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Abstract: The condition of an algebra to be a Hopf algebra or
a Hopf (co) quasigroup can be determined by the properties of
Galois linear maps. For a bialgebra H, if it is unital and
associative as an algebra and counital coassociative as a
coalgebra, then the Galois linear maps 7, and 7, can be
defined. For such a bialgebra H, it is a Hopf algebra if and
only if T, is bijective. Moreover, 7, ' is a right H-module map
and a left H-comodule map ( similar to 7,). On the other
hand, for a unital algebra ( no need to be associative), and a
counital coassociative coalgebra A, if the coproduct and counit
are both algebra morphisms, then the sufficient and necessary
condition of A to be a Hopf quasigroup is that 7| is bijective,
and Tfl is left compatible with A;‘. and right compatible with
m]T at the same time (The properties are similar to T,).
Furthermore, as a corollary, the quasigroups case is also
considered.
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1 Preliminaries

An algebra (A, m) is a vector space A over a field k
equipped with a map m: AXA—A. A unital algebra (A,
m, u) is a vector space A over a field k equipped with two
maps m: AQA—A and yu: k—A such that m(id@u) =
id =m(u®id), where the natural identification A Xk =
k=k® A is assumed. Generally, we write 1 € A for
(1),

The algebra (A, m,u) is called associative if m(id&@m)
=m(m®id). It is customary to write

m(xQy) =xy VxyeC

A coalgebra (C, A) is a vector space C over a field k
equipped with a map A: C—C®C. A counital coalgebra
(C, A, &) is a vector space C over a field k equipped with
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two maps A: C—>CKC and g: C—k such that (idXe)A =
id = (e®1id) A , where the natural identification CRk=k=
k&C is assumed.

The coalgebra (C, A, &) is called coassociative if (idX)
A)A = (AX®id) A. By using the Sweedler’s notation in
Ref. [1], it is customary to write

Al(x) = me ® X,

Given acounital coalgebra (C, A, ¢) and a unital alge-

VxeC

bra (A, m,u), the vector space Hom(C, A) is a unital
algebra with the product given by the convolution

(f*g)(x) = Zf(x(l))g(x(z)) (D

for all x e C, and unit element yue. This algebra is deno-
ted as C * A.

In particular, we have the algebra End( C) of endomor-
phisms on a given counital coalgebra (C, A, g). Then,
we have the convolution algebra C * End( C) with the
unit element id: x >e(x)id.. In the case that the coalge-
bra C is coassociative, then C * End(C) is an associative
algebra.

Anonunital noncounital bialgebra (B, A, m) is an alge-
bra (B, m) and a coalgebra (B, A) such that

A(xy) =A(x)A(y) VxyeB

A counital bialgebra (B, A, g, m) is a counital coalge-
bra (B, A, ) and an algebra (B, m) such that

A(xy) =A(X)A(y), e(xy) =e(x)e(y)

The multiplicative structure of a counital bialgebra (B,

VxyeB

A, &, m) is determined by the elements of Hom ( B,
End(B)):

L: B—End(B), awL,/(L,/(x) =ax)
and

R: B—End(B), a—R,(R,/(x) =xa)

Obviously, it satisfies one of these maps to determine
the multiplicative structure.

A unital bialgebra (B, A, m, u) is a coalgebra (B, A)
and a unital (B, m,u) such that

A(xy) =A(x)A(y), A(T) =1

A unital counital bialgebra (B, A, &, m, u) is both a

VxyeB

unital bialgebra (B, A, m, u) and a counital bialgebra (B,
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A, £, m) such that g(1) =1.
Given aunital bialgebra (B, A, m, u), we define the

following two Galois linear maps' ™'

T,(x®y) =A(0) (1®y)  (2)
T,(x®y) = (x®DA(y)  (3)

