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Abstract: To revise stratified web ontology language (OWL)
ontologies, the kernel revision operator is extended by defining
novel conflict stratification and the incision function based on
integer linear programming ( ILP). The ILP-based model
considers an optimization problem of minimizing a linear
objective function which is suitable for selecting the minimal
number of axioms to remove when revising ontologies. Based
on the incision function, a revision algorithm is proposed to
apply ILP to all minimal incoherence-preserving subsets
(MIPS). Although this algorithm can often find a minimal
number of axioms to remove, it is very time-consuming to
compute MIPS. Thus, an adapted revision algorithm to deal
with unsatisfiable concepts individually is also given.
Experimental results reveal that the proposed ILP-based
revision algorithm is much more efficient than the commonly
used algorithm based on the hitting set tree. In addition, the
adapted algorithm can achieve higher efficiency, while it may
delete more axioms.
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revision;

ith the standardization of web ontology language

(OWL)" and rapid development of knowledge
graphs'”', a large number of ontologies are available on-
line and often evolve over time in many real-world appli-
B1 For instance, in the fields of ontology-driven
knowledge management and e-commerce, ontologies may
keep growing or changing with the development of a
knowledge base and the modification of productions.
When new information is received, an original ontology
needs to be revised for incorporating newly received in-
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formation consistently. Generally, logical inconsistency
consists of inconsistency and incoherence. An ontology is
inconsistent if and only if it has no model; i.e.,
consistent in the first-order sense. An ontology is incoher-
ent if and only if there is some unsatisfiable concept
which is interpreted as an empty set. As reasoning with
inconsistent ontologies produces meaningless results, han-
dling inconsistencies in OWL ontologies is an important

it is in-

task. In this paper, the attention is focused on revising
incoherent OWL ontologies since inconsistency is always
caused by adding instances of unsatisfiable concepts or re-
lations to an ontology.

So far, researchers have proposed various approaches
for revising OWL ontologies by deleting some axioms.
Qi et al. " proposed a kernel revision operator based on
the well-known AGM framework'” to deal with incoher-
ence in description logic (DL) ontologies, where DL is
the underlying semantics of OWL. They provided practi-
cal algorithms based on the hitting set tree algorithm by
considering the weights or frequency of axioms. Similar-
ly, Golbeck et al. ' also adopted the kernel revision op-
erator and incision functions, but their goal is to deal with
inconsistency by considering trust information. Due to the
issue of computational efficiency'”, such works often fo-
cus on theoretical work and lack efficient algorithms. To
improve efficiency, Fu et al. ™ proposed a graph-based
approach to revising DL-Lite ontologies by transforming
an ontology to graphs and then locating incoherence. Be-
sides, many researchers also defined fine-grained revision
operators to only remove or modify part of an axiom. Qi
and Du' proposed to revise DL terminologies through
adapting the Dalal revision operator defined in proposi-
tional logic and using the notion of concept forgetting.
Zhuang et al. """ defined a new semantics, called type
semantics, instead of standard DL semantics to revise
DL-Lite TBoxes. One recent work defined a typicality-
based revision of an ALC knowledge base to deal with ex-
ceptions by adding explicit exceptions to weaken incon-
sistencies''" .

From the claims above, it can be seen that many ap-
proaches are designed for less expressive DLs like DL-
Lite and ALC, especially those fine-grained ones, while
they seldom consider ( partly) priority information. How-
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ever, in many cases like ontology merging or user-de-
fined priority, a partial order is usually available and
these approaches cannot be applied directly'”'. For exam-
ple, two source ontologies and their mappings may be
generated by different tools and thus weights associated
with axioms in different ontologies or mappings are in-
comparable. In addition, many knowledge bases have
been constructed and their fusion may also face the prob-
lem of partial order'”’. More importantly, a partial order
provides an easy and useful way for users to manually as-
sign different priorities to axioms.

