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Abstract: To investigate the effect of higher modes on the
displacement and inner forces in HWBB ( hinged wall with
buckling-restrained braces in base) -frame structure, distributed
parameter models for both the HWBB-hinged frame structure
and the HWBB-MRF (moment resisting frame) structure are
built. The hinged wall is simplified as a flexural beam. BRBs
( bucking-restrained braces) are simplified to a rotational
spring. MRF is simplified to a shear beam. Vibration
equations of distributed parameter models are derived. Natural
periods, natural modes of vibration, inner forces and
displacements of the distributed parameter models are derived
based on the vibration equations using numerical methods. The
effect of the relative stiffness ratio and the rotational stiffness
ratio on the higher mode effects is investigated. For elastic
structures, the global displacement and shear in MRF are
predominantly controlled by the first mode, while the shear
and bending moment in the wall are significantly affected by
higher mode effects. The effect of the yielding of BRB on the
inner forces distribution in the HWBB-hinged frame is
investigated. The results indicate that the first mode will no
longer contribute to the inner forces and the contribution from
higher modes to inner forces increases after the BRBs yield.
Displacement is not sensitive to higher mode effects and it is
controlled by the first mode after the BRBs yield. Parameter
analysis demonstrates that the displacement amplitudes are
reduced with the increase in the flexural stiffness of the wall
before the flexural stiffness reaches a certain value. The first
three periods decrease with the increase in the rotational
stiffness. With the increase in the rotational stiffness ratio, the
contribution from the first mode decreases while contributions
from both the second mode and third mode increase.
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inged walls or rocking cores can control the de-

formation pattern of the frame due to their large
flexural stiffness and avoid weak story failure in frame
structures. Alavi et al. ! strengthened multi-story frame
structures with hinged walls, which effectively reduced
the drift demands. Wada et al. "™ used pin-supported
walls to retrofit an existing SRC frame structure. The dis-
tributions of interstory drift ratios were improved by
adding pin-supported walls. A pivoting core wall, which
was supported on a friction pendulum bearing and can
pivot about its base, was used to retrofit a steel moment
frame building. The weak story failure was eliminated”’ .

The lateral stiffness of hinged walls is zero and the
structural responses cannot be reduced by adding hinged
walls. Qu et al. ™ concluded that the magnitude of inter-
story drift ratios was not reduced by adding pin-supported
walls. Makris et al. ' showed that the pinned wall can
increase the displacement response of the moment resis-
ting frame. Therefore, dampers are added to the hinged
walls to provide stiffness to them and dissipate seismic
energy. Interstory drift ratios were reduced by adding
dampers between the pin-supported walls and the original
SRC columns'”'. BRBs were installed between the steel
moment frame and the pivoting core wall to dissipate seis-
mic energy'”. The hinged wall contains both a steel truss
and a concrete wall, which is composed of precast wall
panels connected by pre-stressed tendons'”’. A steel truss
which has a large stiffness can also be used as a hinged
truss to control the deformation pattern of the structure.
Takeuchi et al. """ proposed a spine frame which rotates
around the bottom middle point, and buckling restrained
columns (BRCs) were used to dissipate seismic energy.
A rocking steel shear wall installed with a double acting
ring spring system to dissipate energy was investiga-
ted™. Du et al. """ investigated the stiffness demand of a
light energy dissipative rocking frame that contains self-
centering energy dissipative bracing systems to dissipate
seismic energy and reduce residual displacement.

Higher mode effects on the bending moment distribu-
tion of hinged walls were investigated!'""™, which
showed that higher mode effects have to be considered in
the design of hinged walls. The rocking wall is simplified
as a flexural beam, and dampers installed at the bottom



Higher mode effects in hinged wall with BRBs in base-frame structures using distributed parameter models 57

and between the rocking wall and moment frame are sim-
plified as springs. The preliminary design method of the

16-18 .
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rocking-wall moment frame is propose
al. "' proposed the equations which are used to simplify a
rocking truss as a flexural beam. Wu et al. "'*' proposed a
simplified model for pin-supported wall structures and
demonstrated that higher mode effects have to be consid-
ered when determining the strength demand of the wall.
Moreover, Wiebe et al. "™ derived the vibration equations
for a shear beam with a rotational spring at the bottom
and a flexural beam with a rotational spring at the bot-
tom. Yang et al. *" proposed the seismic intensity super-
position method to calculate the bending moment demand
in the hinged wall considering higher mode effects.

