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Abstract: The rolling bearing vibration signal is non-stationary
and is easily disturbed by background noise, so it is difficult to
accurately diagnose bearing faults. A fault diagnosis method of
rolling bearing based on the time-frequency threshold
denoising ( TDSST ) and
convolutional neural network (CNN) is proposed. Since the
traditional methods of wavelet threshold denoising and wavelet
adjacent coefficient denoising are greatly affected by the
estimation accuracy of noise variance,
denoising method based on the STFT spectral correlation
coefficient threshold optimization is adopted, which is
combined with a synchrosqueezing transform. The ability of
the TDSST to reduce noise and improve time-frequency
resolution was verified by simulated impact fault signals of
rolling bearings. Finally, the CNN is utilized to diagnose the
time-frequency diagrams obtained by the TDSST. The
diagnostic results of the rolling bearing experimental data show
that the proposed method can effectively improve the accuracy
of diagnosis. When the SNR of the bearing signal is larger
than 0 dB, the accuracy is over 95%, even when the SNR
— 4 dB, the accuracy is still around 80% .
Moreover, the standard deviation of multiple test results is
small, which means that the method has good robustness.
Key words: threshold denoising; synchrosqueezing transform;
convolutional neural network; rolling bearing
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olling bearings are key components in most mechan-
R ical equipment, but they are fragile as well. Once a
fault occurs, it can cause serious consequences, endange-
ring equipment and personnel safety. However, due to
the non-stationarity of vibration signals caused by the
bearing failure and additional noise interference, it is dif-
ficult to diagnose the faults of rolling bearings.

In view of the problem of periodic shock and noise in
the signal of a bearing fault, Li et al.'" proposed a fea-
ture extraction method based on an improved adaptive
variational mode decomposition (VMD) and sparse code
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shrinkage denoising, which highlighted the periodic im-
pulse components in the signal and improved the accuracy
of fault identification to a certain extent. Guo et al. '
proposed a multi-stage noise reduction method, which
used EEMD, wavelet threshold ( WT) and modulation
signal bispectrum to denoise the signal and extract the
fault features. Yan et al. "™ proposed a feature selection
framework-based multiscale morphological analysis ( FS-
MMA) method to solve the issue of losing local fault in-
formation and a multi-stage hybrid fault diagnosis strategy
to timely detect the bearing operating condition. Li et
al. ' used a particle filter as the signal pre-processing
noise reduction method,
spectral kurtosis method to obtain the best analysis fre-

and combined it with the fast

quency band to realize bearing fault diagnosis. However,
the above-mentioned methods require certain prior knowl-
edge when extracting fault features, and need to separate
feature extraction and fault classification, which increases
the complexity of the diagnosis process and the possibility
of the loss of information.

Deep learning has obvious advantages over shallow
models in feature extraction and modeling, so it has re-
ceived much attention in recent years' . The convolution-
al neural network (CNN) is widely used in the fault diag-
nosis of rolling bearings due to its advantages of local
perception vision and weight sharing. Eren et al. "’ used
an adaptive one-dimensional convolutional neural network
to diagnose bearing faults. The model directly used the
original time domain signal as input and it was suitable
for real-time fault monitoring. Liu et al. "™ combined a
one-dimensional convolutional auto-encoder with the
CNN. The former was used for noise reduction, and the
latter was used for the fault diagnosis of the denoising sig-
nal. It improved the diagnosis accuracy, but it only con-
sidered the time domain information. Li et al. ™ proposed
a bearing fault diagnosis method based on the short-time
Fourier transform ( STFT) and CNN.
non-stationary signals, but easily causes information loss
in the process of time-frequency data compression. Fur-
thermore, the model is insufficiently robust against strong
noise. Therefore, a method of rolling bearing fault diag-
nosis based on the threshold denoising synchrosqueezing
transform( TDSST) and CNN is proposed in this paper. It
performs threshold denoising on STFT spectrum, en-

It is suitable for

hances time-frequency resolution by the synchrosqueezing
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transform, and applies the CNN to achieve fault feature
adaptive extraction and fault diagnosis.

