation results demonstrate that the proposed
exponential synchronization scheme can effectively guarantee
the chaotic synchronization within 1 s.
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I n recent years, optical secure communication based

on chaotic synchronization has become an active area
of research in the cross-convergence of international non-
21 Scientists pro-
posed a variety of chaotic synchronization methods and
applied them to secure communications.
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al. "' studied the passive control-based chaos synchroniza-
tion with circuit design for secure communication and
found that a single state passivity-based synchronization
signal can be effectively used for secure data communica-
tion applications in the real environment. Mata-Machuca

and Aguilar-Lopez"”

studied the adaptative synchroniza-
tion of complex dynamical networks with fractional-order
nodes and its application in secure communications em-
Durdu and

Uyaroglu'® studied the exponential stability for encrypts of

ploying chaotic parameter modulation.
signals in the synchronization of chaotic systems. Smaoui
et al. " proposed a novel secure communication scheme
based on the Karhunen Loéve decomposition and the syn-
chronization of a master and a slave hyperchaotic Lii sys-
tem. However, the low-dimensional chaotic system is eas-
ily deciphered, and hyperchaotic systems are not suitable
for practical applications due to their complex structure™ .

With the discovery of delayed chaotic systems, new
ideas are proposed for secure communication. Since the
time-delayed chaotic system can generate multiple posi-
tive Lyapunov exponents and is not limited by the system
dimension, a large number of studies on time-delayed
chaotic systems have been carried out. Oden et al. "*' pro-
posed a chaos communication scheme based on a chaotic
optical phase carrier generated with an optoelectronic os-
cillator with nonlinear time-delay feedback. Maheri and
Arifin'"®’ put forward the synchronization of chaotic sys-
tems which is defined based on the exponential stability
for the encrypts of signals. Abd et al.'"’ developed a
new cascade-coupled chaotic synchronization model based
on the first-order nonlinear time-delayed chaotic system.
However, as one of the best communication models, the
delayed nonlinear Schrédinger equation is rarely used for
secure communication. In fact, the propagation model of
optical fibers is described by the nonlinear Schrodinger
equation, so the optical fiber transmission system cannot
be separated from the nonlinear Schrodinger equation.
Yin et al. "' proposed an optical secure communication
scheme based on chaos synchronization,, which provides a
theoretical basis for studying the delayed nonlinear Schro-
dinger equation. Therefore, this paper will study expo-
nential nonlinear

synchronization for the delayed

Schrodinger equation.
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1 Chaos Generation

This paper devises optical secure communication based
on the perturbed nonlinear Schrodinger equation'” ™’ by
chaos synchronization. The nonlinear Schrodinger equa-
tion is

iu, vu, o lulPu+ilyu, +y, [ulu, +

vs Clul®) u] =pucosw(x - ct) (1)

where y, (i =1,2,3) are real parameters;a is a positive
constant;u,w =0 denote the amplitude and the frequency
of the parametric excitation, respectively. More details for
the model can be seen in Refs. [ 13,15].

Suppose that Eq. (1) has traveling wave solutions in
the form

u(x,t) =a(&)exp( — i) c>0

(2)

E=x—ct

where c¢ represents the transmission speed of wave.
By the method of Ref. [ 13 ], we have

y.i@" —co + A’ = upcos (wé) (3)

where A = %yz + %73 refers to the parameter of linear

and nonlinear terms. Eq. (3) is a fiber-optic signal trans-
mission system in an ideal environment.

By setting y, =1 and using transformation ¢ = x, , x| =
x,, Eq. (3) can be rewritten as a set of two autonomous
differential equations as below :

X, =X,
| } (4)
x, = (ucos(wé) +c¢)x, — Ax,

Next, we consider the delayed system (4) which can
be written as

x, (1) =x,(1) (5)
x, = (ucos(wé) +c)x, (t-1) —/\xl(tf}
If u=0,Eq. (5) is changed into

X, (1) =x,(1) } 6)

X, =cx, (t-7) = Ax, (1)°

1.1 Analysis of homoclinic orbits

It is known from the calculation that Eq. (6) has three

equilibrium points, E, ( - /%,0), E, ( /%,0) and

E,;(0,0). Let J, be the Jacobian matrix for these
equilibrium points, then we obtain