The hinged wall with BRBs in base (HWBB) consists
of a hinged wall with replaceable BRBs installed vertical-
ly at the bottom of the hinged wall. During a small earth-
quake, BRBs remain elastic and provide stiffness for
HWBB, while BRBs yield under a large earthquake to
dissipate seismic energy and provide damping for the
structure. The hinged wall remains elastic while BRBs
dissipate seismic energy and only BRBs need to be re-
placed after earthquake, avoiding the toe crushing and
yielding of edge bars in conventional shear walls. BRBs
provide the flexural strength while the pin bearing pro-
vides the shear strength to realize the separation of the

load bearing'”!

. A pseudo-dynamic test and quasi-static
test on a 1:3 scale three-story hinged truss with BRBs in
base (HTBB) were performed to investigate the seismic
capacity and seismic performance of the specimen'”
The hinged truss made up of steel beams, columns and
braces can remain elastic during the experiment, while
BRBs yielded and dissipated seismic energy. As damage
is concentrated in BRBs, only BRBs need to be replaced
to restore the function of the specimen. After the consec-
utively exciting of a minor earthquake, a design earth-
quake and a strong earthquake, the HTBB specimen with-
stood 19 cycles of displacement amplitude corresponding
to 2. 5% roof drift ratio with stable hysteretic perform-
ance. This test verified the excellent seismic performance
of the HTBB. The hinged wall is able to remain elastic
by capacity design which considers higher mode effects to
control the deformation pattern of the structure.

The HWBB is applied to frame structures to improve
the distribution of displacements and work as the lateral
force resisting system. In this study, both the HWBB-
hinged frame and HWBB-MRF ( moment resisting frame)
are analyzed. For the HWBB-hinged frame,
hinged frame bears no lateral load, the derivation equa-
tions concern HWBB with mass distributed along the full
height of HWBB and the hinged frame is not included in
the simplified model. Vibration equations for these two

as the

simplified models are derived. Natural periods and natural
modes of vibration are derived. Higher mode effects on

structural responses, such as inner forces and displace-
ments, are investigated for both the elastic structure and
the plastic HWBB-hinged frame structure where BRBs
yield. Parametric studies are conducted to investigate the
influence of the relative stiffness ratio and the rotational
stiffness ratio on the higher mode effects.

1 Derivation

The simplified model of the HWBB-hinged frame is
shown in Fig. 1. Shear deformation of the wall is ignored
as the height of the structure is great enough. BRBs offer
the whole moment resistance for the structure. BRBs are
simplified as a rotational spring. The hinged wall is sim-
plified as a flexural beam with a pinned end. The flexural
stiffness of the flexural beam is EI. The rotational stiff-
ness of the rotational spring is denoted as k, and H de-
notes the length of the flexural beam.

v(x,1)

Fig.1 Simplified model of the HWBB-hinged frame structure

The moment resistance offered by the rotational spring
in the simplified model is expressed as

M=k,0 (1)

where 0 denotes the interstory drift ratio of the first story,
which is caused by the rotation of the hinged wall and it
is calculated by the deformation of BRB as follows:
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(2)

where g, denotes the strain in BRB ; [, is the length
of BRB; Auyy, is the deformation of BRB; and B is the
distance between centerlines of BRBs. Substituting Eq.
(2) into Eq. (1) gives

EAB’
2 lBRB
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(3)

where A denotes the area of the core plate in BRB and E
is the elastic modulus of steel. Vibration equations for the
simplified models of both the HWBB-hinged frame and
the HWBB-MRF are derived in the following sections.

1.1 HWBB-hinged frame

As shown in Fig. 1, the mass per unit length along the
flexural beam is m. v(x, f) is the transverse-displacement
response. Physical properties are distributed evenly along
the flexural beam. As the mass and stiffness are evenly
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distributed along the flexural beam, the partial differential
equation contains only two variables, time and the dis-
tance to the bottom of the flexural beam. The partial dif-
ferential equation of the flexural beam can be expressed

24
as[ ]

ov(x, 1) mav(x, 1)
= 4
ot TE or D )

where the second part of the above equation is the inertia
force.