1 Threshold Denosing Synchrosqueezing Trans-
form

1.1 Synchrosqueezing transform

As a time-frequency post-processing method, the syn-
chrosqueezing transform can improve the time-frequency

. 10
resolution”’

. In this paper, the synchrosqueezing trans-
form based on short-time Fourier transform ( FSST) is
adopted.

The multi-component AM-FM signal f(¢) can be ex-

pressed as
fin = Y h = YA e (1)

where A, (f) is the instantaneous amplitude (IA) of each
component; ¢, (¢) is the instantaneous phase of each
component; ¢;(t) represents the instantaneous frequency
(IF) of each component, and its ideal time-frequency dis-

. . .11
tribution is""

ITFR(w, 1) = > A (8w — ¢i(1)) (2)

where §( ) denotes the Dirac delta function, which de-
generates to Kronecker delta function in the discrete signal
processing. It indicates that the energy of the ideal time-
frequency distribution is only distributed along the instan-
taneous frequency ridges of each component. The short-
time Fourier transform of the signal f(#) can be expressed
as

Viw, 1) = j fr)glr —ne™ " dr (3)

where V(w, t) represents time-frequency spectrum coeffi-
cients, and g(7) is the window function. If the range of
g(7) in the time domainis [ —A,, A,], then the STFT re-
presents the Fourier transform of f(7)g(7—¢) on [t -A
t+A].

Take a single-component signal as an example. Sup-

t

pose that the signal varies slowly, and & is small enough.
For any t, |A'(t) | <& and | o"(1) | <e, then the sig-
nal can be expressed as

f(T) =A(t)ei(¢(,)+¢'(t)(7*1)) (4)
Substituting Eq. (4) into Eq. (3), then
Viw, 1) =AD" g(w-¢'(1)) (5)

where g is the Fourier transform of the window function.
Then the following formula can be derived:

8,V (. 1) = V(. 1)ig(1) (6)

6,Vf(w, 1)

in(a), 1) 7

o(w,t) =

where 9, represents the derivation of time, and w repre-
sents the estimated value of IF. For multi-component sig-
nals, Eq. (7) is also applicable!"”
chrosqueezing transform can be expressed as

. Therefore, the syn-

(8)

o(w, 1) = atargvf((l), ) = Re(M)

iV (w, 1)

Ts(n, 1) = Lv,(w, Né(n - a(w ))do  (9)

fi(t) = Ts(n, t)dy (10)

1

2mg(0) f\ n-el(nl<ds
To simplify the calculation, the real part of Eq. (7) is
taken and w(w, t) is used to represent the approximation
of IF. For the sake of distinction, 7 is used to represent
the angular frequency after the synchrosqueezing trans-
form, while w represents the angular frequency before the
synchrosqueezing transform. The reconstruction of each
component is shown in Eq. (10), where ds is the band-
width of signal reconstruction.

1.2 TDSST process

Although the synchrosqueezing transform can improve
the time-frequency resolution, it also has the shortcoming
of poor noise resistance. When the signal is compressed,
the noise part is easily compressed and enhanced, which
leads to the combination of threshold denoising and syn-
chrosqueezing transform. However, most existing time-
frequency threshold denoising methods have the problem
of optimal threshold estimation. Therefore, this paper
proposes a time-frequency threshold denoising method
based on threshold optimization via the spectral correlation
coefficient in STFT (CorrShrink), which can automatical-
ly search the optimal denoising threshold and obtain the
denoised spectrum. The relevant definitions are shown as
follows and the specific process is shown in Fig. 1.

Definition 1

, i-1y
o(i) = (7=7) oM (1)
where ¢ (i) represents the denoising threshold of the i-th
step; B represents the threshold adjustment coefficient and
it plays a role in limiting the threshold range; T represents
the maximum number of search steps and M represents
the maximum number of STFT spectrum. With the in-
crease of the steps, the distance between adjacent thresh-
olds gradually increases.