0 1

Ie = [c -3Ax; 0]

It is easy to find that its eigenvalues are A,, (J,) =

£/ =2cand A, (J,) = +./c. Therefore, we conclude
that E,and E,are the center equilibriums and E,is a saddle

point for any ¢ >0. Furthermore, Eq. (6) has the follow-

ing Hamiltonian function

C 2
1

H('x] 9x2) :%X; -5 X

. st =n (D

4

where h is a constant. It is noted that the Hamiltonian
function is composed of two homoclinic orbits at point
E,. According to the bifurcation theory'”’ | Eq. (6) has
two optical solitons followed by two homoclinic orbits:
the positive one achieves its crest at x = /2¢/A , and the

negative one has a valley at x = — \/2¢/A (see Fig. 1 as
A=2.2,c=2.2).

101

06

1.5

0.5f

(b)
Fig. 1  The profile of soliton in the unperturbed system.
(a) Phase portrait of Eq. (6); (b) The profile of solitary

1.2 Analysis of chaos

The optical soliton always turns into chaos under the
perturbation formed as Eq. (1). We cannot ignore such a
fact that the solitary wave solution of the nonlinear evolu-
tion equation is equivalent to the homoclinic orbit of the
corresponding dynamic system. In this section, we will
prove that homoclinic orbit evolves into chaos under ex-
ternal disturbance by using the Melnikov method.

Unperturbed homoclinic orbits can be written as (a,b)
=(a,(t),b,(t)). According to the Melnikov method,
the Melnikov function for Eq. (3) is defined as

M(t,) :f by(t)ucos(w(t +t,))de :'U“z—wsinwtul
(8)

+o0

where [ = j a;cos(wt)dt is a function of w.

-
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According to the Melnikov method, chaos occur if
M(t,) =0 and M'(t,) # O for some #,. We observe
that M(0) = 0 and M'(0) # 0. Hence, the optical
soliton can turn into chaos under the perturbation.

To verify the above fact, we will investigate the
Lyapunov exponents, phase portraits and time series of
Eq. (6). The parameters of Eq. (6) used for simulations
are listed as follows: w = 0.27,7 =0.1,¢c =0.8,A =
2.2, w = 0.47. Then the Lyapunov exponents are
shown in Fig. 2, the phase portrait is shown in Fig. 3,
and the time series are shown in Fig.4. As can be
seen in Fig. 2, the Lyapunov exponents are positive so
that the motion of Eq. (3) is chaotic. The phase portrait
and corresponding time series also show the existence of
chaos.
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Fig.2 Lyapunov exponents versus ¢ of system (5)
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Fig.3 Phase portrait x, -x,
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Fig.4 The time series of x, and x,. (a) x;; (b) x,
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2 Problem Description

2.1 Exponential stability

In this section, we consider the delayed system (4).
For ease of description, the delayed system can be

written as
x, (1) =x,(1) }
X, (1) = acos(w&)x, (t —7) +bx,(t) —cx, (1)’
(9)

Let Eq. (9) for the drive system and the correspond-
ing response system be as below;

¥ (1) =y, (1) +p, }

)}z(t) ElCOS(wf))q(l -7) +By1(t) _éyl(t)3 +u,
(10)

where a,b and ¢ are parameters to be estimated ; u, and
M, are the controllers to be designed to achieve
exponential synchronization between the drive system
and the response system.

The error signal is selected as e(t) = y(t) — x(1),
and the controller is the error feedback control as
below :

0
(1)

where K is the control gain matrix which makes the

u(1) = Ke(1) =[’; ]?][e'é” , ](11)

trajectory between the driving chaotic system (9) and
the response chaotic system (10) achieve exponential
synchronization.

Definition 1 The system is exponentially stable if
> 0,p > 0 and for each e(t) solution of the system,
the following inequality holds:

le() | =pe™ sup [le(A) | Yi>0 (12)

where 6 is the exponential convergence rate; || - ||
denotes the Euclidean norm of a vector.

