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Abstract: In order to study the stability of friction and contact
of the rotating tribological pair system,
influence of the changeable factors on the stability, the system
dynamics analysis model based on the Lagrange equation is
firstly established. The surface contact stiffness model is
determined on the basis of the fractal theory. The model of the
friction torque with velocities is created by using the Stribeck
friction effect. The Lyapunov indirect method is employed to
explore the eigenvalue problem of the system state equation.
The effects of the applied load, the fractal dimension, the
fractal scaling coefficient and the Stribeck coefficient on the
system stability are investigated in detail.
simulation results demonstrate that the tribological pair system
is prone to causing system instability at low speed, and the
system instability boundary value decreases when the Stribeck
coefficient decreases.

considering the

The numerical

The fractal dimension and the fractal
scaling coefficient impact the system stability slightly when
fractal dimensions are large, and the system instability can be
reduced by properly increasing the surface smoothness.
Moreover, the system instability evidently increases with the
increase in the applied load and the Stribeck coefficient. These
achievements can provide a reference and theoretical support
for the analysis of the dynamic performance of the tribological
pair system.
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igh-speed rotating structures form friction in the
Hend, which results in an unstable operation of the
system and brings frictional vibration and noise. This is a
common phenomenon in engineering, for instance,
brakes, clutches, compressors’ crankshafts and the train
wheel-rail. The mechanical model of this end rotating
friction structure is a pair of high-speed disc tribological
pairs. Several physical mechanisms that attempt to ex-
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plain unstable friction-induced vibration have been pro-
posed in the literature and were reviewed in Ref. [1]: the
131 :

, stick-

How-

negative friction slope™, sprag-slip instability

¥ and mode-coupling instability"" .

slip instability
ever, there has been no universal consensus of an expla-
nation for friction phenomena and the dynamic behavior
of friction-induced vibration is not fully understood.

For reducing the impact of friction on engineering and
the environment, many studies have been carried out with
analytical, computational and experimental techniques.
To explore the frictional system, the early achievements
are attributed to the dry frictional stick-slip self-excited
ol 7 Stick-slip
is often caused by the nonlinear stiffness effect'™ or non-
linear discontinuity in w-v friction curve'. Hereby, the
Stribeck coefficient is usually included in the stick-slip
analysis to analyze the system stability and determine the
critical speed of the dynamic model"”""". Whereas, stick-
slip theory ignores the interaction between two contacting

surfaces. To overcome this shortcoming, elastic or flexi-
I

vibration' and unstable structural vibration

ble discs have been adopted. Ouyang et a examined
the transverse instability of an elastic disc under the action
of a rotating friction slider with stick-slip vibration.
Ouyang and Mottershead'"” investigated the instability of
the transverse vibration of a disk excited by two co-rota-
ting sliders on either side of it, taking into account the
bending couple acting in the circumferential direction pro-
duced by the different friction forces on the two sides of
the disk. Studies show that the modal coupling theory can
explain most friction phenomena under different friction
causes. Hoffmann and Gaul'” studied the qualitative and
quantitative aspects of the mode-coupling instability with
the presence of structural damping in sliding friction sys-
tems. Kang""

by friction in the ball joint system and presented the con-
1151

analyzed the dynamic instability induced

ditions of the mode-coupling instability. Sui and Ding
established a pad-on-disc frictional model and carried out
the eigenvalue analysis to evaluate the stability of the pad
considering the stochastic variation of frictional coeffi-
cients and the contact effect.

The features of contact at the friction interface of the
disc are ignored in most of the studies mentioned above.
Actually, the contact stiffness is inevitably affected by the
tribological pairs under the contact condition, causing the
variety in system instability. For establishing an accurate
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dynamic analysis model, the contact stiffness model
should be proposed in addition. As the fractal model can
simulate the contact state with high precision, researchers
have developed some fractal contact stiffness models and
explored the influence of vital parameters on the model
such as the fractal dimension D, the fractal scaling coeffi-
cient G and the applied load'"™. Due to the effects of
friction, some scholars put forward some modified mod-

2021
2020 1t can be conclu-

els to correct the contact stiffness
ded that the contact stiffness is modifiable with various
system characteristic parameters.