Definition 2 If tfr, (w, ) <o(i), then

tfr,_ (w,1)°

tfr,(w, t) = 20(i)

(12)
where tfr( w, t) represents the value of spectrum, and it
indicates that the coefficient tfr, ,(w, t), which is not lar-
ger than the threshold, is reduced to tfr, (w,?) */(2a(i))
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Input signal f{7), coefficient £, maximum
number of search steps 7', let step i=0

Execute the STFT to obtain the time-frequence
spectrum tft(w,?), and find the maximum value M

Determine the current threshold o(7)
according to Eq. (11) No

Calculate the new time-frequence
spectrum tfr(w.?) according to Eq. (12)

Calculate the correlation coefficient
h(i) of tfr(w.f) and tfr,_ (w.?)

Find the peak point after the first valley point
of the correlation coefficient 4(i), then the
corresponding (i) is the optimal threshold ¢

Calculate the denoised time-frequence
spectrum detfr(w,f) according to ¢ and Eq. (12)

Output detfr(w,?)

Fig.1 The process of the threshold denoising method based on
threshold optimization and the spectral correlation coefficient

in order to achieve the effect of noise reduction.

TDSST is obtained by combining CorrShrink with the
synchrosqueezing transform. The specific algorithm steps
are as follows:

Algorithm 1 TDSST

1) Input time domain signal, coefficient 8, maximum
search step T.

2) Use CorrShrink to reduce the noise and obtain the
denoised spectrum of the STFT.

3) Calculate estimated instantaneous frequency w(w, t)
of detfr(w, ) according to Eq. (8).

4) Synchrosqueezing transform

[row, col] = size(detfr(w, t));

for w =1: row

for t=1: col

n=w(w 0;
Ts(n, t) =detfr(w, 1);
end

end
5) Output the denoised time-frequency spectrum Ts( 7,

1.
1.3 Simulation analysis

In this section, the proposed TDSST method will be
analyzed, and the simulated signal will be used to verify
the ability to reduce noise and improve the time-frequency

resolution of the method. When rolling bearings fail dur-
ing operation, they are often accompanied by periodic
pulses. The signal will be an amplitude modulation signal
with the bearing characteristic frequency as the modula-
tion frequency and the natural frequency as the carrier fre-
quency, which can be expressed as'"”

x(k) =e " (sin2mf,kT +1.2sin2wf,kT)  (13)

where a =800, f,, =100 Hz, f, =3 000 Hz, f, =8 000 Hz
are the exponential coefficient, the modulation frequency
and two carrier frequencies, respectively. The sampling
interval is T=4 x 10 s.

Fig. 2 is the time domain waveform of the simulated
signal of a rolling bearing fault. From the waveform dia-
gram, the periodic impact can be clearly seen and its peri-
od is 0.01 s.

2
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Fig.2 Time domain waveform of simulated signal for a rolling
bearing fault

However, in actual situations, such as equipment oper-
ating in the factory, the collected signal often has strong
background noise. When the rolling bearing fails, the pe-
riodic impact component in the signal is easily over-
whelmed by noise and cannot be detected. As shown in
Fig. 3, Gaussian white noise is added to the simulated
signal to make the SNR of the signal reach — 4 dB.
Then, the periodic impact component is almost over-
whelmed by the noise, and the bearing condition cannot
be directly judged from the time domain waveform.
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Fig.3 Time domain waveform of simulated signal for a rolling
bearing fault (SNR = -4 dB)

In order to verify the superiority of the proposed
TDSST method in the noise reduction of strong impact
signals, TDSST, wavelet threshold noise reduction ( WT)
and wavelet denoising using neighbouring coefficients
(WD-NeighCoeff) method are used to process the noisy
signal in Fig. 3, and then the time domain waveform of
Fig. 4 is obtained by the inverse transformation.

