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Abstract: To obtain an accurate and robust soft sensor model
in dealing with the increasingly complex industrial modeling
data, an effective heterogeneous ensemble of extreme learning
machines ( HEELM) is proposed. Specifically, the kernel
extreme learning machine (KELM) and four common extreme
learning machine (ELM) models that have different internal
activations are contained in the HEELM for enriching the
diversity of sub-models. The number of hidden layer nodes of
the extreme learning machine is determined by the trial and
error method, and the optimal parameters of the kernel
extreme learning machine model are determined by cross
validation. Moreover, to obtain the best output of the
ensemble model, least squares regression is applied to
aggregate the outputs of all individual models. Two complex
data sets of practical industrial processes are used to test the
HEELM performance. The simulation results show that the
HEELM has a high prediction accuracy. Compared with the
individual ELM models, bagging ELM ensemble model, BP
and SVM models, the prediction accuracy of the HEELM
model is improved by 4.5% to 8.7% , and the HEELM model
can obtain better generalization capability.
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I n many industrial processes, some key process pa-
rameters are of great importance to the implementa-

1
1 Howev-

tion of control strategies and production plans
er, in some situations, due to the technical problems, a
high investment cost or measurement delay, it is difficult
to obtain these variables using hardware sensors'”. To
solve this issue, soft sensing technology has been studied

and applied by many scholars in the past decades" ™.
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Soft sensor modeling methods can be divided into the
mechanism modelling method and data-driven modeling
method'®”. The mechanism modeling method has the ad-
vantages of strongly explanatory and easily understood,
but it also has the disadvantages of a complex model and
poor portability, especially for some complicated thermal
and chemical processes. The other soft sensor modelling
method, namely data-driven method, can be developed
through learning the historical data.
methods applied to setting up data-driven models, for in-
stance, a support vector machine!, Gaussian process
regression'”’, artificial neural networks (ANNs) ", and
so on. Compared with other methods, ANNs show prom-
inent advantages due to their good non-linear mapping

and generalization ability. Hence, ANNs have been used
[11-12]

There are various

in a wide variety of industrial process modeling

Actually, the accuracy and stability of soft sensor mod-
els are the most important criteria to evaluate the quality
of models established. In spite of having strong fitting
and generalization capability, ANNs are essentially unsta-
ble methods based on the statistical theory. The output of
ANNSs highly depends on the initial weight and training
samples. Previous studies also have shown that the per-
formance of a single neural network model is unstable.
The performance of ANNs depends heavily on the model
structure, especially for the number of nodes and layers in
the hidden layers. With the increase in industrial com-
plexity, the dimensionality and coupling of process data
tend to be larger, which undoubtedly increases the diffi-
culty of data-driven modelling methods. Hence, some ef-
forts have been made to increase the generalization and
stability capability by scholars through various technical
methods, for instance, the ensemble method, regulariza-
tion approach, and so on. Among the above techniques,
the ensemble approach seems to be pretty effective. Han-
sen et al.'" firstly proposed ANN ensemble in 1990.
Many previous studies have confirmed that the neural net-
work ensemble can show better performance for the same
issue by aggregating the outputs of some individual neural
networks'""!
el exhibits a high prediction accuracy is that the ensemble
method can balance the outputs of multiple individual

. The reason why the ensemble learning mod-

subnets, weakening the influence of imperfect models.
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Although ANN ensemble approaches have a wide appli-
cation in practice, one important issue should be consid-
ered. General neural network models in ANN ensemble
use very time-consuming training methods, such as the
back propagation ( BP) method to train the model, which
suffers from some insuperable disadvantage, such as a
plenty of adjustable parameters and danger of over-fit-
151 To deal with this difficult problem, a kind of ef-
fective ANN model called extreme learning machine

ting

(ELM) is selected. Different from other neural network
methods, ELM transforms the learning training problem
into solving the least squares norm problem of the output
weight matrix, which gives it the advantages of avoiding
falling into local extremism and having a powerful gener-
alization capability''”. Moreover, many kinds of activa-
tion functions can become an ELM inner function, re-
gardless of whether the function is continuous or discon-
tinuous. Due to these advantages, ELM is used to con-
struct an ANN ensemble model in this work. However,
the common ELM model uses single type of activation
function, which can restrict the performance and robust-
ness of ELM.