Assume that the solution is as follows according to the
separation of variables:

v(x, 1) =¢(x) Y(1) (5)
Substituting Eq. (5) into Eq. (4) gives

El 1 d'¢(x) _ >

(v dr' (6)

where @ is the natural circular frequency of the model.
For brevity, define

— 2
4 maw
=— 7
a =g (7)
The general solution of Eq. (6) is
¢(x) =A,sinax + A,cosax + A,sinhax + A, coshax (8)

Define the following parameter for brevity:
m=-_ 9

Four boundary conditions at the ends of the flexural
beam are
When x =0, M(0) =k,60(x=0),

M(0) =E1d—§’(x 0) =k, 0(x =0) =k, P(x=0)
dx x
(10)

where M is the bending moment in the wall and 6 denotes
the rotation of the beam section. Therefore,
m(A, +A,) = —A, +A, (11)
When x =0, ¢(0) =0,
A, +A, =0 (12)
When x =L, M(L) =0,

—A,d’sinaLl - A,a’ cosaL + A,a’sinhal + A,a’ coshal =0
(13)

When x=L, V(L) =0,

~A,a’cosal + A,a’sinal + A,a’coshal + A,a’sinhaL =0
(14)

To obtain a nontrivial solution for Egs. (11) to (14),

the determinant of the matrix formed by the factors of the
above four equations has to be zero.

Define
. (15)
1= k1,
The equation for natural frequencies is
- %cosaLcoshaL + sinaLcoshal —
cosaLsinhal — % =0 (16)

The above equation does not have analytical solutions
and is solved by numerical methods. The natural vibra-
tion mode corresponding to w, is

¢,(x) =A sina x + A,cosa,x + A,sinha, x + A,cosha,x
(17)

The relationship of the four factors is derived by Eqgs.
(11) to (14) as follows:

A, = -A, (18)
1 + coshalLcosaL — sinhaLsinal
Ay =4, coshaLsinaL — sinhaLcosal (19)
1 + cosaLcoshalL + sinaLsinhal
A=A, coshaLsinaL — sinhaLcosaL (20)
The external static force s, is'*”
s, =1, mdg, (21)

where [, is the modal participation factor; m is the mass
matrix and ¢, represents the natural mode of the n-th
mode, which is represented by the continuous function ¢,
(x) in this paper.

The static displacement and static inner forces including
the bending moment, the shear and the rotation of each
beam section under s, can be derived based on the natural
vibration frequencies and modes calculated.

The static displacement is

«_ T,

u, =

n

r
wzd)n = j(A, sina,x + A,cosa, x +
n

(22)

n

A,sinha,x + A,cosha,x)

The static bending moment in the wall is

d2usl I—v
M. =EI i - =El—5( - A,a sina,x - A,a.cosa,x +
x n
2 . 2
A,a,sinha, x + A,a, cosha,x) (23)
The static shear in the wall can be expressed as
d3 st I—v
st _ un _ n 3 3
V., =El — =El—( -A,a,cosa,x +A,a,sina,x +
X w,
3 3.
A,a cosha,x + A,a,sinha, x) (24)
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The rotation of each wall section is

~ du) T

n .
= =—(A,a,cosa,x —A,a,sina,x +
dx w,

A,a,cosha,x +A,a, sinha, x) (25)

After the BRBs yield, the rotational stiffness of the ro-
tational spring is almost 0. 02 times that of the elastic ro-
tational stiffness. The first modal circular frequency is
nearly zero as the simplified model is almost a pinned
base beam.

Inner forces distribution in the HWBB-hinged frame af-
ter BRBs yield is illustrated in section 2. 1.

1.2 HWBB-MRF

The simplified model of the HWBB-MRF structure is
shown in Fig.2. MREF is simplified as a shear beam with
its lateral stiffness denoted as K (the shear force corre-
sponding to unit interstory drift ratio). HWBB and MRF
are connected through pinned links which can transfer the
horizontal forces between those two systems. The relative
stiffness of the moment resisting frame and the hinged
wall is defined as the relative stiffness ratio A'"”'.