Fig.4(a) is the reconstructed waveform of TDSST, g
is 0. 8 and the maximum search step 7 is 50. Fig.5 is a
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Fig.4 Reconstructed waveform of bearing fault simulated sig-
nals using different denoising methods. (a) TDSST; (b) WT; (c)
WD-NeighCoeff! '*!

schematic diagram of the time-frequency threshold denois-
ing process. It can be found that the white noise is ran-
domly distributed in the time-frequency spectrum. In the
initial process of noise reduction, there are many noise
points in the spectrum, and the noise part plays a signifi-
cant role. As the threshold increases slowly, the noise
part is filtered, and the difference between the adjacent
spectra increases. Thus, the correlation coefficient of the
time-frequency spectra shows a downward trend while the
SNR increases and its curve shows an upward trend.
Then, as the noise decreases, the main part of the signal
becomes more and more prominent until the main part of
the signal plays a greater role than the noise part. When
the threshold continues to increase, the difference be-
tween adjacent spectra decreases instead and the correla-
tion coefficient curve shows an upward trend. Due to the
reduction of the noise, the SNR curve continues to rise.
As shown in Fig. 5, the correlation coefficient decreases
first and then increases, while the SNR increases monot-
onously. When the noise part is basically filtered out, the
main part of the signal begins to be filtered, and the
curve of the SNR and the correlation coefficient reaches
the peak simultaneously. Finally, as the main part of the
signal is filtered, the difference between the adjacent
spectra increases again,
SNR decrease simultaneously, and both curves show a
downward trend. In practical applications, as the thresh-
old increases continuously, fluctuations may occur during
the decrementing of the posterior segment of the correla-

the correlation coefficient and

tion coefficient curve. Therefore, the threshold corre-

sponding to the first peak point after the first valley point

on the curve is taken as the optimal noise reduction
threshold, and the threshold corresponding to the peak
point marked on the curve of correlation coefficient in
Fig. 5 is selected as the optimal threshold.
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Fig.5 The schematic diagram of the time-frequency threshold
denoising process

Fig. 4(b) is the reconstructed waveform of WT, in
which the sym5 wavelet function is selected, the number
of decomposition layers is 4, and the soft threshold de-
noising method is adopted after testing. Fig.4(c) is the
reconstructed waveform of WD-NeighCoeff, in which the
sym8 wavelet function is selected and the number of de-
composition layers is 4. By comparison, it is found that
WT and the WD-NeighCoeff method have some denoising
effect on the noisy signals with obvious impact compo-
nents, but the period of the impact cannot be clearly iden-
tified in the reconstructed signal when the original SNR is
low. The proposed method can obtain higher SNR. When
the original SNR reaches —4 dB, the impact component
with a period of 0. 01 s can still be clearly found in the
reconstructed signal, which proves that it is more suitable
for the denoising of strong impact signals.

In order to further prove the superiority of the TDSST
method, the signal x(k) shown in Eq. (13) is added with
different degrees of noise, and then the above three meth-
ods are used for noise reduction and the SNR is calculat-
ed. The results shown in Tab. 1 are the average values of
10 tests.

Tab.1 SNR of reconstructed signal dB
Noise level/dB WT WD-NeighCoeff TDSST
-4 0.815 0.652 3.912
0 3.404 2.985 7.403
4 5.887 5.671 10. 256
8 9.161 8.695 13.753
12 12.442 12. 117 17.381

It is verified that the denoising effects of TDSST are
better than those of the other two methods with the back-
ground of strong noise and weak noise for strong impact
signals.

Then, in order to verify the superiority of TDSST in

improving the time-frequency resolution, the signal in
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Fig. 3 is processed by STFT, FSST and TDSST, respec-
tively. The 8 000 Hz frequency component is amplified to
obtain a local time-frequency diagram as shown in Fig. 6.
Fig. 6(a) is the local time-frequency diagram obtained by
the STFT. The time-frequency energy is relatively scat-
tered, and due to the influence of strong noise, there are
randomly distributed noises in addition to the 8 000 Hz
Fig. 6 (b) is the result of the
FSST. Its resolution is significantly improved compared

frequency component.

to Fig.6(a), and the energy is mainly concentrated near
8 000 Hz, but the noise part is also distributed on the dia-
gram after being compressed. Fig.6(c) shows the results
of the TDSST. It can be seen that the noise part is obvi-
ously reduced and the energy is concentrated at 8§ 000 Hz,
and thus the time-frequency resolution is significantly im-
proved. In order to accurately compare the effects of each
method, the Rényi entropy R is used to measure the time-