To eliminate such restrictions, the heterogeneous en-
semble model based on kernel extreme learning machine
(KELM ) and multiple inner functions of ELMs
(HEELM) is developed. In the proposed HEELM ensem-
ble model, five kinds of ELMs (sigmoid activation func-
tions ELM, sin activation functions ELM, radbas activa-
tion functions ELM, tribas activation functions ELM and
one KELM) are selected as individual models. Mean-
while, to further improve the performance of the ensem-
ble model, least squares regression is used to aggregate
the outputs of each signal models. In order to validate
HEELM performance, the HEELM is used to establish the
soft sensor models of two real-world complex datasets, and
simultaneously, unlike other single models. Finally, test
results prove that the proposed HEELM has both a good
generalization capability and strong robustness.

1 Theory and Algorithm
1.1 ELM

ELM was firstly proposed by Huang et al. """, and it
has been widely applied in various fields in recent years.
The structure of the ELM is given in Fig. 1, where we
can recognize that the ELM is a three-layer neural net-
work. Compared with the traditional BP or RBF network,
the ELM model has a relatively fast learning speed, the
reasons of which lie in two aspects: One is that the biases
and input weights of the ELM are randomly assigned, and
the other is that the least square approach is applied to
calculate the output weights of the ELM. The procedure
of the ELM algorithm is exhibited below.

Fig.1 The structure of ELM

Suppose that there are N training samples (x, ¢;), in
o X, 1} eR", i=1,2, .., N, are
the input data and ¢, = [¢,, t,, ..., ¢, ] € R”, are the out-
put data. n and m are equal to the number of input layer
nodes and output nodes of the ELM, respectively. The
following form is the computational expression of ELM,

which x; = {x,, x,,

2 B&(x) = X Bgw, - x; +b) =0, j=12..N
(1

where B, is the output weights, and it connects the i-th
hidden node with the output nodes. Simultaneously, w;,
represents the input weights, connecting the i-th hidden
node with the input nodes; [ is the number of hidden lay-
er nodes of the model and g(-) is the activation function.
Previous studies show that the output value of the ELM
model can be fitted to samples with zero error. There-
fore, a derivation equation can be obtained as
1

z Hoj —t]. || =O

Jj=1

Eq. (1) can be written as

1
S Bew -x, +b) =t,  j=1,2.,N (3
i=1

Eq. (3) can be simply written as

HB=T (4)
where
glw, - x +b) g(w, - x +b)
H= : : (5)
glw, - x,+b) g(w, - x,+b) vl
B=1BB Bl T=lt, 1, ty]"  (6)

where H is the hidden layer output matrix. In the training
process, when w, and b, of ELM are generated, the out-
put matrix H can be obtained, so that the ELM learning
training problem is transformed into the least squares
norm problem for solving the output weight, and that is

B=H'T (7)
where H " is the Moore-Penrose generalized inverse of H.

the establishment of the ELM model can be
achieved by the following four steps:

Hence,
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Step 1 Divide the data sets into two parts: the train-
ing data set and testing data set.

Step 2 Randomly assign the input weights and biases
and initialize the number of hidden layer nodes.

Step 3  Obtain the output matrix H, and calculate 8
via training data set.

Step 4 Use the calculated output weights B to calcu-
late the output value of the model with the testing data set.

Obviously, the learning procedure of the ELM is very
fast and easy to implement. Nevertheless, there are still
some deficiencies when the ELM is used in practice,
which are shown as the following three factors: 1) The
performance of a single ELM model tends to be affected
by the randomly assigned set input weights and biases. 2)
An ELM model is only assigned with one activation func-
tion, limiting the robustness of the model to a certain ex-
tent. 3) When dealing with very complex large-scale data
with high collinearity, one standard ELM always shows
poor generalization performance.