The controller is selected as the form of (11) and
the error variables between systems (9) and (10) are

e (t) =y (1) —x, (1)

e, (1) =y,(t) —x,(1)
e(t—-7) =y, (t-7) —x,(t =7)

(13)

Then, we obtain the error system:

e (1) =e (1) +kel(r)

e,(t) =cos(wt)[(a -a)y (t —7) +ae (t—7)] +
[(b=b)y, +be, ()] =[(c=c)y (1) +
ce, (1) (yi (1) +y,()x, (1) +x,(1))]

(14)
Furthermore, lete(A) = {e, (1) ,e,(A)}T =¢(A),
Ael-7,0].
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2.2 Synchronization based on exponential stability

Theorem 1 The response system(10) will synchro-
nize exponentially with the driving system (9) for any
initial values. If ¢(A) # 0, the exponential synchron-
ization controls are chosen as control laws and the
following matrix inequalities hold:

2p0 +q +2pk,
p +pb

p +pb

0 + qil ez‘”pza2 +2pk,

The undetermined parameters of response system
(10) are as below:

a =—e"pacos(wt)y, (t —71)e,(t)

b =—e"py, (e, (1) (15)

¢ =e"pyi(1)e, (1)

where p,q,0 > 0.
Proof Let

V(e(1)) =e"p(ei(1) +ei(1)) +

t

| eaei(s)ds+ (i) + (1) +el(n)
(16)

where e, =a —a,e, =b —aand e, = ¢ — ¢ are the
estimation errors of a,b and ¢, respectively. The time
derivatives of function (16) for the error system (14)

and control laws (11) are

V(e(t)) =e™[20p(e; +e,) +2p(e e, +e,e,) +qe, —

e?gel ] +2(e,e

e, tee, +ee) =

e’ [20p(el +e; +qel) +2p(ee, +kel) +
2pcos(wt) ((a —a)y, e, +ae,_e,) +
((b=b)ye, +bee,) —((c—c)yie, +

>

ﬁfqei- ] +

(17)

cee, () +y,x, +x,) +ke;) —e”
2e,a +2e,b +2e,c
Substituting Eq. (14) into Eq. (17) yields
Vie(t)) =e™[(26p +q +2pk,)e; +(26p +2pk,) e +

(2p +2pb —2pc(yf + X +xf))€1€2 +

or 2
ge,. ] <

2pae, e,cos(wt) —e™
e[ (20p +q +2pk,) e} + (26p +2pk,)e> +
-1 26r_ 2 2 2

(2p +2pb)ee, +q e p'a‘e;] <
[(20p +q +2pk,)e; + (20p +2pk, +

g e p’a’)e; + (2p +2pb) |lee, || ] =
e'Ae (18)

where

p +pb

-1 29,—p2 a2 + 2pk2

A 2p0 +q +2pk,
2p0 +q e

- p +pb

From Theorem 1, A < 0,and we obtain V(e(t)) < O.
Therefore,V(e(t)) < V(e(0)).

0
V(e(0)) =p(e +e-2°) + f e qel(s) +(é +e, +e) <

-7

1
p||¢’||2+q%ll¢llz+(€i+ei+€i) (19)

For >0,
V(e(0))<n sup fle(r) ||’ (20)
For
V(e(r))=e"p | e(r) |’ (21)
Therefore,
'p<n sup fe(A) |’ (22)
That is
le(t) || <pe™ sup [ e(A) | (23)

-7<A<0

where p =np ~'. Therefore, in this case, the synchroniza-
tion of driving system (9) and response system (10) are
sufficiently achieved.

3 Results and Discussion
3.1 Simulation

In this section, we will analyze the performance of the
delay chaotic secure communication system. System
(12) was simulated in Matlab-Simulink and the results
are shown in Fig. 5. The initial conditions of the response
system and driving system are x, = [0.03 0.01]",y, =

151

10F

Time ¢
(a)

50

' =50

e,
(=}
——

-100 |

1 1 1 1 ]
150, 2 4 6 8 10

Time ¢

(b)

Fig.5 The error curves. (a) Error ¢, ;(b) Error e,
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[15 2]7, respectively. The initial value of the parame-
ters is chosen as a =0.15, 5 =3.1,¢=3.1. When the
exponential convergence rate § =0.2, we obtain p =2.6,
q=0.52, k = -15.5, k, = -13.8.