. 15
frequency resolution'"':

f tfr( w, ) “drde
log,
j tfr( o, 1) drde

1

R:
1l -«

(14)

where a generally takes 3, and the smaller the value of
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Fig.6 Local time-frequency diagrams. (a) STFT; (b) FSST;
(c) TDSST

the Rényi entropy, the higher the time-frequency resolu-
tion will be. The Rényi entropy is calculated for the glob-
al time-frequency spectrum corresponding to the three pic-
tures in Fig. 6, which are 22. 314, 20.459 and 18. 245,
respectively. The Rényi entropy of the time-frequency di-
agram obtained by the TDSST method is the smallest,
which represents the highest time-frequency resolution,
thus verifying the superiority of the TDSST method in im-
proving the time-frequency resolution.

2 Fault Diagnosis Method of Rolling Bearing
Based on TDSST and CNN

CNN is a deep learning network for identifying two-di-

. 16
mensional feature maps"®

It can automatically extract
features for classification from two-dimensional maps,
which is similar to the processing of human brain vision
systems. CNN contains multiple hidden layers, which
can transfer features layer by layer and transform low-lev-
el features to high-level features to achieve feature learn-
ing and expression''”. CNN is generally composed of
convolutional layers, sampling layers and fully connected
layers. The weight sharing attribute and the dimensionali-
ty reduction of the sampling layer greatly reduce the pa-
rameters that CNN needs to train, thus simplifying the
network model and improving the training efficiency.
TDSST is used for the processing of CNN input data,
and a fault diagnosis method for rolling bearings based on
the TDSST and CNN is proposed. As shown in Fig. 7,
firstly, the rolling bearing vibration signal is processed by
the TDSST, then the data set is divided into training
set and test set; the CNN diagnosis model is obtained by

Vibration signal of

rolling bearing
TDSST
Trained CNN

Initialize network parameters
and iteration steps N, lei i=0 model

Extract feature with
convolution layers

Extract feature with
convolution layers

Yes

Reduce dimensionality
with sampling layers

Reduce dimensionality
with sampling layers

¥
Classify with fully
connected layers

¥
w
No

| [Update weights and offsets
using the BP algorithm

Classify with fully
connected layers

Output classification
accuracy

Fig.7 Fault diagnosis flowchart based on TDSST and CNN
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training network with training set, and finally the test set
is inputted into the model to obtain classification accuracy.

3 Experiment Analysis

3.1 Data analysis

The open data set of the Case Western Reserve Univer-
sity is selected as the experimental data. The experiment
simulates different degrees of inner ring faults, outer ring
faults and rolling element faults by engraving the scrat-
ches of different depths on the inner ring, outer ring and
rolling elements of the bearing. Faults with a depth of
0.177 8, 0.355 6, and 0.533 4 mm can be considered as
minor, moderate, and severe faults, respectively. In this
paper, the vibration data at 1 797 r/min is divided into 10
categories: normal condition, minor, moderate and se-
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0.02 0.04 0.06 0.08
Time/s
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vere inner ring faults, minor, moderate and severe outer
ring faults and minor, moderate and severe rolling ele-
ment faults. Each category selects 100 training data and
100 test data. The length of each sample data is 1 024,
and the time-frequency diagram is converted to grayscale
and compressed to 128 x 128 after processing with time-
frequency analysis methods. Fig. 8 and Fig. 9 are the
time-frequency diagrams of the normal condition, severe
inner ring fault, severe outer ring fault and severe rolling
element fault processed by the STFT and TDSST, respec-
tively, under the condition of —4 dB. The noise part in
Fig. 8 is obvious, the main part of the signal is almost
covered up, while the noise part in Fig. 9 is mostly fil-
tered out and the main part of the signal can be clearly
seen after the TDSST.
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Fig.8 STFT time-frequency diagram of a bearing in different states. (a) Normal condition; (b) Severe inner ring fault; (c) Severe outer

ring fault; (d) Severe rolling element fault
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Fig. 9 TDSST time-frequency diagram of a bearing in different states. (a) Normal condition; (b) Severe inner ring fault; (c) Severe out-

er ring fault; (d) Severe rolling element fault

The time-frequency diagrams in Fig. 8 and Fig. 9 are
compressed to a size of 128 x 128 and the results are
shown in Fig. 10 and Fig. 11, respectively. It can be seen
that the compressed diagrams after TDSST processing are