1.2 Kernel ELM

The kernel ELM (KELM) was proposed by Huang et
al. "™ based on the analysis of the support vector machine
theory, and it is an extension of the extreme learning ma-
chine method. The KELM uses Mercer’s conditions to
define kernel matrix £2 and replaces random matrix HH"
in the ELM with the kernel matrix £2,

OQein =HH', 0, =h(x) - h(x;) =K(x;,x;) (8)
According to the above formula, the output of the
KELM model is as

f(x) =h(x)H' (%I+HHT) e

K(x,x,) B

1
: EI + -QKELM) T 9
K(x,,x,)

The KELM method does not need to assign the initial
input weights and biases as well as the number of hidden
layer nodes. The specific form of the kernel function
K(x,, x;) is the unique parameter that needs to be adjus-
ted. In this paper, the radial basis function is selected as
the kernel function,

K _ Hx[ —X; ”2
(x,x) =exp[ - (10)
Y

1.3 Least square regression

Least squares regression ( LSR) is an effective linear
statistical regression modeling method. Assume that the
data set consists of an input (independent) variable X e

nxl

R"*" and an output ( dependent) variable ¥ € R"* and
both variables are mean-centered and scaled by the stand-
ard deviation. The linear relationship between the input

and output variables is expressed in the matrix form as

Y=XxW+E (11)

where W is the regression coefficient vector, and E is the
residual error matrix.

The optimal linear regression relationship between the
input and output variables can be estimated by the least
squares algorithm, assuming that the optimal linear rela-
tionship obtained by least squares is

Y=wox, +Wx, +...+w,x, =XW i=1,2,..,n
(12)
W can be calculated as
W=(X"X) 'X"'Y (13)

2 Proposed Heterogeneous HEELM Model

To establish a more accurate and stable model for soft
sensor modeling, a novel heterogeneous ELM ensemble
model called HEELM is developed in this work. The
structure diagram of the HEELM is presented in Fig. 2.
The proposed HEELM model uses five kinds of ELM to
enhance the diversity of the individual model, which also
can tackle the problem of noise in training data. As
shown in Fig. 2, sigmoid, sin, rabas, tribas function
ELM, as well as KELM are applied for the individual
model of the HEELM, and the least squares regression
method is used as the aggregation strategy to obtain better
ensemble outputs. The detailed steps of the HEELM
modeling method are described as follows.

ST 1
! Individual modeling !

|
Submodel 1
ELM(sigmoid)

Submodel 2
ELM(sin)

Least :‘::\'>..
squares
i1
|
|
|
I
|
I
|
|
|
|

Submodel 3 \

ELM(radbas)

Training
dataset

regression

Submodel 4
ELM(tribas)

Submodel 5
KELM

Fig.2 The structure of the HEELM model

Suppose that the data set is D = {(X,, Y,) \ i=1,2,
..., N}, where X, =[x,,, X,,, ..., x,,] € R" represents the
input data with m variables in X;; Y, € R represents output
data. Before building the model, the data is divided into
three groups: training set D, = {(X,, Y,) \ t=1,2, ...,
N,}, validation set D, = {(X,, ¥,) |v=1,2,...,N,},
and testing set D_={(X,, Y,) |7 =1,2,...,N_},N =
N, + N, + N,. The validation set is used to validate the
number of hidden layer nodes, the ELM models, and C,
v values of KELM.

Step 1  Preprocess input and output data in the same
order of amplitude by the following equations:
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max
m im

'xim = max min (14)
m " Xm
Y Yl - Ymin 15
i_Ymax_Ymin ( )

where x)", x"

m

are the maximum and minimum of input
data. Similarly, Y, Y, are the maximum and mini-
mum of output data, respectively.

Step 2 Set the input weights and biases of ELM mod-
els with sigmoid, sin, rabas, tribas activation functions
and build individual models using training set. The KELM
model does not need to set input weights and other param-
eters. y in the kernel function and regularization coeffi-
cient C are the two parameters in KELM that need to be
optimized. In the present study, two parameters are deter-
mined by k-fold cross-validation. Specifically, the training
samples are divided into k groups equally. Then, the k —1
groups are used to train the KELM model, and the remai-
ning group is applied to the test model. After k repeated
experiments, each group of data can be used as test data in
turn. The average of the total test errors is taken as an as-
sessment criterion to evaluate the parameters of the KELM
model. Moreover, the most suitable number of hidden
nodes of ELM models with sigmoid, sin, rabas, tribas
functions is calculated using the trial-and-error approach.

Step 3  Through the training set D
YS

tr?

.» the outputs of
five individual sub models: ¥, V2, ¥:and ¥} are ob-
tained, which are the training output values of five sub-
models in Fig. 2, respectively.