Therefore, a dynamic analysis model of the rotating tri-
bological pair system on the circular-disc end face for de-
termining the system stability is proposed according to the
Stribeck effect and fractal contact characteristics in this
paper. The dynamic differential equation of the system is
modeled by the Lagrange equation. The friction torque
considering the Stribeck effect is produced, and the nor-
mal contact stiffness and the tangential contact stiffness
are established through the fractal theorem. The system
equation is deduced and the criterion of system stability is
given. The system stability is investigated and discussed
by the numerical simulation analysis of the effects of ap-
plied loads, Stribeck coefficients, and fractal parameters
D and G. The achievements of this work will serve as a
reference and a theoretical support for the analysis of the
dynamic performance of frictional systems.

1 Dynamic Model of Rotating Tribological Pair
System on the End Face

The instability of the friction pair is the cause of the in-
stability of the system. Studying the rotational freedom
and axial freedom of the friction pair can accurately de-
scribe the motion state of the friction pair. The dynamic
model of a non-damping system is established, as shown
in Fig. 1. m,and J, represent the mass and torque of iner-
tia of the active part, respectively; m, and J, represent the
mass and torque of inertia of the driven part; both of
them are metal parts. The displacement x, is along the X
direction; 6, and @, are the rotation angles of the active
and driven parts. The driven part connecting to the base
is subject to the elastic constraints of k, and k,; k, is in
the X direction and k, is in the direction of the circumfer-
ence tangent. The parameter &, is the normal contact stiff-
ness and k, represents the tangential contact stiffness, and
they are used to connect the active part and the driven
part. The load p is applied along the X direction; M, is
the driving torque of the active part. r, and r, are the radii
of the inner and outer rings of the pair on the contact sur-
face, as shown in Fig. 1(b). We assume that point B and
point B’ are in the same position; point B is on the sur-
face of the active part, but point B’ is on the driven part;
there is a spring connecting two points in the circumference
tangential direction, so k, is the total tangential contact

L
Xy
y x

The driven part
The active part m,, J,

my, J,

(b)

Fig.1 The rotating tribological pair system on the circular-disc

end face. (a) Diagram of friction pair system; (b) The contact surface

stiffness on the contact surface.

In a system dynamics analysis, it is worth considering
whether the flexibility of components affects the dynamic
calculations. Generally speaking, the natural frequencies
of the metal components being studied in this paper are
much higher, and their thicknesses are not thin, so the
flexibility of the component can be ignored. With the La-
grange system modeling method, the general form of the
Lagrange second-class equation can be described as
G- (1)

4q; dq; 94,
where T is the kinetic energy of the system; V is the po-
tential energy of the system; g, is the generalized coordi-
nate of the system; ¢, is the generalized velocity of the
system; Q, is the generalized force of the system.

Then, we have the dynamic differential equation of the
system,

J, 6,
J, 6, | +
m, L X,
k. — k5 0 6, M, - M,
~krs (k +k)r 0 0, |=| M, (2)
0 0 k, +k, JLx, p

Consequently, the dynamic model of the rotating tribo-
logical pair system on the end face is set up, and it is a
basic equation for exploring the system stability. The fric-
tion, a cause of system instability, can generate a nega-
tive damping in systems. Among the studies mentioned
above, most of them modeled the friction force in the ro-



26

Chen Long and Zhang Jianrun

tating system, which cannot describe the frictional fea-
tures of the complete contact surfaces precisely; thus, the
friction torque M, taking into account the Stribeck effect is
adopted in this paper. Under the consideration of the con-
tact stiffness, the values of k, and k, are often given defi-
nitely, omitting the contact characteristics and the effect
of friction. However, the contact state is also a signifi-
cant factor of the system stability, which can alter the
systemic stable state, so the contact stiffness should be
established correctly. The specific modeling progresses
are given in the following sections.