K
N (26)
P
+
'22‘3' —> H|EI K
Wl ;
X o L v(x,1)

Fig.2 The simplified model of the HWBB-MRF structure

The vibration equation of the simplified model of
HWBB-MREF is'"
4 2 2
9 v()i, D _gdvxn .9 U(f’ D_o (27
0x 0x” ot

EIl

The definitions of « and B which are related to natural

1 [15]

frequencies from Wu et a are as follows:

K

2m = (28)

oMo'’

n="p (29)
a=+ /m'+nt +m’ (30)
B= Jm'+nt -m’ (31)

The general solution of Eq. (27) is'"'

¢(x) = C,coshax + C,sinhax + C,cosfx + C,sinfBx

(32)
The boundary conditions are as follows:
When x =0, M(x=0) =k, dfZ(x =0),
C,a’ —ak,C, -C,3 - C,kB=0 (33)
When x =0, ¢(0) =0,
C, +C, =0 (34)

When x=H, M =0,

C, o’ coshaH + C,a’ sinhaH - C,8° cosBH - C,B3’sinBH =0
(35)

dv(x) o, du(x) _

When x=H, V=K 3
dx dx

0,

(Ka - Elo’) C,sinhaH + ( Ko — Elo’) C,coshaH —
(KB + EIB’) C,sinBH + (KB + EIB’*) C,cosBH =0
(36)

The frequency equation can be expressed as

kB’ (KB +EIB’) ~ k,Ba’ (Ka — Ela’) +
sinhaHcosBHo' (KB + EB’) (o’ +B°) +
sinBHcoshaHB’ (Ka - Ele’) (o +8°) +
sinhaHsinBH[ k,Ba’ (KB + EIB’) +
ak,B’(Ka — Ela’) ] + cosBHcoshaH -

[ -kB (Ko —Ela’) +a’k,(KB+EI") ] =0
(37)

An analytical solution cannot be obtained from this
equation but numerical solutions can be obtained.
The natural vibration mode corresponding to w, is

¢, (x) = C, cosha,x + C,sinha,x + Cscos8,x + C,sinB, x

(38)
where
C-c EI(o’ +B°)BsinBH — k, (o’ coshaH + B cospH )
P o (k,BsinBH + k,asinhaH)
(39)
C,=-C (40)
q:é[cl M-qa] (41)

Based on the natural vibration frequencies and modes
calculated , the static displacement and inner forces can be
derived as

«_T, r, .
u, =—¢,(x) =—5(C, cosha,x + C,sinha, x +
w, w

C,cosB,x + C,sin,x)

(42)
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2 st 1—1
2
- =EI —( C,a,cosha,x +

M =EI
dx n
Czaisinhanx - Cﬁicosﬂnx - C4,Bisin,8”x) (43)
t H " Fn .
MY = [Vi(8)d¢ = [ K 2(Ciasinh(a,é) +
X x w,
C,a,cosh(a, &) — C,B,sin(B,£) +
C,B,cos(B,&))dé (44)
M =M + M (45)

where M. is the total bending moment of the structure,
M represents the bending moment in the MRF and M
represents the bending moment in the wall of the HWBB.

L r, .
V; =K =K — (C,a,sinha,x + C,a, cosha, x —
®

C,B,sinB,x + C,3,cosB3,x)

(46)

Vo= f s, (&)d¢ = f I' m(C cosha, & +
C,sinha, & + C,co88,& + C,sinB,£)dé  (47)
Ve=Vi-v¢ (48)

where V' is the total shear borne by the structure caused
by the external force s, ; V; is the shear in the MRF; and
V3 is the shear in the hinged wall.

The response spectrum analysis method in Ref. [25] is
used to calculate dynamic responses by multiplying the
modal static responses to the pseudo acceleration corre-
sponding to each modal period. The SRSS method can be
used to combine different modal reactions according to
the Chinese seismic code for structures with well-separa-
ted natural frequencies'™ .

