Journal of Southeast University (English Edition)

Vol. 35, No. 4, pp. 453 —463

Dec.2019 ISSN 1003—7985

Study on size-dependent bending behavior of axially functionally
graded microbeams via nonlocal strain gradient theory

Kang Zetian

Wang Zhiyong

Zhou Bo  Xue Shifeng

(College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China)

Abstract: Based on the nonlocal strain gradient theory
(NSGT ), the static bending behaviors
functionally graded ( AFG)
subjected to concentrated and distributed loads are studied.

of an axially
Bernoulli-Euler microbeam
The material property of the AFG microbeam changes
continuously along the longitudinal direction. On the basis of
the minimum potential energy principle, the equations of
motion and associated classical and non-classical boundary
conditions are derived. Then, Galerkin’s weighted residual
method in conjunction with the normalization technique are
utilized to solve the governing differential equations. The
transverse deformations of the AFG microbeam suffering the
sinusoidal distributed load within the framework of NSGT,
nonlocal elasticity theory ( NET), strain gradient theory
(SGT) and classical elasticity theory (CET) are compared. It
is observed that the bending flexibility of the microbeam
decreases with the increase in the ratio of the material length
scale parameter to the beam height. However, the bending
flexibility increases with the increase in the material nonlocal
parameter.
important role in controlling the transverse deformation. This

The functionally graded parameter plays an

study provides a theoretical basis and a technical reference for
the design and analysis of AFG micro-beams in the related

regions.
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s a new group of non-homogeneous materials,
functionally graded (FG) materials have some de-
sirable performances to meet special needs in engineering
design''™. Recently, with the rapid development of mi-
cro-technologies, FG materials have been widely applied
in the micro-electro-mechanical system ( MEMS) and
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nano-electro-mechanical system ( NEMS). Many micro-
scale experiments” ™
pendent effects on the mechanical and physical properties

observed the significant size-de-

of micro sized systems. Due to the classical continuum
theory failing to capture the size effects of microstruc-
tures, Lim et al. "' extended Eringen’s nonlocal elasticity
theory' to include the nonlocality of higher-order strain
gradients, and firstly proposed the nonlocal strain gradient
theory ( NSGT) within the thermodynamic framework.
Afterwards, the NSGT was extensively used to study the
size-dependent behaviors of small scaled uniform and
homogeneous structures'” ' .

The nonlocal strain gradient models have been devel-
oped to study the size-dependent behaviors of FG micro-

U417 For instance, Ebrahimi et al. '™ derived

structures
the buckling equations of a transverse FG higher-order
curved nanobeam by using Hamilton’s principle. Then,
the closed form solutions are obtained by employing the
Fourier series method. Sahmani et al. '
nonlinear vibration characteristics of multilayer FG graph-
eme platelet reinforced composite nanobeams subjected to
axial loads based on the NSGT and third-order shear de-
formable beam theory. In this work, the governing equa-
tion and associated boundary conditions are developed and
solved with the aid of Hamilton’s principle and Galerkin
method. Lii et al. " investigated the influence of mate-
rial uncertainties caused by defects on the nonlinear ben-
ding and free vibration behaviors of transverse FG nano-
beams. Al-Shujairi et al. ™' studied the dynamic stabil-
ity, buckling and free vibration behaviors of transverse
FG sandwich microbeams according to the NSGT, estab-

lished the governing equations by using Hamilton’s prin-

explored the

ciple and solved them via the differential quadrature meth-
od.

In addition to these transverse FG microstructures
aforementioned, some works focused on the mechanical
behaviors of axially functionally graded ( AFG) micro-
structures, whose material properties or geometrical size
vary along the length direction. For example, Ghayesh et
al. " examined the size effects of the nonlinear bending
and forced vibrations of an AFG Bernoulli-Euler tapered
microbeam by using the modified couple stress theory,
Hamilton’s principle, Galerkin method and Newton-
Raphson technique. With the help of NSGT and
Hamilton’s principle, Rajasekaran et al. "' and Khaniki
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et al. ™' investigated the mechanical behaviors of non-
uniform nanobeams with a variable cross section along
their length. In their works, the governing equations were
solved, respectively, by employing the finite element
method and the generalized differential quadrature meth-
od. Li et al. """ used the NSGT to examine the bending,
buckling and free vibrations of AFG microbeams with the
aid of Hamilton’s principle and the generalized differential
quadrature method. Based on the NSGT, Karami et
al. ™ studied the free vibration behaviors of AFG porous
nanotubes by using Hamilton’s principle and the general-
ized differential quadrature method.