T,: B B—~B®B,
T,: BQ B—~B®B,

for all x, y e B.
It is easy to check that BX)B is a left B-module and a
right B-module with the respective module structure:

a(x®y) =ax®y, (x®y)a=xQya

for all a, x,y e B.
Similarly, BB is a left B-comodule and a right B-co-
module with the respective comodule structure:

PIH®H(X®Y) = zx(]) ® (x(z) ®y)

and

p;@,,,(x@y) = Z(X®Y(1)) ®y(2>

for all a, x, y € B.
2 Hopf Algebras

A Hopf algebra H is a unital associative counital coas-
sociative bialgebra (H, A, &, m, u) equipped with a linear
map S: H—H such that

ZS(h(,))h(z) = thS(h(z)) =e(h)1 4

for all h, g e H.

We have the main result of this section as follows.

Theorem 1 Let H:=(H, A, &, m, u) be a unital asso-
ciative counital coassociative bialgebra.

Then, the following statements are equivalent:

1) H is a Hopf algebra;

2) There is a linear map S: H—H such that § and id are
invertible to each other in the convolution algebra H * H,

3) The linear map T,: HQH—H®H is bijective, mo-
reover, T, ' is a right H-module map and a left H-comod-
ule map;

4) The linear map T,: HRQH—HXH is bijective, mo-
reover, T, ' is a left H-module map and a right H-comod-
ule map;

5) The element L is invertible in the convolution alge-
bra H « End(H) ;

6) The element R is invertible in the convolution alge-
bra H * End( H) .

Proof 1)«2). It follows Refs. [1, 4] that 1) is
equivalent to 2).

2)3). If 2) holds, then it follows Ref. [3] that T,
has the inverse T, ': AQA—A®A defined as

T/'(a®b) = Y a, ® S(ay)b

for all a, b e H.

It is not difficult to check that T, is a right H-module
map and a left H-comodule map.

Conversely, if 2) holds, then we introduce the nota-
tion, for all a € H.

Y ad' ®a?:=T(a®1)

Define a linear map S: H—H as

S(a) =(e®1) Za(” ®a(2> — 28(a<1))a(z)

Since T, ' is a left H-comodule map, one has ( p'H®H®
id) 77 =(dRT ") p;@H. That implies that, for all a e
H’

2 a’y, ®a’, ®a? = Z a, ®ay" ®ay”

Applying (id®e®id) to the above equation, one ob-
tains that

T'(a®1) = Zam ®a? = Za“) ® S(a,)

Since 7, ' is the inverse of 7, and it is a right H-module
map, one can conclude that

a®b =T 'T(a®b) =T (A(a)(1 ®b)) =
2“(1) ® S(agp,)agsb

and

a®b =TT(a®b) =T,(3 a, ®S(ay)b) =
2 ag, @ ap S(ag)b

Applying the counit to the first factor and taking b =1,
we obtain Eq. (4).

Thus, S is the required antipode on H.

2)<4). Similarly, it follows Ref. [3] that T, has the
inverse T, ': AQA—AR®A given as

T;'(a®b) =aS(b,) ® by,

orall a, b e H. Obviously, T,
and a right H-comodule map.

is a left H-module map

One introduces the notation, for all a € H,

Y d'"®@d":=T,(1 ®a)

Define a linear map S': H—H as

S/(a) — (l ®8) ZaUJ ®a121 — ZLZUJE(LI[ZJ)

Following the program of arguments on S, we have S’
that satisfies Eq. (4).
Furthermore, we now calculate, for all a e H,

S’(a) = ZS,((J(])),Q((J(Z)) = zsl(a(l))a(z)s(am)) =
Zg(a(]))S(a(2>) = S(a)

Therefore, we have S =S’ and they are the required an-
tipodes on H.
1)<5). By hypothesis B = End( B) is an associative
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algebra. The element L is invertible in this algebra if and
only if there exists L': B—End(B) such that

er(a(l))L(a(z)) = 3(“)1(-1 = ZL(CZ(”)L’(Q(Z))

This implies that, for all a, b € H,

ZL’(a(“)(a(z)b) =e(a)b = Z%L'(am)(b)

and in this case the inverse L' is unique.