The HWBB can be simplified as a hinged wall due to
the small post-yielding stiffness of BRBs. For the HWBB-
hinged frame structure, the first modal period after BRBs
yield is larger than 15 s due to the small post yielding stiff-
ness of BRB. Therefore, the pseudo acceleration of the
first mode is almost zero ”’. The first mode will no longer
contribute to the inner forces. Higher modes have to be
considered after the yielding of BRB. This is illustrated by
the example in section 2. 1. As displacement is not sensi-
tive to higher modes, the whole displacement varies linear-
ly along the height of the structure and is controlled by the
first mode after the BRBs yield. For the HWBB-MRF
structure, the MRF still provides the lateral stiffness for
the whole structure after the BRBs yield and the first mode
contribute to the inner forces after the BRBs yield'"”’.

2 Example Models

In this section, example models contain both the
HWBB-hinged frame and HWBB-MRF. Pseudo-accelera-
tions corresponding to different modal periods are ob-
tained according to the design spectrum in Chinese seis-
mic design code for frequent earthquakes with intensity 7.

2.1 HWBB-hinged frame structure

The prototype building is a twelve-story structure ac-
companied by two HWBBs in each direction of the build-
ing, with uniform properties over the height. Fig.3(a)
depicts the floor plan, which has a footprint of 23.6 m x
50.4 m with 4. 0-m story heights. Concrete with 40 MPa
nominal compression strength is used. Due to the sym-
metricity of the structure, a half structure is modeled.
The seismic weight of each half of the building is 6 800
kN at each floor level. As shown in Fig.3(b), the cross
section of the wall is 0.35 m x 8.4 m and the flexural
stiffness of the wall is EI =562 GN + m’. The area of the
core plate of BRB is 22 000 mm’, the length of BRB is
3.7 m, and the distance between centerlines of two BRBs
is 8.1 m, resulting in k, =40 GN - m. The frame in the
prototype building bears only a vertical load and belongs to
a hinged frame which does not have any lateral resistance.
The first three natural periods of this structure are 3. 36,
0.452 and 0. 151 s, respectively. The first three natural vi-
bration modes are shown in Fig. 4.

HWBB

7.6

HWBB
HWBB
8.4

7.6

4.05 | 4.05
8.1

(b)

Fig.3  Structural layout of the numerical example (unit;m).
(a) Plan view; (b) Detail of HWBB
50
V/V/V
40+ '
£ 301
= Y
.20 b
z 20f =
—o—Mode 1 S \7\7
101 ——Mode 2 S 7
—~—Mode 3
0 1 L 1 ]
-10 =5 0 5 10

Amplitude
Fig.4 Natural modes of the HWBB-hinged frame
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Fig.5(a) depicts the static displacement in the HWBB
corresponding to the first three modes. The maximum
static displacement corresponding to mode 1 is 100 times
that of mode 2 and 1 600 times that of mode 3, indicating
that the first mode is dominant. Fig.5(b) depicts the dy-
namic displacement in the HWBB along the height. The
total displacement is predominantly controlled by the first
mode as the maximum dynamic displacement of the first
mode is 99. 86% times that of the SRSS result, while
contributions from the second and third modes are 4. 15%

50
b
401
4\% 30— 5
= 5
180 3
[
T 201 ——Mode 1
—o—Mode 2
10- o —~—Mode 3
*
#
0 1 L 1 Il )
-0.1 0.1 02 03 04 05
Displacement/s?
(a)
50
40 -
E30f
=)
520k —— Mode |
T —o— Mode 2
10 ——Mode 3
—SRSS
0 1 1 1 I
—-0.02 0 0.02 0.04 0.06 0.08
Displacement/m
(b)
50
40+
£ 30}
=
.20
= 20+
10+
0 I
-08 -04 0 04 08 12 1.6
Shear/MN
(c)
50
—— MOdC 1
40 —o— Mode 2
—— Mode 3
E 30+ — SRSS
5
5 20+
ju s
10+
0 % ! N |
-15 0 15 30 45
Moment/(MN + m)

(d)
Fig.5 Responses of HWBB. (a) Static displacement; (b) Dy-
namic displacement; (c) Shear in HWBB; (d) Moment in HWBB

and 0.283% times that of the SRSS result, respectively.
It can be seen from Fig.5(c) and Fig.5(d) that higher
modes have to be considered for shear and bending mo-
ment design in the HWBB. In Fig.5(c), the maximum
shear in mode 1 is 65.9% that of SRSS, while the maxi-
mum shears in mode 2 and mode 3 are 71. 49% and
23.3% that of SRSS, respectively. In Fig. 5(d), the
maximum moment in mode 1 is 98. 7% that of SRSS,
and the maximum moments in mode 2 and mode 3 are
30.24% and 6.31% that of SRSS, respectively.