2 Friction and Contact Mathematical Model
2.1 Stribeck friction torque model

When the friction phenomenon is described by differen-
tial equations, the friction models are roughly divided in-
to two categories: the static friction model and the dy-
namic friction model™ .  Armstrong-Hélouvry and
Soom'™ suggested that a good static friction model could
approximate the actual friction with 90% accuracy. For
mathematically representing the Stribeck phenomenon, an
extensively used model describing the Stribeck effect, the
Gauss index model, is employed, in which the Stribeck
friction coefficient dependent on the relative velocity is

approximated by the following function:

£ =y + (p, —p)e ™ (3)

where f.(v) is the Stribeck friction coefficient; w, is the
sliding friction coefficient; y, is the maximum static fric-
tion coefficient; v, is the Stribeck coefficient.

Then, the first derivative of f,(v) is

1

_mw=—%mfmn”” (4)

Fig. 2 exhibits the friction coefficient curves at different
Stribeck coefficients with w, =0. 18 and w, =0. 12, which
evidently illustrate the negative slope of friction-velocity.
Therefore, the Stribeck coefficient should be deliberated
in order to evaluate friction accurately.

0.18 x-

0.17
0.16
0.15
0.14

0.13
0.12

Friction coefficient £, (v)

0 1020 30 40 730
v/(m - s7)

Fig.2 Stribeck friction coefficient curves

The friction force is modeled considering the Stribeck
effect in most studies, while the friction torque is more
suitable for presenting the rotating tribological pair sys-
tem. Before modeling the friction torque, the micro-ele-

ment surface on the contact surface is taken into account,
as shown in Fig. 1(b). At the radius p, the area of the
micro-element is

dS =pdedp (5)

From Fig. 1(a), we have the total contact load p, =
k,x,. Assuming that the contact load is uniformly distrib-
uted on the surface, the load on the micro-element is

Pa k,x,
dp =ZdS = A pdbdp (6)
where A, is the nominal contact area; k, is the normal
contact stiffness; x, is the displacement of the contact sur-
face.

In order to describe the Stribeck effect on the friction,
we introduce the Stribeck friction coefficient f, (v) into
the friction torque. The moment of friction force applied
on the micro-element surface to the rotation axis is foun-
ded as

k. x )
dM, =pf,(v)dp = —=f,(wp)p’dbdp (7

where w is the relative rotation angular velocity, v = wp.

According to Eq. (7), the moment has the same ex-
pression at any angles, and then we can obtain the fric-
tion torque M, of the entire contact surface,

2wk x, )
T reppd (®)

M, = f"fde -

where r, and r, are the radii of the inner and outer rings of
the contact surface.

2.2 Contact stiffness fractal model

The development of the fractal theory has greatly pro-
moted the study of surface microscopic features, which
makes the contact characteristic parameters closer to the
actual situation. The accurate description of the contact
state is an essential prerequisite for modeling. Therefore,
the establishment of k, and k, is described in the follow-
ing.

The contact problem between two rough surfaces is
generally equivalent to the contact problem between a
rough surface and an ideal plane. Therefore, Young’s
modulus E of the equivalent rough surface is given by

2 2
I-wi 1 -

1
E-E T E ®)

where E|, E,, v, and p, are the two materials’ Young’s
modulus and Poisson’s ratios.

The relationship between the total dimensionless con-
tact load p " and the dimensionless real contact area A" of
the rough surface is provided by the M-B fractal contact
model™' under the elastic-plastic contact condition.