It can be seen from the previous published literature
that the studies of static bending of the AFG microbeams
are more limited than those about the bending of regular
and transverse FG microbeams. To the best of authors’
knowledge, there is no reported work related to the com-
prehensive analysis on the bending behavior of AFG mi-
crobeams bearing concentrated and various distributed
loads. This paper will fill this gap in the literature. The
size effect is taken into account with the NSGT. The ma-
terial properties of the AFG microbeam are assumed to
vary as a sinusoidal form. The equations of motion and
the related boundary conditions are derived via the mini-
mum potential energy principle. The numerical solutions
of the governing differential equations are reduced to ordi-
nary equations by means of the Galerkin method. The
effects of the ratio of the material length scale parameter
to the beam height, the material nonlocal parameter and
the FG parameter on the bending deformation of a simply
supported microbeam are examined in detail. Some of the
results in the present study are compared with existing re-
sults in the literature and a good agreement has been ob-
served.

1 Nonlocal Strain Gradient Theory

According to the NSGT", the nonlocal strain field of
every particle in an elastic continuum contains a high-or-
der strain tensor, and the nonlocal stress at a reference
point depends on both the nonlocal strain filed within the
region near the reference point. The total stress tensor can
be written as

dg

2 c XXX
o = O xx

dx (D

where the classical nonlocal stress tensor ¢, and high-or-
der nonlocal stress tensor &, are, respectively, defined
as

) d2
(1 -& Q)Ul—E«sw (2)
d2
( 1 - §2 @)OA—M’Y = le‘?ﬁ,x (3)

where ¢ is the material nonlocal parameter; ¢ and ¢, ,,
respectively, denote the strain and strain gradient compo-
nents; [ is the material length scale parameter; E denotes
the elastic modulus.

Substituting Eqgs. (2) and (3) into Eq. (1), one can
obtain the unified form of the constitutive relation based
on the NSGT as

d2 d2
(1 -¢ Q)Zn =E(1 -r Q)eu -1

» dE
- €&,

dx XX, X (4)

It is of interest that the constitutive equation based on
the nonlocal elasticity theory (NET) or pure strain gradi-
ent theory (SGT) can be recovered by setting [ = 0 or £
= 0 in Eq. (4), and the constitutive equation based on
the classical elasticity theory (CET) is recovered by set-
ting / = 0 and ¢ = O simultaneously in Eq. (4).

2  Governing Equations

Consider an AFG simply supported microbeam that has
length L, thickness & and width b, as illustrated in Fig.
1. The elastic modulus E varying continuously and
smoothly along the x direction can be expressed as

. TX
E(x) =E,[1+(n-1)sin 7] (5)
where E, denotes Young’s modulus when x = 0; 7 is the

FG parameter and it dictates the material variation profile
through the length of the size-dependent AFG beam.

qx) 1 b
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Fig.1 Simply supported AFG micro-beam subjected to an ar-
bitrarily distributed load

The displacement field of a Bernoulli-Euler beam takes
the form
dw(x)

u= -z i v=0, w=w(x)

(6)

where u, v and w denote the displacements along the
length (x), width (y) and thickness (z) directions, re-
spectively. Thus, the non-zero strain and strain gradient
components can be given by

2
d'w
dxz 4 gxx,,x

-z = -2 (7)

x T

Based on the NSGT, the virtual strain energy given by
Lietal ' is
8U = [ (0%, + 6,064V (8)
\4

where V is the volume that the elastomer occupies. By
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substituting Egs. (2), (3), (4) and (7) into Eq. (8) and
using integration by parts, the virtual strain energy can be
obtained as