Fig. 6 is the inner forces distribution in the HWBB af-
ter the BRBs yield. Due to the fact that the pseudo ac-
celeration corresponding to the first mode almost equals
zero, the first mode does not contribute to the inner
forces. In Fig.6(a), the maximum shear in mode 2 is
93% that of SRSS, while the maximum shears in mode
3 and mode 4 are 33.3% and 14.4% that of SRSS, re-
spectively. In Fig. 6 (b), the maximum moment in
mode 2 is 98% that of SRSS, while the maximum mo-
ments in mode 3 and mode 4 are 20.5% and 6% that of
SRSS, respectively. It indicates that higher modes have
to be considered in the calculation of inner forces in
HWBB after the BRBs yield.

50
—o— Mode 2
40 —=— Mode 3
—— Mode 4
L — SRSS
£ 30
5
2201
jant
10}
0 L 1 b bAT )
-08 -04 0 0.4 0.8 1.2
Shear/MN
(a)

50 —o—Mode 2
A ——Mode 3
40 LR —+—Mode 4

-5.0 0 5.0 10.0

Moment/(MN - m)
(b)
Fig.6  Response of HWBB after BRBs yield. (a) Shear in
HWBB; (b) Moment in HWBB

0
-10.0

2.2 HWBB-MRF

The properties and dimensions of the HWBB are the
same as the HWBB-hinged frame structure in section
2.1. The shear stiffness of the MRF is 549 MN, which
corresponds to a relative stiffness ratio of 1.5. The first
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three natural periods are 1.69, 0.34 and 0. 13 s, respec-
tively. The natural mode shapes of the first three modes
are shown in Fig. 7.

50 - Y
V/
V/
40+
£ 30}
=
&b
7] L
= 20 ——Mode 1
10 > Mode2
—v-Mode 3
1 Il 1

O 1
-15 -10 -5 0 5 10 15
Amplitude

Fig.7 Natural mode shapes of the first three modes
2.2.1 Equivalent static response

The equivalent static displacement is dominantly con-
trolled by the first mode, as shown in Fig. 8.

50
40
£ 30}
=
.20
2 20
= ——Mode 1
10+ —*— Mode 2
—°—Mode 3
0 1 1 ]
0 0.04 0.08 0.12

Displacement/s?

Fig.8 Static displacement distribution for the first three modes

The shear distribution is depicted in Fig.9. In mode 1,
both the contributions from the wall and the frame have to
be considered since the maximum shear of the structure is
4.38 and 1. 16 times those of the frame and HWBB. The
shear borne by the MRF significantly decreases in mode 2
and mode 3.

50 . 50 _
\\7 3 ——MRF 30 3
40 - w3 -~ HWBB 401 40
— Structure
£ 30r £ 30t £ s0f
25 i) 5 ~=-MRF
Al 2 20F . \MRr 220 ~ HWBB
10k 10—~ HWBB 10k — Structure
— Structure AN
0 1 | 0 1 Y | 0 1 1 1
-2 0 2 4 6 8 -0.60 -0.30 0 0.30 -025 0 025 050 0.75 1.00
Shear/MN Shear/MN Shear/MN
(a) (b) (¢)
Fig.9  Shear distribution for the first three modes. (a) Mode 1; (b) Mode 2; (c) Mode 3

Fig. 10 depicts the bending moment distribution. The
contribution from the frame decreases sharply as the mode
increases, especially for mode 3. The contributions from

the wall are 4.514 and 10. 99 times those of the frame in
mode 2 and mode 3, respectively.