If 1 <D<2 and D#1.5, the dimensionless contact
load p " is expressed as
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(3-2D)72

p* =4T“/;G*(Dfl>gl(D)Ar*<D/2> [ (%TDAT* )

a*(372D)/2 ] + chgz(D)A:(Dﬂ) a:(ZfD)/Z (10)

c

If D=1.5, the expression of p~ is written as

3/4 *

e () o)

c

3/4

(a:]/él)
(1)

where D is the fractal dimension; G is the fractal scaling
coefficient. D and G can be obtained by the parameter
identification of the surface. a,_ is the critical micro-con-
tact area at the boundary point of the elastic-plastic de-
formation, which is described as

K 2/(1-D)
a, = G’ (ﬁ)

5 (12)

where K = H/o; ¢ =0 /E; H and ¢, are the hardness
and yield strength of the softer material. g, (D) and
8,(D) are constants of the fractal dimension, which can
be calculated as

D (2-D\"
s =5 55(55)
b a0 (13)
8:(D) = ( ﬁ)
The dimensionless parameters are defined as
. P ._ G LA L e
N iy R R W

where A, is the nominal contact area; A, is the real con-
tact area; p is the applied load.
Referring to Ref. [21] and considering the influence of
friction, the critical micro-contact area is revised as
2/(1-D)
a, = G ( 34' 3 fknd))

(15)

where ku is a friction correction factor, and its expression
depending on the friction coefficient g is

O<su<0.3

1-0.228u
K ‘{ 0.3 <u<0.9 (16)

» 0.932¢ " Hw-03

Approximately regarding the micro-convex body as a
sphere, the normal contact stiffness dk, depending on the
contact area a of one single micro-convex body is de-
scribed as

-4
n = 3 /;
The maximum contact area a, has the following rela-
tionship with the real contact area A,
_2-D

A, (18)

dk Ea"?

(17)

a,

Thus, the total normal contact stiffness k, of the rough
surface is determined as

D/2
L = 4ED (2—DAV) .
3/a(l-D)\ D

r_p (1P~
(75

_ ail —D)/Z:I
According to Ref. [17],
can be modeled as

(19)

the tangential contact stiffness k,

k = 4ED (1 1 To)m.
/a1 ) (2 —v) (1 -D) mp
_ D/2 _ (1-D)/2
) 050 ]

where T is the tangential load.

3 System Equation Deduction for the Stability
Criterion

For determining the system stability, the friction torque
M, should be linearized due to the nonlinear Stribeck coef-
ficient f.(v). According to Eq. (8), the Taylor expansion
at x, =x,,, w =w, is written as

27k, "
M; = x, TJ fs(wIP)PZdP -

2ak X, (w

A—_w‘)fﬂ(wlp)ﬁdp (1)

where x,, =p/k,; w, =6, =v/p; and v, is the linear ve-
locity at the radius p.
Then, the friction torque can be expressed as

M, =hx, - h,0, (22)
where the definitions of &, and h, are given by
27k,
ho= = APt
a (23)

2mp (*
b= S [ 1 (np'dp

Hence, the dynamic equation of the tribological pair
system can be constructed as

rJ, é, 0 -h, 0776,
J, }[@L[o h, o]{o’zr
L m, |l x, 0 0 olx

i kl"z _ktr§ hl 01 MO
—kr: (k +k)r:  -h | 6,|= 0] (24)
0 0 k, +k dLx, )4

With the deliberation of the Lyapunov indirect meth-
0d™, Eq. (24) is rewritten in the state vector form:

i

6,7 Vs

,92 Y3

. 1

S| etk Shed (o)
Vi 1

¥, T[ —hyy, +k 730, — (k, + k)20, + h,x,]

. 2
LY

1
nz[p _(kn +k1)x1]
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Then, the coefficient matrix A of the system can be de-
termined from Eq. (25):

(26)

[03x3

I3><3
A

A

1 2

where O, , is the null matrix; I, is the unit matrix; A,
and A, are defined as

[ k7 k1, hy ]
S, J, o,
ki k +k h

A, = 2 Kt 2,2 .
J, J, J5
k, +k,
0 0 -
L m2 .
h
0o = 0
J,
A=y ko
J5
0 0 0

Therefore, all the parameters modeled above are substi-
tuted into Eq. (26) for computing the eigenvalues of the
matrix A through MATLAB. In the light of the stability
determination theorem, the eigenvalues A of the coeffi-
cient matrix A have negative real parts on the basis of one
approximation, which strongly indicates that the original
nonlinear system is asymptotically stable at the equilibri-
um point. On the other hand, the positive real part of the
eigenvalue implies the instability of the system.

