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Abstract: First, an explicit representation Ag} =(GA+E)"'G

of the outer invers A’y for a matrix A e C"*" with the
prescribed range 7 and null space S is derived, which is
simpler than AYs = (GA + E) ~'G - V(UV) UG proposed
by Ji in 2005. Next, a new algorithm for computing the outer
inverse A‘TZ)Y based on the improved representation Af)g =(GA
+E) ' G through elementary operations on an appropriate
GA 1,
I, 0

the computational complexity of the

partitioned matrix [ ] is proposed and investigated.

Then,
algorithm is also analyzed in detail. Finally, two numerical
examples are shown to illustrate that this method is correct.
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hroughout this paper, the standard notations in Ref.
[1] are used. The symbol C”™" denotes the set of all
m x n complex matrices with rank r, and C" represents
the n-dimensional complex space. I, represents an identi-
ty matrix of order n. For A € C"™", symbols R(A), N
(A), A", A™" and r(A) denote its range, null space,
the conjugate transpose, inverse and rank, respectively.
R(A)* and N(A) " are orthogonal complement spaces of
R(A) and N(A), respectively. The index of A € C"™",
denoted as ind(A), is the smallest nonnegative integer k
such that r(A") =r(A""").
The {2} -inverse A‘,Z’g of a matrix A € C"*" with the
prescribed range T and null space S is defined as follows:
Definition 1'"  If A e C"*", T is a subspace of C" of
dimension s<r, and S is a subspace of C" of dimension
m —s, and then A has a {2}-inverse X such that R(X) =
T and N(X) =S, if and only if AT®S =C".
In such a case, X is unique and denoted as A(TZ)S It is

nxn

well known that the {2} -inverse A;ZL proposes a unified
representation for six kinds of generalized inverses, such
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as the Moore-Penrose inverse A, the weighted Moore-

Penrose inverse A, the group inverse A,, the Drazin in-
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verse A, the Bott-Duffin inverse A ",

ized Bott-Duffin inverse A{; . In addition, suppose that
the matrix G e C"™" satisfies R(G) =T and N(G) =S,

then the unified treatment is as follows:

A’ ifG=A"

and the general-

A, ifG=A"=NA"'M
A if m=n, G =A with ind(A) =1
AZ =1 " ‘
TSTA, if m=n, G =A" with ind(A) =k
A" if R(G) =L and N(G) =L*
A{) if R(G) =S and N(G) =S*

The {2} -inverse plays an important role in a stable ap-
proximation of ill-posed problems and in linear and non-
linear problems involving a rank-deficient generalized in-
verse"™'. In particular, {2} -inverse can be used in the
iterative methods for solving nonlinear equations'"* and in
statistics'”™ .

In the past thirty years, numerous experts and scholars
investigated the subject of computation and representation
for A;. Some results of the minor of generalized inverse
A% can be viewed in Refs. [7 —10]. The use of the itera-
tive method or approximation to compute A’ can be seen
in Refs. [11 —15]. Some other representations and com-
putations can be found in Refs. [ 16 — 18]. Recently,

[19-21]

some scholars used Gauss-Jordan elimination meth-

ods to compute A,
plexity of these Gauss-Jordan elimination methods are al-
so analyzed in detail.

In 1998, Wei''" provided an expression of the general-

. . 2 . . .
ized inverse A(T)S by using group inverse, which employs

Moreover, the computational com-

a new way to study Ay.

Lemma 1"  Let A, 7, S be the same as those in
Definition 1. Suppose that G € C"*" such that R(G) =T
and N(G) =S. If A has a {2} -inverse Afl, then

ind(AG) =ind(GA) =1 (1)

Furthermore, we have
A7 =G(AG), =(GA) ,G (2)
Soon after, Ji''"" enhanced the results of Wei''” and es-
tablished another explicit representation of A}’y, which is

shown as follows.

Lemma 2" Let A, 7, S and G be the same as those
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in Lemma 1. Let V and U" be matrices whose columns
form the bases of N(GA) and N((GA) "), respectively.
Define E = VU. Then, E is nonsingular, satisfying

R(E) =R(V) =R(GA), N(E) =N(U) =N(GA) (3)
Moreover, GA + E is nonsingular and
A‘;}:(GA +E) 'G-V(UV) UG (4)

In the following lemma, we will prove V(UV) UG =
0.

Lemma 3 LetA, 7, S and G be the same as those in
Lemma 1. Let V and U” be the matrices whose columns
form the bases of N(GA) and N((GA) *), respectively.
Then,

V(UV) UG =0 (5)

Proof  Since the columns of matrix U" is the basis of
N((GA) "), we have (GA) " " U" =0, which is also
equivalent to UGA = 0. This implies R(GA) C N(U).
From Lemma 1, we know that »(G) =r(GA) =s, which
means that R(GA) = R(G). Then, we have UG =0 and
Eq. (5) is followed.

In this paper, we first develop the result of Ji
obtain a more brief explicit representation of A{’,. Based
on the developing explicit representation, a new algorithm
for computing the outer inverse Af’s through elementary
operations on an appropriate partitioned matrix is pro-
posed and investigated. The computational complexity of
the new algorithm is also analyzed in detail.