6 6
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Time/s

(a)

0 0.02 0.04 0.06

Time/s
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significantly clearer than the compressed diagrams after
STFT processing. It can be expected that the reduction of
noise influence and the improvement of resolution can ef-
fectively improve the classification accuracy of CNN.
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Fig.10 STFT time-frequency compression diagram of a bearing in different states. (a) Normal condition; (b) Severe inner ring fault;

(c) Severe outer ring fault; (d) Severe rolling element fault
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Fig.11 TDSST time-frequency compression diagram of a bearing in different states. (a) Normal condition; (b) Severe inner ring fault;

(c) Severe outer ring fault; (d) Severe rolling element fault

3.2 Selection of CNN structure

At present, there is no strict standard to measure the
quality of CNN structure. This paper mainly examines the
robustness of the proposed method while the choice of the

shown in Fig. 12 is selected as the test network after tests.
It uses two convolution layers, two sampling layers and
one fully connected layer. Dropout is used in the fully
connected layer to prevent over-fitting, and softmax is se-
lected as the classifier.

CNN structure is not the focus. Therefore, the CNN
1@128x128 4M| A@62%62 6@60%60
— o 6@30%30
(T = —
all (mm!
U Output
Convolution Max-pool Convolution Max-pool  Full connection(dropout)

Fig.12 Structure diagram of CNN

In Tab. 2, C denotes the convolutional layer, and P de-
notes the sampling layer. C1 uses four 5 x5 size convolu-
tion kernels, C2 uses six 3 x 3 size convolution kernels.
The sampling layer uses mean sampling. The area size is
2 x2, the step size is 2, and the ReLU function is select-
ed as the activation function.

Tab.2 Structural parameters of CNN

Layer name Cl P1 C2 P2
Size 5x5 2x2 3x3 2 x2
Number 4 4 6 6

3.3 Robustness analysis

In order to verify the robustness of each time-frequency
analysis method combined with CNN for noise, firstly,
the data is processed by each method and the network is
trained. Then, the test data is added with different de-
grees of noise and processed by the corresponding method
to test the network. To better verify the effect of the
method, a variety of methods are used for comparison.
The results are shown in Tab. 3 and Fig. 13. The first
method was proposed by Li et al.”, STFT and CNN
were combined for diagnose, and the effect of parameters
on the results was analyzed. The second method was pro-
posed by Yuan et al. "™, which used continuous wavelet
transform (CWT) as the data processing method, com-
bined with CNN for diagnosis. The latter three methods
use the methods mentioned in the first section as the pro-

cessing methods of data, in which WTSTFT represents
wavelet threshold noise reduction + STFT, NCSTFT re-
presents wavelet denoising using neighboring coefficients
+ STFT.

The accuracies of the networks trained with different
input samples under different noise conditions are com-
pared in Tab. 3. The accuracy results are the average val-
ues of 10 tests and the standard deviation of the accuracy
of each case is calculated. It can be found that the accura-
cies of the networks obtained by using STFT, CWT WT-
STFT and NCSTFT as preprocessing methods are relative-
ly high only when SNR is high, and the accuracies rapid-
ly decrease when SNR reduces to 4 dB or less. More-
over, the accuracies of the network with WTSTFT and
NCSTFT are lower than those with STFT and CWT,
which also accords with the results of Fig. 4. Although
WT and WD-NeighCoeff can improve the SNR to some
extent, the problem of loss of impact components in the
signal cannot be ignored. However, the diagnostic meth-
od based on TDSST and CNN in this paper is highly ac-
curate whether the SNR is high or low, especially when
the SNR reaches — 4 dB. The accuracy of STFT and
CWT is reduced to about 40% , while the accuracy of
TDSST remains still above 80% .