Step 4 Calculate the output of the proposed HEELM
model through establishing a regression model between
the outputs of each individual model and the expected

outputs by the least squares regression technique.

>

o ~ a3 X s
=a,Y, +a,Y, +aY, +a4Y‘:r +agY,

tr

(16)

tr

Step 5 Through the testing set D, the outputs of
five individual sub models: ¥', ¥, ¥, ! and ¥} are ob-

tained. Then, the prediction of HEELM model is calcu-
lated using the coefficient obtained in Eq. (16).

A al an a3 A a5
Y, _aIY(e +a2Yte +a3 te +a4Y?e +aSYle

te

(17)

Step 6 To accurately evaluate the performance of the
proposed HEELM, the root mean square error (RMSE) is
used as evaluation criteria. RMSE can be calculated as

(18)

1 < o
RMSE = [— Y -7
Sy ot

e i=1

3 Case Studies

The ensemble model capability is validated using two
practical industrial processes: One is the debutanizer and
the other is selective catalytic reduction ( SCR) flue gas
denitration process of the power plant boiler.

3.1 Debutanizer column

The debutanizer column is a part of desulfurization and
naphtha splitting plant. Its task is to reduce the concentra-
tion of tower bottom butane as much as possible'”. The
flowchart of a debutanizer column process is shown in
Fig. 3. Usually, the concentration of bottom butane is
measured on-line by a gas chromatography analyzer in-
stalled on the top of the tower. Since it takes a certain
time for the vapor of bottom butane to reach the top of the
tower and the analysis process of the gas chromatography
analyzer, there is a lag in the on-line measurement of the
concentration of bottom butane. So, it is necessary to es-
tablish a soft sensor model to estimate the concentration
of bottom butane on-line and in real time. There are in
total seven variables selected as input variables in the soft
sensing model. The only output variable is the concentra-
tion of butane in the bottom of the debutanizer. Tab.l
lists the detail description of input variables. There is a
total of 2 393 data samples in the debutanizer column
process, of which about half are used as training sets,
about one-third are test sets and the rest are validation
sets. All the data can be downloaded in Ref. [20].

Tab.1 Input variables of soft sensor for the debutanizer column

Input variables Variable description

Xy Top temperature

X, Top pressure

X3 Reflux flow

Xy Flow to next process
Xs The 6th tray temperature
X Bottom temperature
X7 Bottom pressure

V‘
NI N Y

S
Ty S N
5
N

ES

Fig.3 The flowchart of the debutanizer column

In this study, some kinds of single ELM models include
ELM with sigmoid, sin, radbas, tribas activation func-
tions, and the KELM model are built to be compared with
the HEELM model. To ensure fair comparison, some pa-
rameters for five single models such as the number of hid-
den layer nodes, C and v are firstly selected by the trial-
and-error method. Those parameters can be determined
when the errors are the smallest within the validation data.
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Fig. 4 shows the variation of relative errors of the vali-
dation set with the number of hidden layer nodes of ELM
models. It can be seen that, for the ELM with sigmoid
function, the relative error is the least when the number
of nodes is 135. Hence, the number of hidden layer
nodes of the individual ELM with the sigmoid function is
assigned as 135. Similarly, the numbers of hidden layer
nodes of single ELM models with sin, radbas, and tribas
inner functions are determined as 115, 130 and 130, re-
spectively. In addition, parameters C and y in the KELM
model are finally optimized to be C =50 and y =0. 06.
After determining the optimal parameters of each sub-
model, the proposed HEELM can be developed via ag-
gregating the outputs of five individual models using the
least squares regression strategy. To enhance the reliabili-
ty of the simulation experiment, the experiment is repeat-
ed 30 times, and the max, min, mean and standard devi-
ation (SD) of RMSE values for the testing dataset are
shown in Tab. 2. Bagging the ELM uses five different
ELMs as sub-models. Bagging ensemble is a common en-
semble technique, and in this study, the Bagging ELM
ensemble model is established to make a comparison with
the performance of the proposed HEELM.