Defining S: B—B by S(a) =L'(a)(e) and taking b =1
and comparing this equation with (4), we obtain the de-
sired result about the existence and uniqueness of S.

Similarly for 1) <6).

This completes the proof.

Let G be a semigroup with unit e. Then, (G, G) =
{(g, h) | g, he G} is also a semigroup with the product:

(x,y) (g, h) =(xg, yh)

forall x,y,g heG.

Corollary 1 Let G be a semigroup with unit e.
Then, the following statements are equivalent:

1) G is a group;

2) There is a map S: G—G such that S(g)g=e =gS5(g)
for all g € G;

3) The map T,: (G, G)—(G, G), (g h)—(g, gh) is
bijective;

4) The map T,: (G, G) —(G, G), (g h)+>(gh, h) is
bijective;

5) There is a map Q: G—End( G) such that the ele-
ment L: G—End(G), L(g) =L,, for all g e G, satisfies
0(g)(g) =e=g0(g)(e);

6) There is a map P: G—End( G) such that the element
R:G—End(G), R(g) =R, for all g e G, satisfies

P(g)(e)g=e=P(g)(8).
3 Hopf (co) Quasigroups

Recall from Ref. [5] that an inverse property of quasi-
group (or IP loop) is defined as set G with a product, u-
nit e and the property for each u e G, there is u ' € G

such that

u ' (uv) =v, (vi)u " =v VveG

A quasigroup'” is flexible if u(vu) = (uv)u for all u,
ve G and alternative if also u(uv) = (uu) v, u(vw) =
(uv)v for all u, ve G.

It is called Moufang if u(v(uw)) = ((uv)u)w for all
u, v, weG.

Recall from Ref. [7] that a Hopf quasigroup is a unital
algebra H ( possibly nonassociative) equipped with alge-
bra homomorphisms A: H—-~H®H, ¢: H—k forming a
coassociative coalgebra and a map S: H—H such that

Zs(h(1>)(h(z)g) = th(S(h(z))g)
D (88(hy ) by = Y (8hy)S(hy,)

s(hyg (5)
e(hyg (6)

for all h, g € H. Furthermore, a Hopf quasigroup H is
called flexible if

zh(l)(gh(z)) = Z(hmg)h(z) VhgeH
and Moufang if
Zh(l)(g(hu)ﬂ) = Z((hmg)hm)f VhgfeH

Hence, a Hopf quasigroup is a Hopf algebra iff its
product is associative.

Dually, we have that a Hopf coquasigroup' is a unital
associative algebra H equipped with counital algebra ho-
momorphisms A: H—-HXH, &: H—k and linear map S: H
—H such that

Z S(h<1))h<z)(1> ® h<2>(2) =1®h =

zh(l)s(h(b(l)) ®h(2)(2> (7)
thm ®S(h<1>(2))h(2) =h®1 =
thm ®h<1>(2>S(h<z>) (8)

for all h € H. Furthermore, a Hopf coquasigroup H is
called flexible if

zhmh(zm) ® hoyay = zh(l)mhm & ey YheH
and Moufang if
2 hiyhayony @ hayn @ by =
Z by bane @ hayao & ho, VheH

Let (A, m, u) be a unital algebra. Assume that 7: ARA
—A®XA is a map. Then, we can define the following two
coproduct maps:

AL A—ARA,
Al ASARA,

a—>T(a®1)
a->T(1®a)

Definition 1 With the above notation, we say that T
is left (resp. right) compatible with A7, if T(a®b) =
AL(a) (1®b) (resp. T(a®b) =(a®1)AL (b)), for all
a, beA.

Similarly, one says that 7T is left (resp. right) compati-
ble with A}, if T(a®b) =A,(a) (1Rb) (resp. T(a@b)
=(a®1)AN(b)), forall a, beA.