L

L q? M
SU = -
o dx’ 0
dw\ |5 o dPwy | *
ms( &Y —Ma( ) 9
(dx) 0 d)C2 0 ( )
Here, we consider the moment resultants as
(M) = [ (3, 6..)2dA (10)
A
By substituting Eq. (4) into Eq. (10), it gives
d’M  Ebh’ » & \dw L dE bl d'w
=& - 1-I — 2=
M=&"¢2 "1 ( dxz)dxz Ui 12 ax
(11)

The virtual potential energy of the external load can be
expressed as
L
SW = - foqawdx (12)
where ¢ is the distributed transverse load.

According to the principle of minimum potential ener-
gy, in all possible displacement fields of a conservative
system,
potential energy of the system, so the first variation of the
total potential energy is zero, namely

the true displacement field minimizes the total

oIl =8U +6W =0 (13)

Substituting Eqgs. (9) and (12) into Eq. (13) and using
integration by parts, it yields

L

fo((il)?l )5wdx——6w . +
() e )] <0 o

Then, one can obtain the size-dependent governing dif-
ferential equation in the framework of the Bernoulli-Euler
beam theory and the NSGT as

d’M
15
0 (15)
with classical boundary conditions
M=0 or 5(%”) =0 at x=0,L
‘M:o or ow=0 at x=0,L (16a)
dx
and non-classical boundary conditions
. d’w
M=0 or 5( 7 ) =0 at x=0,L (16b)

In view of the moment Eq. (11), the governing differ-

ential Eq. (15) based on the NSGT can be explicitly writ-
ten as the following displacement form:

d’ n’ dzE d’w bh dE d

— _ 22 49 - =
Rnsgl(x) - g dxz 1 dxz 6 d.x
bi L Edw bl dl d'w _EbR d'w
127 dx’ dx’ dx' 12 dx*
bk’ , dE Ebh’ , d°w
i i ol Lo ta=0 (17)

Based on the NET (/=0), SGT (¢ =0) and CET
(I=0and £ =0), Eq.(17) can be simplified as

_adq bk PE&w bh dE d'w  Ebh d'w

0
df 12 df dé 6 dr de 12 dr 947
(18a)
_bh’ PE d’w _bi' dE &’ +ﬁ dl
12 dx* dx* 6 d P12 4x
b’ , ’E d' _Eh3d4w+% d£
4 d)c2 x4 12 dx4 4 dx d
Ebh32d6w+ o
12 dx6 q_ (18b)
_@dziEdzw_@diEd’zw_Ebh3 d*w -0
12 df df 6 dr de 12 4 97
(18¢)

where Eqs. (18a), (18b) and (18c) are governing differ-
ential equations based on the NET, SGT and CET, re-
spectively.

3 Analytical Solutions

The numerical solution method of simply supported
AFG microbeams exposed to various distributed loads for
the static bending problem is presented in this section. It
first reduces the governing differential equations to ordi-
nary equations by using the Galerkin method for AFG mi-
crobeams based on the NSGT.

The boundary conditions for simply supported AFG mi-
crobeams can be written as

w=0 and dz;f=o at x=0, L (19)

Considering boundary conditions Eq. (19), the deflec-
tion equation can be defined as

W) = X W,sin T (20)

where n denotes the number of shape functions; W, de-

notes the unknown coefficients. For bending, we take the
Fourier series expansion of the distributed transverse load
as the form

2 Qnsm nmx (21a)

q(x) =
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where

0 = %LLq(x) sin %dx (21b)
denotes the Fourier coefficient.