Fig. 5 shows the synchronization difference ( error) be-
tween systems (9) and (10). It is obvious that the error
system tends to zero very fast( within 1s) , indicating that
the signal is sent and received faster with a better accura-

cy.

3.2 Discussion

Undoubtedly, there are abundant research results re-
garding chaotic secure communication, especially for the
increasing number of alternative communication models.
Considering that the propagation model of optical fibers is
described by the nonlinear Schrchrodinger equation as we
mentioned in section 1, the nonlinear Schrchrodinger
equation with time delay is studied and applied to secure
communication in this paper. Firstly, the optical fiber
communication model studied in this paper is different
from that in Refs. [9,11 —12]. This paper studied the
delay nonlinear Schrchrddinger equation while Ref. [ 9 ]
studied the chaos communication scheme based on a cha-
otic optical phase carrier generated with an optoelectronic
oscillator. Ref. [ 11] studied the chaotic synchronization
model based on the first-order nonlinear time-delayed Lii
system. Secondly, the chaotic phenomena in this paper
('see Fig. 3) are different from those in the famous
Lorenz system, Chen system and Lii system. Thirdly,
the exponential synchronization controller designed in this
paper is similar to that in Ref. [ 16 ]. Finally, the numeri-
cal simulation results show that systems (9) and (10)
achieve synchronization in a very short time. By compa-
ring with Refs. [ 10,12 ], the synchronization speed in
this paper is the fastest.

4 Conclusions

1) In this paper, the optical secure communication
based on the delayed nonlinear Schrédinger equation was
studied. Chaotic signals are obtained with periodic pertur-
bation. Lyapunov exponential spectra, phase portrait and
time series are used to prove the existence of chaotic sig-
nals.

2) The sufficient criteria for the exponential synchroni-
zation of time-delay chaotic systems were obtained by
employing the Lyapunov stability theory and linear matrix
inequality technology.

3) Despite the differences between the driving system
and the response system, the exponential synchronization
can still be achieved by the driving-responding synchroni-
zation method. Numerical simulation shows that the error
tends to zero in a very short time (within 1 s).

References

[1] Vaseghi B, Pourmina M A , Mobayen S. Secure com-

munication in wireless sensor networks based on chaos
synchronization using adaptive sliding mode control [J].
Nonlinear Dynamics, 2017,89(3) . 1689 —1704. DOI.
10.1007/s11071-017-3543-9.

[2] Xiong L, Liu Z L, Zhang X G. Dynamical analysis,
synchronization, circuit design, and secure communica-
tion of a novel hyperchaotic system [ J]. Complexity,
2017, 2017 . 1 —23. DOI:10. 1155/2017/4962739.

[3] Acho L. A chaotic secure communication system design
based on iterative learning control theory[ J]. Applied Sci-
ences, 2016, 6(10) ; 311. DOI.10.3390/app6100311.

[4] Kocamaz U E, Cicek S, Uyaroglu Y. Secure communi-
cation with chaos and electronic circuit design using pas-
sivity-based synchronization [ J]. Journal of Circuits sys-
tems and Computers, 2018 ,27 (4) :1850057. DOI. 10.
1142/50218126618500573.

[5] Mata-Machuca J L, Aguilar-Lopez R. Adaptative syn-
chronization in multi-output fractional-order complex dy-
namical networks and secure communications [J]. Euro-
pean Physical Journal Plus, 2018,133.14. DOI. 10.
1140/epjp/i2018-11840-4.

[6] Durdu A, Uyaroglu Y. The shortest synchronization time

with optimal fractional order value using a novel chaotic

attractor based on secure communication [ J|. Chaos,

Solitons & Fractals, 2017, 104. 98 — 106. DOI; 10.

1016/j. chaos. 2017. 08. 008.