50 - 50 -
—~ MRF 0T o MRF
40} 40
~ HWBB 40 —HWBB 2
g 30 — Structure — Structure_—<#" g —~-MRF
3 30 £ 30} - = 30F —HWBB  § )
.%" 2oL ‘c_ﬁ) %D 20 — Structure  §_—=~
as) £ 20 as) B =%
10+ 10 10+
0 I 1 1 0 | 0 V3 1 1
-50 0 50 100 150 4 -4 =7 0 2 4

Moment/(MN * m)

(a)
Fig. 10

The static displacement is dominated by the first mode,
and the frame contributes little to the shear and moment
distribution in higher modes ( mode 2 and mode 3).
However, the wall contributes predominantly to the shear
and moment in higher modes.

2.2.2 Dynamic response

Fig. 11 depicts dynamic responses, which include the
displacement and inner forces. Displacement is controlled
by the first mode. Fig. 11 (a) depicts the shear in the
frame. It can be seen that higher mode effects are not sig-
nificant in the frame because HWBB can effectively con-

-2 0
Moment/(MN - m)

(b)
Bending moment distribution for the first three modes. (a) Mode 1; (b) Mode 2; (¢) Mode 3

Moment/(MN * m)
(¢)

trol the deformation pattern of the frame. Therefore, the
shear demand of the frame can be estimated only based on
the first mode. Fig.11(a) indicates that the shear corre-
sponding to the first mode is 99.9% that of SRSS and the
shears for mode 2 and mode 3 are 8. 79% and 4. 62%
that of SRSS, respectively.

Fig. 11(b) depicts the dynamic displacement response.
It can be seen from the figure that the SRSS value is al-
most identical to the displacement of the first mode. This
indicates that mode 2 and mode 3 can be ignored and
mode 1 can be used to estimate the displacement demand.
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Fig.11  Dynamic response. (a) Shear in the frame; (b) Displace-
ment; (c) Bending moment in HWBB; (d) Shear in HWBB

Fig. 11(c) illustrates the bending moment distribution in
HWBB. The maximum moment of mode 1 is 99. 55%
that of the SRSS, and the maximum moments of mode 2
and mode 3 are 16.29% and 14.79% that of the SRSS,
respectively. This indicates that higher modes have a non-
negligible effect on the bending moment distribution of
the wall and need to be considered when determining the
bending moment demand of the wall. Fig. 11(d) is the
shear in the hinged wall. The maximum shear of the first
mode in the wall is 99.55% that obtained using the SRSS
method, and the maximum values of mode 2 and mode 3
are 16. 29% and 14. 79% that of SRSS, respectively.
This indicates that higher mode effects have to be consid-
ered when determining the shear demand in the wall.

From the above analysis, it can be seen that higher modes
have a remarkable effect on the inner force distribution in the
wall. Therefore, higher mode effects have to be considered
during the strength design of the wall. However, the dis-
placement and shear force in the frame are controlled by the
first mode, which demonstrates that HWBB has effectively
controlled the deformation pattern of the MRF.

3 Parameter Analysis

In this section, the effect on the seismic performance of
two parameters, which are the relative stiffness ratio and
the rotational stiffness ratio, are analyzed.

3.1 Relative stiffness ratio

The model in section 2.2 is used in the analysis. The
variation of the relative stiffness ratio is realized by the
variation of the flexural stiffness of the wall, while the
lateral stiffness of MRF remains constant. The effect of
the relative stiffness ratio on the modal shape is illustrated
in Fig. 12. With the decrease in the relative stiffness
ratio, the flexural stiffness of the wall increases, and the
displacement amplitude corresponding to each mode de-
The flexural stiffness of the wall reduces the
displacement amplitude of mode shapes corresponding to
the first three modes. However, after the relative stiff-

creases.

ness ratio reaches a certain value, the increase in the
flexural stiffness will neither effectively reduce the dis-
placement of the mode shape nor be cost-effective.
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Fig. 12

Influence of the relative
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stiffness ratio on the modal shape. (a) Mode 1; (b) Mode 2; (c) Mode 3
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Fig. 13 presents the cumulative effective modal mass
ratio of the first three modes. The minimum value corre-
sponding to the first mode is larger than 70% , and the
contribution from the third mode is larger than the contri-
bution from the second mode. The effective modal mass
corresponding to the first mode and second mode increa-
ses with the increase in the relative stiffness ratio, while
the effective modal mass of the third mode decreases with
the increase of relative stiffness. When the relative stiff-
ness ratio is larger than or equal to 10, the cumulative ef-
fective modal mass of the first three modes will be larger
than 90% , which can meet the requirement of the seismic
code"™ for the minimum number of modes needed to be
considered in analysis.