In this paper, a kernel revision operator for partially or-
dered OWL ontologies is defined and efficient algorithms
based on integer linear programming ( ILP) are proposed.
Note that, ILP is an optimization problem of maximizing
or minimizing a linear objective function. Due to their
high efficiency, ILP-based models have been widely used
in many tasks in the semantic web such as in fuzzy ontol-
ogy reasoning'', ontology matching!"”’ and knowledge
base embeddings''” . In particular, our recent work''” ap-
plied ILP to resolve logical contradictions in single ontol-
ogies, which is different from the current work because
the latter is more general and considers stratified and mul-
tiple ontologies. It is challenging to redefine ILP-based
models for revising stratified ontologies. In the experi-
ments, a comprehensive evaluation is conducted over va-
rious ontologies to show the high efficiency of applying
our ILP-based model. The efficiency and effectiveness of
our adapted algorithm are also analyzed for stratified on-
tologies.

1 Preliminaries

In this section, key notions of logical inconsistency and
integer linear programming are provided and they are used
to revise ontologies. The readers are assumed to be famil-
iar with description logics (DLs)'"'.

1.1 Logical inconsistency

To deal with incoherence in DL ontologies, minimal
sets of axioms for explaining logical contradictions are of-
ten required to be computed first and then a solution of
axioms can be generated such that removing these axioms
can resolve the contradictions. In the following, the key
concepts of such minimal sets are provided.

Definition 1 ( MUPS)"®  Let U be an unsatisfiable
concept in an ontology O. A sub-ontology O’ of O is a
minimal unsatisfiability-preserving sub-ontology (MUPS)
U if U is unsatisfiable in O and satisfiable in ev-
ery sub-ontology 0"cO’.

A MUPS of O w.r.t. U is a minimal sub-ontology of
MUPS are useful to relate
sets of axioms with unsatisfiability of specific concepts.
We use MUPS to indicate a MUPS or multiple ones for
conciseness. To relate sets of axioms to the incoherence

w.r. t.

O in which U is unsatisfiable.

of an ontology in general, a minimal incoherence-preser-
ving sub-ontology is defined.

Definition 2( MIPS) Let O be an incoherent ontolo-
gy. An ontology O'cO is a minimal incoherence-preser-
ving sub-ontology (MIPS) of O if O’ is incoherent and
every sub-ontology O"cO’ is coherent.

A MIPS of O is a minimal incoherent sub-ontology of
0. Note that a MIPS must be a MUPS, but not vice ver-
sa. In the following, both the original ontology and the
newly arrived one are assumed to be individually coherent
and consistent but their merging produces incoherence.

1.2 Integer linear programming

Linear programming formulates our real-life problem
into a mathematical model. A linear program is an opti-
mization problem of maximizing or minimizing a linear
objective function of variables that are subject to a set of
constraints expressed as linear equations or inequations''” .
An integer program forces the variables in a linear pro-
gram to be integers and is referred to integer linear pro-
gramming (ILP) ",

To resolve inconsistency by deleting a set of selected
axioms, pure 0-1 ILP is used and its variables can only
have a value of O or 1. If an axiom should be deleted, its
associated variable should have a value of 1, and O other-
wise. Specifically, given n variables and m linear con-
straints, the problem of 0-1 ILP is to find an assignment
of either O or 1 for the variables such that all constraints
are satisfied. A 0-1 ILP optimization problem can be stat-

ed in the standard form'”:

n

min/max z = Y wx (1a)
j=1
s.t. ¢; Zaijxj =b (1b)
J=1
x,e{0,1} (Io)
where i=1,2,...,mand j=1,2,...,n. w, and a; are co-

efficients and b is an integer. The values of w;, a; and b
are determined by specific application scenarios.

The objective function (1a) describes a criterion (or a
measure) that we wish to minimize (e. g., cost) or max-
imize (e. g., profit). The limitations that restrict our
choices for decision variables are described using mathe-
matical constraints (1b). In many practical problems,
people’s decisions are often restricted by the limitations
like resource limitations and physical, strategic or eco-
nomical constraints. It is noted that the complexity of sol-
ving an ILP problem is NP-complete and it depends on
the number of variables™" .

2 Kernel Revision Operator

Inspired by our previous work''”, the general case of
an original ontology O is considered as O = O4 U O,
where Og and O, indicate the stable part and removable
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part, respectively. The main difference between their
stratification and ours is that axioms in Oy are assumed to
be more reliable than those in O, and both of them are re-
movable. We try to remove those less reliable axioms
first. In this way, users can freely assign different priori-
ties to axioms by available or user-defined priorities.