According to the Galerkin method, substituting Eq.
(20) into the governing differential Eq. (17), multiplying
it by the n-th mode shape and integrating over the length
of the beam, the equivalent integral form of the gover-
ning Eq. (17) is obtained as

L
f R, (x)vdx = 0 (22a)
0

where R

nsgt

tion is given as

(x) denotes the residual; the n-th shape func-

sin 1TX
v = sin X
L

(22b)

For the sake of generality, the dimensionless material
length scale parameter D,, dimensionless material nonlo-
cal parameter D, and dimensionless ordinate D _ are, re-
spectively, defined as

X
h I3 h x = f (23)

By substituting Eqgs. (20) and (21) into the governing
Eq. (17), the residual R, (x) can be obtained as

nsgt

2121.2

R, (%) —”(7]—1)2[(71 +3n) Dlh
W, cos(D mw)cos(nD w) —r(n — 1) .

2 [(3114 +n°)

W sin(D m)sin(nD ) - rz (n“ +

+2n3]'

e D? n

+n2+n“] .

n’w DR
L )

. Dznzfnzh
W, sin(nD m) + 2 (7 + 1)Q sin(nD, )
(24a)
where
E,bh’ '
= 24b
2L (24b)

3.1 Concentrated load

For the type of concentrated load, the transverse load ¢
can be expressed as
L
g(x) =P5(x—7) (252)
where P is the magnitude of the concentrated load acting

on the middle point of the beam; §( ) is the Dirac delta
function. The coefficient Q, is given as

n

Q”:il 2

(25b)

By inserting Eq. (24) into Eq. (22) and setting n =
3, it obtains

fRM (x)sin(iD,aw)dx = 0 =1,2.3 (26)

Substituting Eq. (25) into Eq. (26), one can obtain

the non-zero coefficients as

(27)

where

2D2h2
TrLz’ +1]

a,

—1) /4w DKW
2[4(n 1)( “L +2)+
18w’ DK’
a, QrL(n—l)( %)
12 27rDh
(Zz )

a, Ser(n—l)

a,=-r(n-

8647 DI
1)36—L(7“Lz +81)—

9w’ DI
rL81(1 7ﬂ 2’ )
2 L

L' +9D;w' I’

- 28
L'+ D;w’ (28)

as =
Then, the nonlocal strain gradient solution for the de-

flection of the AFG Bernoulli-Euler microbeam with sim-

ply supported ends subjected to a concentrated load can be

calculated approximately as

L’ +Diw'h*)P

(2 s ) [ (ya; +a,)sin(D 1) -

L (o —ajay)

(a5 +ay)sin(3D, ) |

w(x) =
(29a)

For the sake of generality, the dimensionless deflection
can be written as

_AE Db w(x)
v Pl N
4E,bl’ (LI’ + DI’ h’) ]
zs(a o —ozga ) [ (oo + o) sin(D 1) -
23 1%%4

(a,a5 +a;)sin(3D, ) ] (29b)

3.2 Uniform load

For the type of uniform distributed load, the transverse
load ¢ can be expressed as

q(x) =q, (30)

where ¢, is a constant. Then, the nonlocal strain gradient
solution for the deflection of the AFG Bernoulli-Euler mi-
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crobeam with simply supported ends subjected to a uni-
form distributed load can be approximately calculated via
the Galerkin method as

(L' +D;m’h*)2q,
Lu(a,a, —a,a;)
(o 05 —0y)sin(3D ) ]

w(x) = [ (a,04 — ) sin(D, ) —

(31a)

For the sake of generality, the dimensionless deflection
can be written as

32E,bh’w(x)

64E,bh* (L’ + D’ *)
S5 m(a,a, —oyo)

(ayg - ) sin(3D,m) ]

[ (a0 — ) sin(D, ) ~
(31b)
where

L' +9D; '’

e I 31
% T3 3D (31c)

3.3 Linear load

For the type of linearly distributed load, the transverse
load ¢q is assumed as

q(x) =q,D, (32)

The corresponding nonlocal strain gradient solution for
the deflection can be approximately calculated via the
Galerkin method as
q, (4D, + L)

27ma, L
(L’ + D;m’h’) q,
w(a,a, —a,a;) L
(a0 — ) sin(3D, ) |

w(x) = sin(2D w) +

[ (o — ) sin(D ) —
(33a)