As seen from Tab. 2, the proposed HEELM model can
achieve smaller max, min, and mean of RMSE for the tes-
ting dataset than those of the other five individual models
and the Bagging ELM model. Fig.5 displays the variation
of RMSE values obtained by the seven models in 30 runs
for testing the dataset of debutanizer column. It is clear
that, the RMSE value of each ELM models with sigmoid,
sin, radbas, tribas activation functions varies from 0. 086 9
to 0. 110 7 with a large fluctuation. The reason for such a
result is that although the optimal number of nodes for
each ELM model has been determined, the input weights
and bias values of the four ELM models are randomly de-
termined in each simulation experiment, which can lead
to the unstable prediction performance of the four mod-
els. When the optimum parameters ( C, y) are deter-
mined, the KELM model has no other parameters that can
be adjusted, so the error results of the KELM model for
30 times are invariable. The RMSE values of the HEELM
are low and stable around 0. 086 0 without fluctuation.

Tab.2 Simulation results of RMSE values for debutanizer col-
umn testing dataset

Method - RMSE
Max Min Mean SD
ELM( sigmoid) 0.106 7 0.092 7 0.098 6 0.003 7
ELM(sin) 0.103 1 0.089 1 0.097 5 0.003 2
ELM( radbas) 0.1107 0.0925 0.099 8 0.004 1
ELM( tribas) 0.104 8 0.086 9 0.095 9 0.003 7
KELM 0.0926 0.0926 0.092 6 0
Bagging ELM 0.095 8 0.088 8 0.091 8 0.001 4
HEELM 0.087 7 0.084 3 0.0861 8.16x10°*
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number of nodes of ELMs for the debutanizer column. (a) ELM
(sigmoid); (b) ELM(sin); (c) ELM(radbas); (d) ELM(tribas)

Apparently, the HEELM model can achieve much better
stability than that of single ELM. In addition, the predic-
tive performance of the KELM model is better than that
of other four single ELM models, but not as good as that
of the HEELM model. The simulation results of the debu-
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tanizer column demonstrate that the proposed HEELM
model can achieve better prediction accuracy and model
stability.
0.120 - o )
—=— ELM(sigmoid); —®— ELM(sin); —&— ELM(radbads)

—v— ELM(tribads); —— KELM; —< Bagging ELM
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Number of runs

Fig.5 RMSE values for debutanizer column testing dataset of
six models

3.2 SCR flue gas denitration process

SCR flue gas denitrification is a necessary technique in
coal-fired power plants for reducing the nitrogen oxides
(NO,). SCR denitrification technique has some salient
features such as high denitrification efficiency and simple
so SCR denitrification has attracted
much attention and wide application in almost all power
plants. The flowchart of SCR flue gas denitration is
shown in Fig. 6. The working principle of SCR is that,
liquid ammonia reacts with the NO_, and converts NO, to
N, and H,O.

Ammonia-injection grid,—@

device structure,

NH3
preparation

|
|
1 system
|
|
| A 3 l
R | reactor Guide plate
'SCR flue: [
tgasinlety "7 T ‘ ]
i channel 't | te---—- - - - —Catalyzer
] Tor o - :
Air ) { SCR Tlue'
preheater T L ______.gasoutlet]
' channel |

Fig.6 Schematic diagram of reactor structure in SCR flue gas
denitrification system

In this work, 1 000 measurements of a 1 000 MW ul-
tra-supercritical boiler SCR denitrification system boiler
operation are obtained from the distributed control system
(DCS) database. The sampling interval is 1 min. Based
on the basic knowledge of boilers and the engineers’ ex-
perience'’, six variables are employed as inputs of the
SCR model and the only output is the export NO, of the
SCR denitrification system. The detailed description of

input variables is listed in Tab. 3. To construct the soft
sensor model, 1 000 samples are divided into three parts:
500 samples are used as training sets, 200 samples are the
validation sets and the remaining 300 samples are the test
sets.