U7 and

1 Main Results

In the following theorem, we establish a new explicit
expression for A!’\, which is simpler than that in Ref.
[17].

Theorem 1 Let A, 7, S and G be the same as those
in Lemma 1. Let V and U" be matrices whose columns
form the bases of N(GA) and N((GA) "), respectively.

Define E = VU. Then,
AY =(GA+E)'G (6)

Proof Since V(UV) UG =0, we obtain Eq. (6) im-
mediately from Eq. (4).

Following the same line of Theorem 1, another explicit
representation of {2} -inverse A\’ is proposed.

Theorem 2 Let A, 7, S and G be the same as those
in Lemma 1. Let P and Q" be matrices whose columns
form the bases of N(AG) and N((AG) *), respectively.

Define F = PQ. Then,
A =G(AG +F) "' (7

Based on the two explicit representations (6) and (7), a
method to calculate A}y through elementary operations on
an appropriate partitioned matrix is derived and investiga-
ted. We first give the case of m=n.

Theorem 3 Let A, 7, S and G be the same as those

in Lemma 1. Then there are two nonsingular elementary
matrices U and V of order n, respectively, such that

B U
U[ GA 1,,]:[0 U‘] (8)

B I, 0
1, Vi v,

sxn

where matrix B € C’*"and s columns of B are the same as
those of I ; furthermore,

1) R(U;) =N((GA) ") and R(V,) =N(GA);

2) A<,2’§ =(GA +V,U,) "'G.

Proof According to Lemma 1, we have r(GA) =
r(G) =s, then there are two elementary matrices U and V

satisfying (8) and (9). This means

U
UGAV=[ ‘]GA[V, v, =
U,
UGAV, U,GAV, I, 0
= [ ‘ ] (10)
U,GAV, U,GAV, 0 0
Comparing both sides of (10), we drive
UGAV, =1,U GAV, =0 (11)
U,GAV, =0,U,GAV, =0 }

We notice that matrices U, and V, are row full rank and
column full rank matrices, respectively, and then, the
above four equalities imply that

GAV, =0, U,GA =0 (12)
This implies that
R(U;) CN((GA) "), R(V,) CN(GA)  (13)

According to the fact that »(U) =r(V,) =n -5 =
dimN((GA) ) =dimN(GA), we obtain

R(U;) =N((GA) "), R(V,) =N(GA)

2 _

From Theorem 1, we derive a representation A, =

(GA +V,U,) "'G.

Theorem 4 Let A, T, S and G be the same as those
in Lemma 1. Then, there exist two nonsingular elementa-
ry matrices P and Q of order m, respectively, such that

Cc p
P[AG Im]z[o P] (14)

c I, 0
Mvzlo 0]
Im Q] QZ

where matrix C € C'*" and s columns of C are those of
I ; furthermore,

1) R(P,) =N((AG) ") and R(Q,) =N(AG);

2) AV =G(AG +Q,P,) .

The proof of Theorem 4 is similar to that of Theorem

(15)

3.
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2 An Algorithm to A{”; Based on Gaussian Elim-
ination and the Computational Complexity

Let A € C" with m=n, and Theorem 3 is summa-
rized in the following algorithm.

Algorithm 1

Input matrices A € C!'*" and G € C!™" with s<r and
calculate GA.

Execute elementary row operations on the first n rows

and the first n columns of a partitioned matrix

GA I,
.

n

I. 0 U,
], which is changed into 0 0] [Uz] .
[v, V,] 0

Perform elementary row operations on matrix [ GA +
V,U, G] until [I, AY}] is reached.

In the following theorem, the computational complexi-
ty of Algorithm 1 is analyzed, which only focuses on
multiplications and divisions.

Theorem S The computational complexity of Algo-
rithm 1 to compute A' is

T(m,n)=n2(2m+in-i) (16)

2 2

Proof
pivoting steps are needed to transform [ GA

It requires mn’ multiplications to form GA. s
I,] into

following r(GA) = s, where matrix B e C*™

U,
[0 U,
and s columns of B are the same as those of I . The first
pivoting step involves n + 1 non-zero columns in [ GA
1,]. Thus, n divisions and n(n — 1) multiplications with
a total of »° multiplications and divisions are required.
For the second pivoting step, the first part of the pair re-
duces one column to deal with, but the second part in-
creases one column, resulting in n +1 columns involved.
This pivoting step also requires n’ operations. Continuing
this way, it requires sn’ multiplications and divisions to

B U,

0 v

According to the fact that s columns of B are the same

reach the matrix

as those of I, we can directly read V, and V,. In the
third step, n’(n —s) multiplications are required to com-
pute V,U,.