For the sake of generality, the dimensionless deflection
can be written as
_32E,bh’w(x)
w 5q0L4 -
16E,bh’ (4D’ h* + L’
° ;LS;Z ) in(2D.m) +
7
32E,bh’ (L’ + D;m’h’)

5L5’1T(ozloz4 -a,a;)

[ (o, =) sin(D ) -

(o0 _‘Xs)sm(?’D,ﬂT)J (33b)
where
320 (437 DR’ 47D’ K
a7——r(n—1)15w( 2 +8)—8rL(1+ 5 )
(33¢)

3.4 Sinusoidal load

In this subsection, the numerical solution of a simply

supported AFG microbeam for the static bending problem
based on various types of theories, such as NSGT, NET,
SGT and CET, are compared. The sine distributed load
applying on the microbeam is assumed to be

q(x) =¢gysin(D,m) (34)

3.4.1 Nonlocal strain gradient solution
Based on the NSGT, the numerical solution of deflec-
tion can be obtained via the Galerkin method as

(x) (L' +D;m’h*)4q,
wix) = 15wl o0 — a0y )
(o, +5a;)sin(3D, ) |

[(a, +5a,)sin(D ) -
(35a)

For the sake of generality, the dimensionless deflection
can be written as

_ 1577()(; _X1X3)W(x) _
4q,L(x, +6x, +5x;)
06 ~x) (I +Dp'l?)
L2<X1 +6x, +5)(3)(a2a3 )
(a, +5a;)sin(3D ) ]

w

[ (o, +5a,)sin(D ) —
(35b)

where
L 3

12rL(5-1)
X2 = S5

108(p-1) 3
X3='27FL[ 35 +7]

= —4( _l)rL—%rL

(35¢)

3.4.2 Nonlocal elastic solution

Considering the sine distributed load Eq. (34), the
nonlocal elasticity solution for the deflection of a simply
supported AFG microbeam can be numerically calculated
by substituting Egs. (20) and (21) into governing Egs.
(18a) and (22) with setting n =3.

(L +D;m*h*)4q,

157L(x; —xX3)
(Xl +5X2 ) Sin(z‘D,ﬂT) ]

For the sake of generality, the dimensionless deflection
can be written as

[ (X2 +5x;)sin(D, ) -
(36a)

w(x) =

15700 ) w(x)
_4QOL(X1 +6X2 +5X3) -
L'+ D'’
LZ(Xl +6X2 +5X3)
(x1 +5x,)sin(3D, ) |

w

[ (s +5x;)sin(D ) -
(36b)

3.4.3 Strain gradient solution

Considering the sine distributed load Eq. (34), the
strain gradient solution for the deflection of a simply sup-
ported AFG microbeam can be numerically calculated by
substituting Egs. (20) and (21) into governing Egs.
(18b) and (22) with setting n =3.
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4q,L
157(,a; —a,a,)
(a, +5a;)sin(3D, ) |

w(x) = [(a, +5a,)sin(D, ) -

(37a)

For the sake of generality, the dimensionless deflection
can be written as

15w ) wlx)
4q,L(x, +6x, +5x;)
Xz —XX
(Xl +6x, +5X3)(a2a3 _a1a4)
(a, +5a;)sin(3D,7) ]

w

[(a, +5a,)sin(D ) -
(37b)

3.4.4 Classical elastic solution

Considering the sine distributed load Eq. (34), the
classical elasticity solution for the deflection of a simply
supported AFG microbeam can be numerically calculated
by substituting Eqs. (20) and (21) into governing Egs.
(18c) and (22) with setting n =3.