4 Numerical Results and Discussion

In this paper, the stability analysis of the rotating tribo-
logical pair system on the end face is carried out with the
dynamic model. The example of calculating the eigenval-
ues of matrix A is studied in this section with the given
parameter values shown in Tab. 1.

Tab.1 Model calculation parameters

Parameter Value Parameter Value
p/N 5 000 E,/GPa 210
k/(MN-m™") 10 v 0.27
ky/(GN - m™") 10 v, 0.3
ry/m 0.03 o,/MPa 250
ry/m 0.06 H/HB 209
m,/kg 27.2 v/(m-s71) 10
m,/kg 16.7 M 0.18
J,/ (kg - m?) 480 m 0.12
Jy/ (kg - m?) 320 D 1.80
E,/GPa 190 G/nm 3.6

The curves of the real part of eigenvalues Re(A) at
different speeds demonstrate that the system tends to be
stable at higher speed whereas the system exhibits an un-
stable state at lower speed, as shown in Fig.3. Moreo-
ver, the real part of the first-order eigenvalue is invaria-
bly equivalent to zero, and the third-order shows a posi-

tive real part inferring system instability. Hence, the sec-
ond- and third- order eigenvalues become the focus of this
study. Due to the friction characteristics, there are many
factors influencing the system stability such as the surface
roughness R, , the applied load p and the Stribeck coeffi-
cient v_, and their effects on the system stability are ex-
plored and compared as follows.

10 -
VY —— Ist order
8k 1 e 2nd order
! i - --3rd order
0 6 L/ \
S i \
= ! | !
6 4 L Il \\
51 ! \
&oop AN
i N
N e ——— ==
=) L L L L 1
0 10 20 30 40 50

v/(m - s7)

Fig.3 Real part of eigenvalue

The topography of the surface is one of the important
factors affecting the state of frictional contact between
surfaces. Statistical methods describe surface features
through statistical parameters such as the surface rough-
ness R,, but the fractal theory uses fractal parameters to
solve the problem of scale correlation. The surface rough-
ness and fractal parameters are used as surface characteris-
tics, so scholars have studied the relationship between
them. Guan et al. ™ pointed out that the fractal dimen-
sions of processed surfaces with the same manufacturing
method are basically equal, and the fractal scaling coeffi-
cient changes with surface roughness. Pan et al. " ana-
lyzed the relationship between surface roughness and frac-
tal parameters in details. When the fractal scaling coeffi-
cient G is small, the surface roughness R, and the fractal
dimension D have a monotonically decreasing relation-
ship; when D value remains unchanged, the relationship
between R, and G can be expressed as

R, <G (27)

Therefore, the effect of surface roughness on the analy-
sis model is indirectly reflected by studying the fractal pa-
rameters.

Fig. 4 describes the variation of the real part of the sec-
ond-order and third-order eigenvalues of the system with
four fractal dimensions. It can be inferred from Fig.4(b)
that the fractal dimension has little impact on the system
instability, but its value at 1.75 makes the system unsta-
ble with the lowest trend. The relationship between the
speed and the real part of eigenvalues at four different
fractal scaling coefficients is shown in Fig. 5. It obviously
appears that the instability trend of the system increases
first and then decreases along with the increase in the
fractal scaling coefficient. Actually, when the fractal di-
mension D increases and the fractal scaling coefficient G
decreases, the surface is smoother. The appropriate in-
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crease in surface roughness is beneficial for the system to
reduce the instability phenomenon. When the
roughness exceeds a certain value, a smoother surface is
more prone to unstable friction. Most noteworthy, the
peak values of curves and instability boundary values are

surface

I
D:
v 1.65
© —1.70
) ---1.75
= 6% — £ 1.80
S
)
o~
2050
12
0 D:
] L 1.65
? —1.70
g 6 S=SINTS
SJ 0N 1.80
&
2
0
_2 1 1 1 1 1
0 10 20 30 40 50

v/(m * s7)