In addition, under different noise levels, the standard
deviation of each method is small, indicating that the sta-
bility of each method is good and the methods are feasible.
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Tab.3 The accuracies of CNN with different time-frequency analysis methods %
Noise level/dB STFT CWT WTSTFT NCSTFT TDSST
-4 40.10 £1.96 36.71 £1.39 21.13 £0.52 17.22 £1.06 81.72£1.17
0 55.38 £1.82 50.60 £2.38 29.75 +1.04 34.69 £1.94 96.24 +1.10
4 76.91 £2.09 74.25 +1.81 70.46 £1.30 71.71 £1.53 99.03 £0.31
8 93.74 £1.06 94.25 +1.78 87.85+0.99 89.77 £0.67 99.41 £0.15
12 99.37 +£0.20 99.08 +0.13 91.61 £0.82 91.74 £0.66 99.49 £0.12

The accuracy of the proposed method is the highest in
particular. The accuracy curves of 10 trials’ diagnosis re-
sults via the proposed method and other four methods
when the SNR is 4 dB are displayed in Fig. 13. It can be
found that the method proposed in this paper is very accu-
rate, and the results of the 10 trials are relatively similar.
The curve varies more gently with more stability than in
the other four methods. The above analysis results verify
the superiority of the proposed method and the robustness
of the network against noise.

100 e
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3, 80
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]
3 70§
—4-STFT
-+ CWT
60 [ —-WTSTFT
—-NCSTFT
—+—TDSST
1 1 1 1 J
=Y 2 4 6 8 10

Trial number

Fig. 13  Diagnosis results of the 10 trials of four methods
(Noise level is 4 dB)

4 Conclusions

1) Targeting the problem that it is difficult to determine
the threshold by the traditional time-frequency threshold
denoising method, a time-frequency threshold denoising
method based on the threshold optimization via spectral
correlation coefficient in STFT is proposed. The threshold
can be increased in a variable length manner and deter-
mined according to the trend of the correlation coefficient
Then, the method is
chrosqueezing transform, and a time-frequency analysis
method based on TDSST is proposed. The superiority of

curve. combined with syn-

the method in noise reduction and time-frequency resolu-
tion improvement is verified by simulation.

2) Targeting the problem that the working condition of
the rolling bearing has strong noise and affects the judg-
ment for the rolling bearing condition, a fault diagnosis
method based on TDSST and CNN is proposed.

3) The rolling bearing fault diagnosis method based on
TDSST and CNN is applied to the open bearing data of
the Case Western Reserve University. The data set is di-
vided into training set and test set. TDSST processing is

applied to the training set, and the test set is added with
different degrees of noise and processed by TDSST.
Finally, the trained CNN network is used for diagnosis.
By comparison, this method can effectively improve the
diagnostic accuracy and has good robustness.
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ETFREEER T ELSEITHFN CNN 898 shih & FE 12 B 75 &
WHEF AELA

(ARSI m, b 211189)

*MER

FEE AT TR S 4RIk BN 15 5 0 3F P AR A DA Rk 5 TR 5 SO X AR A5 T A 19 AL, 4R T —
Ab T B BMA S B ¥ JE % % #: (TDSST) fo 54740 22 M 2 (CNN) $ £ Sh 2R E S Wi ik b TR %
8N L R BN R ARAR R R T R XS SR o AP AR R, Bk A T A T STFT #48 X
ZBBEFHAG IR Gy ik R L S R RS RS, AR F AR &3 E15 5 84T TDSST
Tk ek AR B AR PR A . UG, A1 CNN 2t TDSST 5 ik 4 2243 2] it 37 1 3847947 B , 72 3 4 K 52
BHEL W ERRA T IRT R BAZOLRGL W EHF, SR 5E% KT 0 dB 8,4 i s F
AL BT 95% A L, PP At AT b -4 dB BY, 5T A R AL R 80% £ A, OF B % R GX &5 R e AR R
EBON R Tk B BT S

KRR BMA R B R4 R B B ARAY 2 M & IR Fhdh K

B4 2%E . THI33.3; TPIS