4q,L

157 (x5 =xx3)
(x, +5x,)sin(3D,7) |

[ (Xz +5X3>Sin(DxTr) -
(38a)

w(x) =

For the sake of generality, the dimensionless deflection
can be written as

150G -y w(x) 1 .
S 4q,L(x, +6x, +5¢,)  x, +6x +5x;
[ (Xz +5X3)Sin(Dx"T> - (X] +5X2>Sin(3DﬂT) ]
(38b)

w

4 Numerical Results and Discussion

The beam is made of silicon with material parameters
E,=201.92 GPa and [ =0.053 5 nm'"”’. The geomet-
rical parameters are as b =2h, L =20h. Numerical results
are presented to evaluate the effects of the material nonlo-
cal parameter &, the ratio of the material length scale pa-
rameter to the beam height D, and the FG parameter 7 on
the static bending behavior of AFG microbeams.

4.1 AFG microbeam subjected to a concentrated force

Fig.2(a) shows the normalized bending deflection D,
of a simply supported AFG microbeam with a concentrat-
ed force applied at the middle point as a function of the
ratio of the material length scale parameter to the beam
height D,(while D, =10 and  =5). As can be observed
in the figure, each curve forms a different sinusoidal
hump whose peak rises with the decreasing value of D,. It
illustrates that the bending flexibility of the microbeam
decreases with the decrease of the geometrical size of mi-
crobeams, which agrees with the numerical results in
Ref. [27] very well. The double dot dash curve (D, =
0,D,=0andn =1 ) in the figure indicates the normal-
ized bending deflection of the simply supported AFG mi-

crobeam with the geometrical size L being infinite and the
material nonlocal parameter ¢ being zero while the FG pa-
rameter ) being 1. It is found that the maximum dimen-
sionless deflection is approximately equal to 1, which
verifies the accuracy of the numerical results in this pa-
per.

D;:
----0(D:=0, 5=1)
1.20 == 10(D;=10, 5=5)
—0—20(D;=10, #=5)
1.00 |- . ——=-30(D:=10, 5=5)
- ‘I ° . .\
o 0.15 |
0.10 |1
0.05
0
0

(a)

0.20 |-
—0—10

(¢)

Normalized deflection versus normalized coordinate of

Fig.2
the microbeam bearing the concentrated load at the middle point
with various parameters. (a) Geometrical size; (b) Material nonlo-
cal parameter; (c) FG parameter

To numerically investigate the effect of the material
nonlocal parameter on the bending deformation of the
AFG microbeam, a series of specified dimensionless ma-
terial nonlocal parameters are considered. Fig.2(b) pres-
ents the normalized deflection D, of a simply supported
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AFG microbeam with a concentrated force applied at the
middle point with different values of the dimensionless
material nonlocal parameter D, (while D, =10 and 5 =
5). It is clear that the deformations increase with increas-
ing D,, and the deformations increase more obviously
when the value of D, is larger. This explains that the ben-
ding flexibility increases with the increase in the material
nonlocal parameter.

Fig.2(c) plots the normalized deflection D, of a sim-
ply supported AFG microbeam with a concentrated force
applied at the middle point as a function of the FG param-
eter  (while D, =10 and D, =10). It is found that the
FG parameter plays an important role in controlling the
transverse deflection of the AFG microbeam, and the de-
formation decreases with the increase in the FG parameter
n. It is because the effective elastic modulus increases
with the increase in 1. However, this example can only
show the trend of the variation of the transverse deforma-
tion of AFG microbeams subjected to a concentrated force
affected by the ratio of the material length scale parameter
to the beam height D,, the material nonlocal parameter D,
and the FG parameter 5. To illustrate this more deeply,
some more complicated problems, such as an AFG sim-
ply supported microbeam subjected to various transverse
distributed loads, are investigated as follows.

4.2 AFG microbeam subjected to distributed loads

Fig.3(a) shows the normalized deflection D, of a sim-
ply supported AFG microbeam suffering a linearly distrib-
uted load (g(x) =¢,D,) with different ratios of the ma-
terial length scale parameter to the beam height D, ( while
D,=10and n = 5). It is clear that each curve forms a
hump whose peak rises with the decrease of D,. It illus-
trates that the bending flexibility decreases with the de-
crease of the geometrical size of microbeam structures.
However, the maximum deflection occurs on the right
side of the middle point, which is attributed to the asym-
The double dot dash curve
in the figure indicates the normalized deflection of the cor-
responding microbeam without considering the FG effect

metrical distribution of loads.

while the geometrical size L is infinite (D, =0) and the
material nonlocal parameter ¢ is zero (D, =0). It is clear
that the maximum dimensionless deflection also occurs on
the right side of the middle point of the microbeam.