Smaoui N, Zribi M, Elmokadem T. A novel secure com-

munication scheme based on the Karhunen-Loéve decom-

position and the synchronization of hyperchaotic Lii sys-
tems[ J]. Nonlinear Dynamics, 2017, 90 (1) . 271 —

285. DOI.10. 1007/s11071-017-3660-5.

[8] Ding M Z, Ding E J, Ditto W L, et al. Control and syn-
chronization of chaos in high dimensional systems:; Re-
view of some recent results[ J|. Chaos: An Interdiscipli-
nary Journal of Nonlinear Science, 1997, 7(4) . 644 —
652. DOI;10. 1063/1. 166284.

[9] Oden J, Lavrov R, Chembo Y K, et al. Multi-Gbit/s
optical phase chaos communications using a time-delayed
optoelectronic oscillator with a three-wave interferometer

—
~
[

nonlinearity[ J|. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 2017, 27 (11). 114311. DOI. 10.
1063/1.5007867.

[10] Maheri M, Md Arifin N. Application adaptive exponen-
tial synchronization of chaotic dynamical systems in se-
cure communications[ J|. Advances in Difference Equa-
tions, 2017, 2017 . 96. DOI;10. 1186/513662-017-1158-
6.

[11] Abd M H, Tahir F R, Al-Suhail G A, et al. An adaptive
observer synchronization using chaotic time-delay system
for secure communication [ J]. Nonlinear Dynamics,
2017, 90(4) . 2583 —2598.

[12] Yin J L, Duan X C, Tian L X. Optical secure communi-
cation modeled by the perturbed nonlinear Schrodinger
equation[ J ]. Optical and Quantum Electronics, 2017,
49(10) : 317. DOI:10.1007/s11082-017-1111-7.

[13] Yin J L, Zhao L W, Tian L X. Melnikov’s criteria and
chaos analysis in the nonlinear Schrodinger equation with
Kerr law nonlinearity[ J]. Abstract and Applied Analysis ,
2014, 2014 1 —12. DOI.10. 1155/2014/650781.

[14] Taghizadeh N, Mirzazadeh M, Mahmoodirad A. Appli-



452 Bian Lishuang, Yin Jiuli, Tian Mengjiao, and Fan Xinghua

cation of Kudryashov method for high-order nonlinear ences, 2018,73 (4). 315 — 321. DOI. 10. 1515/zna-

Schrédinger equation [ J ]. Indian Journal of Physics, 2017-0400.

2013, 87 (8): 781 —785. DOI. 10. 1007/s12648-013- [16] Wan P, Sun D H, Chen D, et al. Exponential synchroni-

0296-2. zation of inertial reaction-diffusion coupled neural net-
[15] Gao H, Xu T Z, Wang G W. Optical solitons for the works with proportional delay via periodically intermittent

perturbed nonlinear Schrodinger equation with Kerr law control [ J]. Neurocomputing, 2019, 356. 195 — 205.

and non-Kerr law nonlinearity [ J |. Zeitschrift Fur DOI:10. 1016/j. neucom. 2019. 05. 028.

Naturforschung Section A—A Journal of Physical Sci-

i EEEEEEAENEHRES
REAXFRZBEDHINMNA
FTaw' pgaH’  wmEas e’

(AR IRFAHLFER, &K 210094)
(AR FEER, 4T 212013)

RE:ATH S RZATFBAZORERE, AR T B & 525 5 29 IEF F B A, i Rb R 4%
AAHFESAEGIHESERIBHOG TN, AR 2 AERGRAE. AR NS R ERITT REHRS
M R REIEZ GBI LR B R B £ 2, AR A LN ok, #) A Melnikov 7 #IE8] T [ 75 44
FEAEZ W T T A8 K Ay ok, m B R A3 5 1E 415 B AR ey k. & %09 Lyapunov 45 20 B A8 B L
B Bt 8] 53] M R AR ERR T Rk ey A M. FOR L IRGT T R R T AR B, FIIES) R G Ferh L R GG R
Fl ¥, 5f#] /| Lyapunov 442 W #6247 T £, )5, #) I MATLAB #}i% £ 2 ¥t 47 T #4845 A, K %
ERPAG TR FREREN IR BGIRBERA T T ETE s WEILIKS) ZAAA L ZAGEF.
F4IA 4R 1847 ; Melnikov 7 ik dF R B R F AR B H R P

HRESHES:0231.2