1.0

Cumulative effective modal
mass ratio
=)
oo

—*— Mode 1
0.7 —— Mode 2
—=— Mode 3
0.6 1 1 1 1 |
0 10 20 ; 30 40 50

Fig. 13
tive effective modal mass ratio of the first three modes

Influence of the relative stiffness ratio on the cumula-

3.2 Relative stiffness of the hinged wall and rotation-
al spring

The rotational stiffness ratio, which is the relative
stiffness ratio of the rotational stiffness of the rotational
spring and the flexural stiffness of the wall, is as fol-
lows :

k.h
B= El (49)
where h is the story height, which is assumed to be the
same along the height of the building for brevity.

To investigate the effect of the rotational stiffness ratio,
the model used is the HWBB-hinged frame structure in
section 2. 1. The variation of the rotational stiffness ratio
is realized by the variation of the rotational stiffness of the
rotational spring, while the flexural stiffness of the wall
The rotational stiffness ratio for the
HWBB-hinged frame structure in section 2. 1 is 0. 28.
Fig. 14 demonstrates the effect of the rotational stiffness
ratio on frequencies. The first three periods decrease with
the increase in the rotational stiffness ratio. However,

remains constant.

when the rotational stiffness becomes infinitesimal,
HWBB tends towards a pin-supported wall. When the ro-
tational stiffness becomes large enough, HWBB tends to-
wards a cantilever beam. This is the reason why frequen-
cies no longer vary when the rotational stiffness ratio is
either too small or too large, as seen from the two flat
lines in each figure.

The base shear modal contribution factor corresponding

to mode 1 is'>"
® St
M Via

> Vi

where N denotes the total number of modes and M, de-

(50)

notes the base shear effective modal mass corresponding
to mode n.

The effective modal mass is the contribution of each
mode to the static base shear. As illustrated in Fig. 15,
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Fig.14 Influence of the rotational stiffness ratio on the natural frequencies. (a) Mode 1;(b) Mode 2;(c) Mode 3
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Fig.15 Influence of the rotational stiffness ratio on the effective modal mass. (a) Mode 1;(b) Mode 2;(c) Mode 3
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the first mode effective mass decreases with the increase
in the rotational stiffness ratio, while the second and third
modes increase with the increase in the rotational stiffness
ratio. The sum of the first three modes decreases with the
increase in the rotational stiffness ratio. With the increase
in the relative stiffness ratio, higher modes become more
important in the contribution of the base shear.

4 Conclusions

1) Vibration equations are derived to investigate higher
mode effects in the HWBB-frame structure. Modal analy-
sis of the simplified models of both the HWBB-hinged
frame and HWBB-MRF has been derived. Natural vibra-
tion periods and modes are derived accordingly.

2) Higher modes can influence the bending moment
and shear distribution in the hinged wall, while they can
be ignored in the shear distribution in MRF, which is due
to the controlling function of HWBB. Moreover, the
global displacement is also controlled by the fundamental
mode.

3) For the HWBB-hinged frame structure, after the
BRBs yield, the displacement of the HWBB-hinged frame
is also controlled by the first mode. Therefore, displace-
ment is not sensitive to higher modes. However, the first
mode will no longer contribute to the inner forces. Higher
modes have to be considered when determining the inner
forces demand after the BRBs yield. For the HWBB-
MREF structure, the first mode contributes to inner forces
after the BRBs yield as MRF provides the lateral stiffness
for the whole structure after the BRBs yield.

4) Parameter analysis demonstrates that the increase in
the flexural stiffness wall can decrease the displacement
amplitudes of the first three modes. However, after the
flexural stiffness reaches a certain value, the displacement
amplitude varies slowly. The first three periods all de-
crease with the increase in the rotational stiffness, which
demonstrates that the rotational stiffness of the rotational
spring can enlarge the stiffness of HWBB. With the in-
crease in the rotational stiffness ratio, the contribution
from the first mode decreases, and contributions from
both the second mode and third mode increase.
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