Fig.3(b) and Fig.3(c) present the normalized deflec-
tion D, of a simply supported AFG microbeam suffering a
linearly distributed load (g (x) =g,D,), a series of
specified dimensionless material nonlocal parameters D,
(while D, =10 and 5 =5) and FG parameter n ( while D,
=10 and D, =10) are considered, respectively. It can be
seen that both increasing the material nonlocal parameter &
and decreasing the FG parameter n will lead to an in-
crease in the bending flexibility.

D,:
- - 0(D,=0, n=1)
== 10(D:=10, 5=5)

0.54 - —0-20(D,=10, 7=5)
o | —a-30(D.=10, 4=5)
0.46% 4

o 0.06 !
0.04 |

0.02

Fig. 3
of the microbeam suffering the transverse linear load with vari-

Normalized deflection versus the normalized coordinate

ous parameters. (a) Geometrical size; (b) Material nonlocal parame-
ter; (c¢) FG parameter

Fig.4(a) and Fig.4(b) show the normalized deflec-
tion D, of a simply supported AFG microbeam suffering a
transverse uniform load (g(x) =¢,) and a transverse si-
nusoidal load (g(x) =g¢,sin( D ) ) with different ratios
of the material length scale parameter to the beam height
D,(while D, =10 and  =5), respectively. As can be
seen in the figures, each curve forms a different sinusoid-
al hump whose peak rises with the decrease of D,. It il-
lustrates that the bending flexibility of the microbeam de-
creases with the decrease of the geometrical size of the
microbeams. The double dot dash curve in the figure in-



460

Kang Zetian, Wang Zhiyong, Zhou Bo, and Xue Shifeng

dicates the normalized deflection of the microbeam with-
out considering the FG effect while the geometrical size L
is infinite (D, =0) and the material nonlocal parameter &
is zero (D, =0). Itis clear that the maximum dimension-
less deflection is approximately equal to 1, which verifies
the accuracy of the numerical results in this paper.

D;:
- -0D:=0, n=1)

L10 - —0—=10(D,=10, 7=5)

1.05 —0—20(D:=10, 5=5)
1.00 | L —A=30(D=10, 4=5)
0.95% | : N
N _ ‘
Q g ]
0.15
0.10 |
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ol
(a)
DI:
- -0(D;=0, n=1)
1.10 - —0—10(D,=10, 7=5)
1.05 - —0—20(D;=10, 7=5)
1.00 _—A— 30(D,=10, 7=5)
/7 N
0.95 % ‘ .
S 0.60 -
/' ‘\
040 - .
0.20 | ./ 3
\
0% A !
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D,
(b)
Fig.4 Normalized deflection versus the normalized coordinate
of the microbeam bearing the transverse load with various geo-
metrical sizes. (a) Uniform load; (b) Sinusoidal load

Fig.5(a) and Fig.5(b), respectively, plot the normal-
ized deflection D, of a simply supported AFG microbeam
bearing a transverse uniform load (g(x) =g,) and a trans-
verse sinusoidal load (g(x) =g¢,sin(D w)), and a series
of specified dimensionless material nonlocal parameters D,
(while D, =10 and n =5) are considered. It is clear that
the deformation increases with increasing D, , and the de-
formation increases more obviously when the value of D, is
larger. This explains that the bending flexibility increases
with the increase in the material nonlocal parameter.