Partially ordered ontologies can be formally defined as
below.

Definition 3 ( partial ordered ontologies)''” A partial-
ly ordered ontology is a pair (O, <), where < is a par-
tial order over axioms in O and satisfies the condition:
For any axiom ¢ e Oy, there exists y <¢ for all € O,
where i <¢ denotes iy <¢ but ¢ < .

That is, any axiom in Og should be preferred to all axi-
oms in O;. When ¢y <¢, this means that ¢ is preferred to
¢ w.r.t. <. In addition, y=¢ is used to denote ¢y < ¢
and ¢ <¢y, which indicates that ¢ is equal to ¢ w.r. t.
<.

Definition 4 ( conflict)'” Let O and O, be two coher-
ent ontologies. A conflict M of O w.r.t. O, is a sub-on-
tology of O and satisfies that M U O, is incoherent; and
VYM'cM, M'UO, is coherent.

This definition is similar to the notion of a minimal
axiom set consisting of a static part and a rebuttal part™',
which can be considered as a kernel. If O, is empty, a
conflict becomes a MUPS or MIPS as defined in Section
1.1.

Definition 5 ( conflict stratification)
there is a partially ordered OWL ontology (O, <), where
O =04 U O, is incoherent w. r. t. a newcomer ontology

Assume that

O,. Given a conflict M of O w.r.t. O,, a simple stratifi-
cation of M is a partition (M, M), where M ={$peMN
O, AyeM, y<¢}if MNO,#J (I is an empty
set) and M ={¢p eM: Ay eM, <o)} otherwise. Be-
sides, M =M\M.

In this definition, M and M are called the lower and
upper stratum of M, respectively. If some axioms in M
belong to O, all axioms in M should belong to O, and
have the least priority w.r.t. <.
of those axioms in M that have the least priority w. r. t.
<. Different from the previous definition of stratifica-
v M is allowed to contain axioms from Oy as a
general consideration. Namely, all axioms in O are re-
movable but have different priorities. According to Defi-
nition 5, M # (J can be obtained.

Inspired by the work of kernel revision'”', an incision
function is defined below to select axioms from each con-

Otherwise, M consists

tion

flict for removal.

Definition 6 (incision function)
a partially ordered ontology (O, <), where O =0,U O,
is incoherent w. r.t. a newly coming ontology O,. Given
a set of conflicts F, (0) of O w.r.t. O

Assume that there is

., an incision

function ¢ for O can be defined as a function (o 27,
29) such that

Condition1 o(F,(0)) cU, M, F=F,(0);

Condition2 If MeF,(0), then MNo (F,(0)) #
.
This function means only axioms from a conflict can be
selected (see Condition 1) and at least one axiom should
be selected from each conflict ( see Condition 2). Obvi-
ously, this function is an incision function defined by Qi
et al". Note that, if F 0,(0) contains all the MIPS of O,
removing the axioms in o(F, (0) (0)) from O can make
O coherent.

Based on an incision function, a revision operator can
be defined for incorporating a new ontology consistently-
based on all the MIPS.

Definition 7 (kernel revision operator) M Let O be an
ontology to be revised and o be an incision function for
O. The kernel revision operator ® , for O is defined as
follows. For each newly received ontology O,

0®,0,=(0\c(MIPS, (0)) UO,

According to the operator, the resulting ontology be-
comes coherent after removing those axioms selected by
the incision function.

Algorithm 1 Incision function based on ILP

Input: O=05U0;, O, and F, (0) w.r.t. O,.

Output: A set of axioms to remove

L Sinion = UnerM, FZF()"(O)

2 X={x | ¢ €Suions 1=1.2,.., |S

3 z=2x

4 for (MeF, (0)) |
5  if (MNO;#Q) then M={peMNO,: A peM, <

f

union

bf
6 else M= {peM: ApeM, p<d|
7 X, = 1x, ‘d},EM, x € X|

8 c=( Yx)=1

XeXy
9 C=CU{c}
10 |
11 S, =ILP_Solver(z, C, min)

12 0,(F, (0)) =1, | (x;=1) e8!