Dually, let (C, A, £) be a counital coalgebra. Let 7: A
XA—AXA be a map.
ing two product maps:

Then, one can define the follow-

my: AQA—A,
my: AQA—A,

a®@b >(1X®e) T(a®b)
a®bi—>(eX®1)T(aX®b)
Definition 2 With the above notation, we say that T
is left (resp. right) compatible with m}, if T(a®b) =
(m;®1) (1@4) (a@b) (resp. T(a®@b) = (1@m;) (AR
1)(a®b)), forall a, beA.
Similarly, one says that 7 is left (resp. right) compati-
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ble with m}, if T(a®b) = (m,®1) (1 RA) (a®b)
(resp. T(a®b) = (1®m’T)(A®1)(a®b)), for all q,
beA.

We now have the main result of this section as follows.
Let H:=(H, A, & m, u) be a unital
Then,

Theorem 2

counital coassociative bialgebra. the following

statements are equivalent:

1) H is a Hopf quasigroup.

2) The linear map T, T,: HQH—H®H is bijective,
and T, ' is left compatible with A7 and right compatible
with mIT At the same time, the map 7,: HRQH—HXH
is bijective. Moreover, T, is right compatible with A'T
and left compatible with m’...

3) The elements L and R are invertible in the convolu-
tion algebra H * End(H) .

Proof 1)<2). If (2) holds, similar to Theorem 1,
it is easy to check whether T, has the inverse 7, ': A®QA

—A®A defined as T, (a ® b) = Y a,, ® S(a,,)b for

all a, be H. Then, we have
At A—ARA

asT (a®1) = Y a, ® S(ay,)
mpiARA—A
a@bi>(e @ DT (a®b) =S(a)b
It is not difficult to check whether T, " is left compati-
ble with A7, and right compatible with sz

Conversely, if (2) holds, then, we define a linear map
S: H—H as

S(a) = (@A} (a)

Since T, ' is a right compatible with m’T and it is left

compatible with A'T‘ ., one has, forall a, be H,
T'(a®b) =(1@m)(AR®D(a®b) =
Yoa, ®EeR@DT (a, ®b) =
2 lag, ® (e @ DAL (a,) 11 QD) =
Za(l) ®S(a(2))b
Since Tl’1 is the inverse of 7, we can conclude that
ZaU) ®a(2)[s(a<3))b] = Tl( zau) @S(a<2))b) =
T,Tf‘(a@b) =a®b = T,"Tl(a®b) =
T]_I(A(Cl)(l X®b)) = zau) ® [S(a<2))a(3)]b

Applying the counit to the first factor, we can obtain
Eq. (5). We define another linear map S': H—H as

S'(a) = (1 ®e&)AL(a) Vae H

Similar to discussing S, we can obtain Eq. (6). By do-
ing some calculation, we have

S((l) = ZS(a“))é‘(au)) = 2 [S(a(,))a(z)]S’(a(z)) —
Zg(am)s,(a(z)) :S’(Cl)

for all a e H.

Thus, H is a Hopf quasigroup.

1)<3). Similar to 1) <5) and 1) &6) in Theorem 1,
it is not difficult to complete the proof.

This completes the proof.

Corollary 2 Let G be nonempty with a product and
with unit e. Then, the following statements are equiva-
lent:

1) G is a quaigroup;

2) There is a map S: G—G such that S(g)(gh) =h =
(hg)S(g) for all g, veG;

3) The map T,: (G, G) —(G, G), (g, h)—(g, gh) is
bijective;

4) The map T,: (G, G) —(G, G), (g h)+>(gh, h) is
bijective;

5) There is a map Q: G—End( G) such that the ele-
ment L: G-End(G), L(g) =L,
fies Q(g)(g)h=h=hg0(g)(e);

6) There is a map P: G—End( G) such that the element
R:G—End(G), R(g) =R, for all g € G, satisfies
P(g)(e)(g)h=h=P(g)(gh).
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