Tab.3 Input variables of the soft sensor for the SCR flue gas
denitration process

Input variables Variable description

Xy Entrance NOx concentration
X, Inlet gas flow value

X3 Inlet flue gas temperature
Xy Ammonia injection

X5 Unit load

Xg Entrance O, concentration

According to the steps of the proposed HEELM ap-
proach mentioned above, the number of hidden layer
nodes of four common ELM with different activation
functions and two parameters ( C, y) of KELM are firstly
determined. Similar to the number of hidden layer nodes
determination of debutanizer column simulation in section
3.1, Fig.7 presents the relative errors of the validation set
with the number of ELM models’ nodes. It can be seen
from Fig.7 that, for the SCR flue gas denitration dataset,
the most suitable number of hidden layer nodes for four
ELM models with sigmoid, sin, radbas, tribas functions is
assigned as 85, 90, 100 and 105, respectively. Moreover,
according to the cross validation method, C and 7y in the
KELM model are assigned to be 50 and 0. 1, respectively.

After 30 repeated experiments, the results of the soft
model for SCR flue gas denitration case are listed in Tab.
4. Compared with the five single ELM models, BP mod-
el and SVM model, it can be clearly seen that the
HEELM method can obtain smaller REME values. The
SD values of RMSE four common ELM models with sig-
moid, sin, radbas, tribas activation functions and BP
model are obviously higher than that of the HEELM mod-
el, which reveals that the common single ELM model is
unstable. Meanwhile, the HEELM model combines the
outputs of five ELM models to solve the problem that in-
cludes the complex data. Five different kinds of ELM
models can realize mutual complementation by least
square technique when establishing the soft sensor model.
Therefore, the proposed HEELM ensemble model can
show the highest accuracy among all the presented models.

To further show the capability of the HEELM method,
a comparison between the predicted results and real data
of 300 testing cases is presented in Fig. 8. The red line is
the perfect line which shows that predicted values are
equal to real values, and the points are the results predic-
ted by the HEELM method. It is easy to see that all of
the points distribute closely around the perfect line, which
means that the output is the export NO_of SCR which can
be predicted with good accuracy by the proposed HEELM
for the testing dataset.

Moreover, in order to clearly
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show the generalization performance of six kinds of
ELMs, Fig.9 presents the variation of RMSE values ob-
tained by the eight models in 30 runs for testing the data-
set of SCR flue gas denitration. From Fig. 9, it can be
seen that the RMSE values of HEELM are the smallest in

all 30 times experiments. Hence, all the simulation re-
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Fig.7 Schematic diagram of reactor structure in SCR flue gas
denitrification system. (a) ELM ( sigmoid); (b) ELM (sin);
(c) ELM(radbas); (d) ELM( tribas)

sults of SCR flue gas denitration indicate that the HEELM
ensemble model can achieve a high accuracy and good
stability.

Tab.4 Simulation results of RMSE values for SCR flue gas
denitration testing dataset

Method RMSE
Max Min Mean SD
ELM(sigmoid)  0.1365 0.1267  0.131 8 0.002 4
ELM( sin) 0.1415 0.1269 0.1326 0.003 3
ELM( radbas) 0.1397 0.1272  0.1321 0.003 4
ELM( tribas) 0.1392  0.1256  0.1319 0.002 8
KELM 0.1292 0.1292 0.1292 0
BP 0.1413 0.1213  0.1311 0.006 6
SVM 0.1302 0.1302  0.1302 0
HEELM 0.1272 0.1230 0.1253 9.18x10°*
44r

Predicted values
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Fig.8 Fitting performance of the HEELM model for SCR flue
gas denitration testing dataset
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Fig.9 RMSE values for SCR flue gas denitration testing data-
set of eight models

4 Conclusions

1) An advanced approach for soft sensor modeling
using a heterogeneous ensemble, namely HEELM, is
proposed. Five kinds of ELM algorithms are used for ob-
taining diversity within the HEELM model in handling
complex modeling data. The least square method is used
as an effective ensemble technique to enhance the general-
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ization ability by ensuring the worst individual model
have the least impact on the final output.

2) The generalization performance of the proposed
HEELM ensemble model is verified by two real datasets
from the debutanizing and the SCR flue gas denitration
processes. The simulation results show that the HEELM
model can achieve a good performance in generalization
accuracy and stability.

3) The modeling performance of the HEELM is also
compared with individual ELM models, bagging ELM
ensemble model, BP, as well as SVM models, and the
results demonstrate that the perfomance of HEELM is bet-
ter than that of the other models in the aspects of its pre-
dictive accuracy.

4) In future study work, other kinds of aggregating te-
chiques and different neural network ensemble models
will be studied and utilized.
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