Fig. 6 (a) and Fig. 6 (b), respectively, present the
normalized deflection D, of a simply supported AFG mi-
crobeam bearing a transverse uniform load (g(x) =gq,)
and a transverse sinusoidal load (g¢(x) =g¢,sin(D ) ),
and a series of specified FG parameters n ( while D, =10
and D, =10) are considered. It is found that the FG pa-
rameter has a significant effect on the bending deflection

Fig.5 Normalized deflection versus the normalized coordinate

of the microbeam bearing transverse loads with various material
nonlocal parameters. (a) Uniform load; (b) Sinusoidal load

0.20 -

< 0.10

0.05

x

(b)

Fig.6 Normalized deflection versus the normalized coordinate

of the microbeam bearing transverse loads with various FG pa-
rameters. (a) Uniform load; (b) Sinusoidal load
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of the AFG microbeam, and the deformation decreases
with the increase in the FG parameter 7.

4.3 Discussions on results via different theories

These aforementioned examples can only show the var-
iation trend of the bending deformation of AFG mi-
crobeams subjected to a transverse load based on the NS-
GT. As an example, the transverse deformation of an
AFG simply supported microbeam subjected to a sinusoid-
al load within the frameworks of NSGT, NET, SGT and
CET are compared according to Egs. (35), (36), (37)
and (38).

As shown in Fig. 7, the normalized deflection D, of a
simply supported AFG microbeam subjected to the same
sinusoidal load (g(x) =g,sin(D,w)) with D, =10, D,
=10 and = 5 based on different elasticity theories are
compared. As can be seen, the bending deflection of the
AFG microbeam based on the CET is larger than that con-
sidering the SGT but smaller than that considering the
NET, and the bending deflection based on the NSGT is in
between. It means that the stiffness of the AFG mi-
crobeam calculated within the framework of SGT shows a
“hardening” effect and the stiffness calculated within the
framework of NET shows a “softening” effect, which is
consistent with the numerical results described in Ref.
[10]. This physical phenomenon has been revealed rea-
sonably by Lii et al. ™"
higher-order deformation mechanism and the latter takes
the inter-atomic long-range force into consideration.

as the former accounts for the

4 —
—O—NSGT
—O—NET

—— SGT
—-ﬁr— CET

x

Fig.7 Normalized deflection versus the normalized coordinate
of the microbeam bearing the transverse sinusoidal load within
different frameworks of elasticity theories

Fig.8(a) and Fig.8(b) show the normalized deflec-
tion D, of a simply supported AFG microbeam suffering a
transverse sinusoidal load (g (x) = ¢g,sin( D m)) based
on the NET and SGT, respectively. A series of specified
dimensionless material nonlocal parameters D, ( while 7
= 5) are considered in Fig.8(a), and a series of speci-
fied ratios of the material length scale parameter to beam
height D,(while = 5) are considered in Fig. 8(b). As
can be seen, the bending flexibility increases with in-
creasing D, within the framework of NET, and the ben-

ding flexibility decreases with increasing D, within the
framework of SGT.

30

25

20

0.20 -

0.15

< 0.10

0.05

Fig.8 Normalized deflection versus the normalized coordinate

of the microbeam bearing the transverse sinusoidal load. (a)
With various material nonlocal parameters within the framework of NET;
(b) With various geometrical sizes within the framework of SGT

5 Conclusions

1) A size-dependent Bernoulli-Euler beam model,
which accounts for the longitudinal sinusoidal law varia-
tion of FG material, is derived based on the NSGT and
minimum potential energy principle. Considering various
transverse loads, the governing differential equations are
solved by employing the Galerkin method.

2) When considering the concentrated and distributed
loads, the bending flexibility decreases with the increase
in the ratio of the material length scale parameter to the
height of the microbeams.

3) The material nonlocal parameter plays an important
role in controlling the bending flexibility of AFG mi-
crobeams. When considering the concentrated and distrib-
uted loads, the bending flexibility increases with the in-
crease in the material nonlocal parameter.

4) The AFG parameter has a significant effect on the
transverse deflection of the AFG microbeam, and the de-
formation decreases with the increase in the FG parameter
when considering the concentrated and distributed loads.

5) The transverse deformation of AFG microbeams
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presents a stiffness “softening” effect within the frame-
work of NET and a stiffness “hardening” effect within
the framework of SGT, and the stiffness based on the NS-
GT is in between.
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