13 return o, (F, (0))

To define a specific incision function, the ILP model is
applied instead of traditional methods using the hitting set
tree algorithm'*'. We use the ILP model due to its high
efficiency and flexible framework to select axioms and
minimize the number of selected axioms. Algorithm 1 de-
fines such an incision function based on ILP. It removes
as few axioms as possible and chooses axioms from the
lower stratum first. This algorithm consists of the follow-
ing three parts:

First, an object function can be constructed. In Algo-
rithm 1, a decision variable x; is first associated with each
axiom ¢, in the union of all given conflicts (i.e., S,,,,)
since only axioms appearing in conflicts can be removed
(see Lines 1 and 2) , where j indicates the position of an
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axiom in § To define an objective function z ( see

Eq. (1a) ), the coefficient of each variable is set to be 1
(see Line 3) and all axioms are assumed to be equally
important. In this way, minimizing z is actually to mini-
mize the number of axioms to be removed.

Secondly, constraints can be constructed. A constraint
is constructed for each conflict (see Lines 4 to 10). Spe-
cifically, for each conflict M, M is first computed ( see
Lines 5 and 6) according to Definition 5. Then, the vari-
ables corresponding to axioms in M are obtained and their
sum is set to be no less than 1 (see Lines 7 and 8). That
is, all variables associated to axioms in M are assigned to
be 0 and at least one variable in X,, will be assigned to be
1. This is to ensure that at least one axiom from M can be
included in the final solution.

Thirdly, a solution can be computed. Based on objec-
tive function z and constraints C, the function ILP_Solver
(z, C, min) is utilized to apply a traditional ILP solver
like Cplex ( https;//www. ibm. com/analytics/cplex-op-
timizer) for finding an optimal assignment to all variables
under constructed constraints ( see Line 11). The param-
eter min indicates minimizing objective function z. Final-
ly, a solution of axioms is found and each variable of
such an axiom has a value of 1 in the found assignment
(see Line 12).

Proposition 1
function ¢, .

Proof We prove that ¢, is an incision function ac-
cording to the conditions given in Definition 6.

From Algorithm 1, it can be seen that o, (F, (0) ) is
obtained according to the assignment §
elements corresponds to an axiom in the union of
F, (0). Clearly, o,(F,(0))cU, .M, F=F,(0).

According to the definition of M (see lines 5 and 6) ,
we know that M is not empty if M is not empty. Besides,
the constructed constraint ¢, requires that at least one of
these variables should be assigned to be 1. If such an as-
signment can be found by applying an ILP solver, it
means that each constraint ¢, has been satisfied and at

Algorithm 1 computes an incision

each of whose

assi ?

least one axiom from M is selected.
o, (F, (0)) NM#J.

Based on a specific incision function, a straightforward
revision algorithm (see Algorithm 2) can be proposed to
apply the function directly on all MIPS as shown in Defi-

nition 7. In our work, the incision function defined in Al-

Namely,

gorithm 1 is used. Besides, the commonly used method
is adopted to compute MIPS based on all MUPS of all un-
satisfiable concepts ( see Lines 3 to 11).

Algorithm 2  Algorithm to revise a stratified ontology

Input; O =04UO; and O,.

Output: A revised coherent ontology.

1 M=O

2 Myps=0

3 U, = All unsatisfiable concepts in O w.r.t. O,

4 for (UeU,) |
5 My =All MUPS of O w.r.t. O, and U
6 M=MUM,
7

8

9

for (M, e M) |
if( A M, e M such that M,cM, ) then
10 Myups = Myups U { M |
11

12 0®.0,=(0\c(Mys) UO,

13 return O ®. 0,

Since computing MIPS is often very expensive, espe-
cially for those large ontologies or ontologies containing
many conflicts, an adapted revision algorithm (see Algo-
rithm 3) is provided to handle unsatisfiable concepts one
by one. For each unsatisfiable concept U, it is necessary
to check whether it is still unsatisfiable in the current on-
tology O which may have been changed (see Line 4). If
U is still unsatisfiable, all MUPS in O w.r.t. O, and U
need to be computed (see Line 5) and then an incision
function is used to select axioms from these MUPS. Fi-
nally, ontology O becomes coherent w.r.t. O, after re-
moving all selected axioms.