In the fourth step, n pivoting steps are needed to trans-
form [GA + V,U, G] into [I, A!’,]. The first pivoting
step involves n +m non-zero columns in [GA + V,U, G].
Thus, n+m —1 divisions and (n+m —1)(n —1) multi-
plications are required with a total of n(n +m —1) multi-
plications and divisions. For the second pivoting step,
There is one less non-zero column in the first part of the
pair. There are n + m — 1 non-zero columns to deal with.
These pivoting steps require n(n + m — 2) operations.
Following the same idea, the i-th (1 <i<n) pivoting
step needs n(n + m — i) operations. So, it requires

nn+m-1) +n(n+m=-2) +...+n(n+m-n) =

n2m+Ln—L
(27

Therefore, the total number of operations for compu-

. 2) .
ting A} is

T(m,n) =n’m+n’s+n(n-s) +n2(m+%n—%) =
n2(2m+%n—%)

If m<n, the similar algorithm and computation com-
plexities are given as follows.

Algorithm 2

Input: matrix A € C!'*" and G e C!™" with s <r and
calculate AG.

Execute elementary row operations on the first m rows

and the first m columns of a partitioned matrix

I 0 P,
AG 1, [ ] [ ]
[ I 0 ] which is changed into 0 o0 P,

(¢, Q.1 0

m
Perform elementary row operations on the matrix

AG +Q,P I,
[ Q. 2] until [ m] is reached.
A

T,§
Theorem 6 The computational complexity of Algo-

rithm 2 to compute A} is

T(m,n):m2(2n+%m—%) (17)

3 Numerical Examples

The Gauss-Jordan elimination is a popular method for
computing the inverse of a nonsingular matrix of low or-
der by hand. In this section, Algorithm 1 and Algorithm
2 can be used to compute some famous generalized inver-
ses by hand if the size of matrix A is small by choosing
the appropriate parameter matrix G.

Example 1'"""  Use Algorithm 1 to compute the Dra-
zin inverse A, of matrix A, where

2 0 0
A= [O 1 1 ]
0o -1 -1
Solution Simple computation leads to

4 0 O 8§ 0 0
Azz[O 0 0], A3=[0 0 0]
0 0 O 0 0 O
This implies ind(A) =2. Take G =A’ and perform ele-
AG 13]

mentary row and column operations on I 0
3
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8 001 00
00 0010
AG I, 00000 1
[13 O]ZIOOOOOH
01 0000
L0 001 0 00
1 0 0 1/8 0 0
000 0 10
000 0 01
1 00 0 00
01 0 0 00
Lo 01 0 0 0
Thus, we have s =1 and
0 0
01 0
Vv, = ,U2=[1o]
[001] 0 1

From U, and V,, in view of Algorithm 1, we have

8 0 0
AG+V2U2:[O 1 o]
00 1

Finally, perform elementary row operations on [AG +
V,U, G]—I[I, A,]

8 00 4 00 1
01 0 00 0] H[O
001000 0

172 0
0 O
0 0

o

o O
—

0
1
0

- o O

Therefore, we obtain

172 0 0
Ad=[0 0 o]
0 00

-1 2 1 0
Example 2'*'  Take A = [ 1
-1 -3 1 2
3 1 0
2 4 2|
=l s _4 1| It is easy to show that AR(G) DN
0 7 -3
(G) =R’, then we have Ajyy; v -
compute Ay, v through elementary operations.

Solution By computing, we have

Algorithm 2 is used to

N
AG:[I 0 1 1] s _4 1|7
-1 -3 1 2 0 7 3
-12 3 -3
[—2 4 —2]
-2 -3 1

Executing elementary row operations on the first 3 rows
and column operations on the first 3 columns of the fol-
lowing partitioned matrix:

0

AG I,
n

This implies

P,

r-12 3 -3 1 0 0
-2 4 -2 0 1 0
-2 -3 1 0 0 1
]: 1 0 0 00 0
0 1 0O 0 0 O
L 0 0 1 0 0 0
rt 0o 0 0 -=-3/14 -=-2/7
o1 0 0 -1/7 1/7
o0 0 1 -3 -3
1 0 -1 0 0 0
o1 3 0 0 0
LO 0 7 O 0 0
-1
=[1 -3 -3], QZ:[’S]
7
By direct calculation, we can obtain
-13 6 0
AG+Q2P2=[ 1 -5 —11]
5 -24 =20

Then, we perform the elementary column operation trans-

AG +Q,P 1
form and change [ Q. 2] into | ’ ]
G Ao no
r—13 6 0 7 1 0 0 7
1 -5 -11 0 1 0
5 -24 -20 0 0 1
3 1 0 |—| -17/62 10/31 -11/62
-2 4 -2 3/31 22/31 -9/31
-5 -4 1 172 -1 172
L0 7 -34 L -4/31 43/31 -19/31-
This yields
-17/62 10/31 -11/62
e | 3731 22731 =9/31 |
Moo 172 -1 172 |
-4/31 43731 -19/31
-17 20 -1
1| 6 44 -18
62| 31 -62 31
-8 86 -38

4 Conclusion

In this paper, we establish two new explicit representa-
tions for A{’{ and give two algorithms to compute A}
based on the two expressions through elementary opera-
tion on the appropriate partitioned matrices. The compu-
tation complexities of the two algorithms are also ana-
lyzed.
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