(b)

Fig.4 Effects of the fractal dimension D on the real part of ei-
genvalues. (a) The second-order eigenvalue; (b) The third-order ei-
genvalue
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Fig.5 Effects of the fractal scaling coefficient G on the real

part of eigenvalues. (a) The second-order eigenvalue; (b) The third-
order eigenvalue

constant. Hence, it is difficult to improve the system sta-
bility within the range of 1. 65 and 1. 80 of the fractal di-
mension.

Similarly, the relationship between the speed and the
real part of eigenvalues at four different loads is shown in
Fig. 6. It can be seen from Fig. 6(b) that the instability
trend of the system rises apparently with the increase in
the applied load. Although the applied load has a great
influence on system stability, its value should not be
changed due to the index requirement in practical engi-
neering. Fig. 7 depicts the variation of system stability
trends under different Stribeck coefficients. Evidently,
decreasing the Stribeck coefficient makes the system more
unstable, but can reduce the system instability boundary
value and expand the stability interval. Actually, it is an
extremely complex procedure to vary the Stribeck coeffi-
cient affected by nonlinear factors. Hence, the selection
of the Stribeck coefficient should be determined according
to the particular system requirements.

By comparing Fig. 4 to Fig.7, it can be concluded that
the instability boundary value and the speed corresponding
to the peak value are not changed with the parameters of
D, G or p, while they are influenced by the Stribeck co-
efficient. No matter how the other parameters are changed
with the determined value of the Stribeck coefficient, on-
ly the trend of the system instability is changeable. More-
over, a proper surface roughness can reduce the system
instability, but the smoother the surface, the more likely
it is to cause friction instability.

p/kN:
N £ N 1
S ---5
= —10
] L 20
5
=2

40 50

v/(m + s7h)

Re(W)/10-

0 10 20 30 40 50
v/(m + s7)

(b)
Fig. 6 Effects of the applied load p on the real part of eigen-

values. (a) The second-order eigenvalue; (b) The third-order eigen-
value
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Fig.7 Effects of the Stribeck coefficient v, on the real part of
eigenvalues. (a) The second-order eigenvalue; (b) The third-order ei-
genvalue

5 Conclusions

1) The rotating tribological pair system on the end face
exhibits an unstable state at low speed and gradually en-
ters a steady state at high speed.

2) The real part of the first-order eigenvalue of the sys-
tem is always zero, and the third-order eigenvalue causes
the system instability.

3) The fractal dimension and the fractal scaling coeffi-
cient have a slight impact on system stability when fractal
dimensions are large, but there are optimal values for
minimizing the instability trend of the system, which
means that there is a best value for the surface roughness.

4) Reducing the applied load and Stribeck coefficient
can improve system stability ; and the instability boundary
value is only altered by the Stribeck coefficient.
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Bl REREES T
KA

(AdRFIRIAEFR, dF 211189)

WE A TR AR 8] R A0 B B AT, X R A L R Yrn, A2 T A THEENA
TG RAH N F IR, AT HHERE TR AR EAEA KR Stribeck B8 & 5 B3 F) 46—
ik AR A B Lyapunov 8] 35k ALK 4 R A H ARG S AEAR 9 AR, 5F Bkt T AN AT o B 3 4
% RE % H A= Stribeck 2 K F A M R AT WA o, HAEAF L& R AN B E) 2 R REk A S 5k
AURAE M Stribeck R 2R, R AR LFALR A 5T ERE KT ILT , 0B e diA o B R
B RBBIRZ 0 R RN, AE SR GEDMARETAERARA ARG LN, 2 AT T I G 560
#9247 A= Stribeck 2 #6938 In i A B3GR, AR R R T A ST EHLS RS AR RAEAE fo b 1 .
KGRI e 3L R A R Y Ak N B Stribeck 2L 3 S FARER A M
FESFES:TH113;,TH117