Algorithm 3  Adapted algorithm to revise a stratified
ontology

Input; O =04UO; and O,.

Output: A revised coherent ontology.

%

1 §S=¢

2 U, =All unsatisfiable concepts in O w.r.t. O,
3 for (UeUy,) |

4 if (ouo, FUCSL) then |

5 M = All MUPS of O w.r.t. O, and U

6 S=SUo(My)

7 0 =0\S§

8

9

!

J

10 0®.0,=0U0,

on

11 return O ®0,

3 Experimental Results

Our evaluation is performed on a laptop with 2.4 GHz
Intel(R) Core (TM)2 Duo CPU and 8.0 GB of RAM
using 64 bit operating system Windows 7. The maximum
heap space is set to be 6 GB. The relevance-based ontolo-
gy debugging algorithm'®’ is adopted to compute con-
flicts.

3.1 ILP-based algorithm vs. HST-based one

First of all, to see the efficiency of applying ILP, our
ILP-based algorithm ( namely Algorithm 2 with Algo-
rithm 1 as an incision function, marked as Alg2) is com-
pared with a commonly used algorithm based on the hit-
ting set tree (HST) “) (maked as Hst). Hst applies the
HST algorithm directly on the conflicts to be resolved and
satisfies the minimal change principle. We do not com-
pare with some other efficient algorithms for revising
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OWL ontologies, such as graph-based or new semantics-
based ones, since they are often designed for a specific
DL ontology.

The data set consists of 6 ontologies with different
numbers (i.e., from 10 to 15) of MUPS that do not
share any axioms and each MUPS includes 7 axioms.
Such a construction generating MUPS without overlapping
axioms is more challenging to handle than those with
overlapping axioms. In this way, each MUPS is also a
MIPS. To concentrate on showing the efficiency of using
ILP or HST, repairing single ontologies is also considered
by setting O, = J and all axioms in the ontologies are re-
movable.

Fig. 1 presents the experimental results, where the
number in x-axis indicates the number of MIPS. In this
figure, only the revision time is shown without the time
to compute MIPS since both algorithms worked on the
same sets of MIPS. From the figure, it can be observed
that, Alg2 performs much better than Hst and often
spends no more than 300 ms to finish each revision
process. As for Hst, its revision time increases quickly
when the number of MIPS increases. For example, it
spends 13 and 919 s for the ontologies including 10 and
12 MIPS, respectively. For those ontologies containing
more than 12 MIPS, Hst failed to finish each revision
process within the limited time (i.e., 1 000 s). This is
because constructing a HST is very time-consuming,
especially when the MIPS are uncorrelated. ILP provides
a mathematical method and can achieve very high effi-

ciency.
105~ [JAlg
10° [ Hst
210°
510°
g
E10°
10!
0
=0 1 12 1 14 15

Number of MIPS

Fig.1 Time to find a solution to revise an artificial ontology

3.2 ILP-based algorithm vs. adapted one

In this experiment, our two revision algorithms are
evaluated based on the well-known incoherent ontologies
kml, km2, km3 and km4. These ontologies were origi-
nally generated by using ontology learning algorithms.
Both algorithms ( namely Algorithm 2 and Algorithm 3)
take Algorithm 1 as an incision function and are marked
as Alg2 and Alg3, respectively. Since this ontology con-
tains too many unsatisfiable concepts (i.e., 1 375),
several sub-ontologies are extracted for testing.

Tab. 1 provides the details about the extracted ontolo-
gies and the experimental results, where UC indicates un-
satisfiable concepts and Time out means that a process
cannot be finished within 70 min. Time in the last two

columns consists of the time to compute the MUPS and
the time to revise an ontology.

From Tab. 1, it can be clearly observed that Alg3 is
much more efficient than Alg2 since computing MIPS
is very time-consuming. At the same time, it can be seen
that Alg3 may remove more axioms for resolving incon-
sistency. Take ontology km3 as an example. It originally
contained 1 800 axioms and the newly arrived ontology
contained 300 axioms. The merging of the two ontologies
generates 49 unsatisfiable concepts. To revise the ontolo-
gy, Alg2 spent 3 679 s and removed 2 axioms while Alg3
spent 314 s and removed 8 axioms.

Tab.1 Experimental results of finding a solution for each km

ontology
#Removed axioms Time/ms
o lol| lo,l #uc
Alg2 Alg3 Alg2 Alg3
kml 800 100 1 1 1 5154 4 360
km2 1800 200 46 2 8 2 230 675 289 768
km3 1800 300 49 2 8 3679 010 314 057

km4 1800 400 243 Unknown 33 Time out 600 621

3.3 Results over stratified ontologies

The third experiment tests the efficiency and effective-
ness of our algorithm to revise stratified ontologies,
where the effectiveness takes into consideration of the
number of removed axioms to revise ontologies. We did
this experiment by using Alg3 due to its higher efficiency
and choosing km2 as a test ontology. Similar observa-
tions can be obtained by using Alg2 or choosing other on-
tologies. Specifically, the original ontology of km2 is
stratified by randomly choosing a given number of axioms
as a stable part and the remaining axioms are considered
as the removable part. Tab. 2 shows the number of the
stable and removable parts for each test data set, where
time represents the time to compute MUPS and do revi-
sion.

Tab.2 Experimental results for each stratified ontology by ap-
plying Alg3

Number 1o, | ‘ Os‘ 10, Number ?f Time/ms
of UC removed axioms
200 1 600 8 277 719
400 1 400 15 598 596
46 200 600 1200 10 245 875
800 1 000 3 74 219
1 000 800 3 71 940

From the table, it can be seen that, when the size of
stable axioms is 800 or 1 000, Alg3 only spent about 70 s
to finish the whole process and removed very few axioms
(i.e., 3 axioms). In other cases, more time was spent
and more axioms needed to be removed. This is caused
by the axioms in the stable part (i.e., the axioms in
O, ). For conflict M, as our goal is to remove axioms in
its removable part first, some of the axioms in the stable
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part will be selected for removing only if it has no inter-
sections with the removable part. Thus, it may occur that
an axiom with a high frequency in MUPS belongs to the
stable part and more axioms in the removable part need to
be removed for resolving inconsistency. The cases of
\ O, | <800 belong to such examples.

4 Conclusions

1) A novel definition of conflict stratification is provid-
ed to introduce a more general model for ontology revi-
sion, and thus users can freely assign different priorities
to axioms.

2) A specific incision function based on ILP is defined
for stratified ontologies and two algorithms are proposed
to revise stratified ontologies.

3) To evaluate the performance of our algorithms,
comprehensive experiments have been conducted to meas-
ure the efficiency and the number of removed axioms.

4) The experimental results show that the proposed
ILP-based model is much more efficient than the HST-
based one; and the adpated algorithm outperforms the one
based on MIPS w. r. t. efficiency, while it may delete
more axioms. It can also be observed that the perform-
ance of the adapted algorithm to revise stratified ontolo-
gies is influenced largely by the stratification of axioms.
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ETBULENR ST E OWL REISIE

2 #' A4 Boutouhami Khaoula®”

("l R ER K IR R R, R 210023)
ChaRFiHANASEE TRF R, EF% 211189)
ChrORFHFTHITENMLEZEELSELSTRE, dF 211189)

FEEE: A4 715 £ & OWL(web ontology language ) A4k, i@ i 2 SUHT 89 b R 5 EAw Jk T 25 & M AR (ILP)
WIE BT R TESELT. AT ILP 69 A X BT MUK B AR R J A RAL P, & & T4 B AR
BRI HEONE. KT EWE R, RET AR K ILP 2 A2 T A ey R AR T4
(MIPS) L. % Sk & KAk 2% KER TA koG R I A2 493+ MIPS dEF4£aF. Bk, X4— B 5 — A K
PR E RN TEANALERTHAME. FREREAN B ATILP 95 B A2 wit Aag kT
B SRR 0 Sk e G A B A R SR R X B B S e R R T AR A MR S e 2.
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