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Abstract: To offset the defect of the traditional state of charge
(SOC) estimation algorithm of lithium battery for electric
vehicle and considering the complex working conditions of
lithium batteries, an online SOC estimation algorithm is
proposed by combining the online parameter identification
method and the modified covariance extended Kalman filter
(MVEKF) algorithm. Based on the parameters identified on
line with the multiple forgetting factors recursive least squares
methods, the newly-established algorithm recalculates the
covariance in the iterative process with the modified estimation
and updates the process gain which is used for the next state
filter. Experiments
including constant pulse discharging and the dynamic stress
test ( DST ) demonstrate that compared with the EKF
algorithm, the MVEKF algorithm produces fewer estimation
errors and can reduce the errors to 5%

estimation to decrease errors of the

at most under the
complex charging and discharging conditions of batteries. In
the charging process under the DST condition, the EKF
produces a larger deviation and lacks stability, while the
MVEKEF algorithm can estimate SOC stably and has a strong
robustness. Therefore, the established MVEKF algorithm is
suitable for complex and changeable working conditions of
batteries for electric vehicles.
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he two crucial issues, energy saving and environ-
Tment conservation, have facilitated the swift growth
of electric vehicles (EVs). As one important component
of EVs, the battery management system ( BMS) works
principally in monitoring the state of cells, estimating the
state of charge ( SOC), balancing the voltage, and so
on. To achieve these fundamental functions, one nonlin-
ear model describing the characteristics of batteries should
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be established'" .
electrochemical model, the neural network model, and
the equivalent circuit model. The electrochemical model
establishes a nonlinear mathematical model based on the

The commonly used models are the

principle of internal charge transfer in batteries. It con-
sists of a series of partial differential equations with
boundary conditions. The electrochemical model is the
most accurate compared with the other two, but its com-
plexity prevents applying it to online estimation and vehi-
cle simulation as well as its computational burden issue.
The neural network is a highly nonlinear continuous-time
power system with a strong self-adaptive ability. Its mod-
el can simulate the external characteristics of the battery
well. However, the neural network model requires a large
amount of experimental data for training and learning,
and its accuracy is greatly affected by the training meth-
od. If the initial value is not chosen properly, it can easi-
ly fall into the local optimum and non-convergence .
Considering the internal polarization inside and easy ac-
cess to online parameter identification, the equivalent cir-
cuit model is sophisticated enough to simulate the compli-
cated charging and discharging conditions eventually, in
which resistors are designed for ohmic polarization and
capacitors for electrochemical polarization, respectively.
The running conditions of batteries are changeable and
complex. It is remarkable that parameters of batteries are
quite difficult to identify accurately. In fact, there are
two sorts of approaches proverbially applied to identify
them: One is the offline method and the other is the on-
line method. Those offline methods require heavy compu-
tational resources due to their complexities, which is an
issue for a real-time application such as the BMS em-
ployed in EVs. A large number of laboratory experiments
may also be deployed to obtain the offline variation and
sensitivity of the parameters; however, it is a demanding
and time-consuming task. Apart from these, temperature,
current magnitude and cycle period also have an important
influence on the reactions of batteries, apparently more in
the internal resistance. For the purpose of obtaining a se-
ries of parameters accurately, the online method is pro-
posed to identify the real-time characteristics by using the
multiple forgetting factors recursive least squares ( MFF-
RLS) method™™'.
are employed in the next SOC estimation.

At the same time, these parameters
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In the model-based SOC estimation methods, the bat-
tery model that directly influences the accuracy is estab-
lished and then algorithms such as the coulomb courting
method, open circuit voltage method, neural network
method and Kalman filter method can be taken into con-
sideration to estimate SOC. For the coulomb courting
method, a large accumulated deviation can be produced
due to sensor precision and it is restricted by the initial
value of SOC'’. The open circuit voltage (OCV) is one
static variable which can be measured only in idle peri-
ods. It is not suitable for the frequently running condi-
tions of EVs'”'.
linear and the estimation accuracy is high, but the algo-
rithm is limited by historical data and training meth-
ods'™®. The Kalman filter method uses the statistical prin-
ciple to seek the minimum mean square error and sets the
state variables in estimated-corrected, and the estimation

is not affected by the initial value, so it is widely used by
0]

The neural network method is very non-

many researchers'””
Kalman filter (EKF) is to remove the high-order term af-
ter the Taylor expansion is performed at the prediction
moment, and it estimates the state after the system linear-
ization. This method reduces the accuracy and the estima-
tion is greatly affected by the measurement noise''".
Therefore, the covariance gradually shows morbidity dur-

ing the recursive process, which can result in unstable es-

. However, the traditional extended

timation results of the filter. To avoid the morbid covari-
ance, this paper proposes a modified covariance extended
Kalman filter ( MVEKF) algorithm, which recalculates
the covariance in the iterative process with the modified
estimation and updates the process gain to obtain a new
covariance value. The value is used for the next state esti-
mation to ensure the stability of the filter.

In this paper, an online SOC estimation algorithm was
proposed by combining one online parameter identifica-
tion method and the MVEKF algorithm. A second-order
equivalent circuit model with dual resistors is established,
in which resistors are designed for ohmic polarization and
two pairs of the RC network for electrochemical polariza-
tion. Also, the multiple forgetting factor recursive least
squares method is used to identify parameters online. The
modified algorithm with model parameters recalculates the
covariance in the iterative process with the modified esti-
mation and updates the process gain, and this new data is
used for the next state estimation to decrease errors of the
filter.
ging, constant pulse discharging and the dynamic stress
test (DST) are performed on the lithium batteries to verify
the accuracy and robustness of the proposed method.

Finally, experiments including constant dischar-

1 Battery Characteristics
1.1 Battery parameters

As a high energy storage component, the lithium bat-
tery is widely used in various fields. This paper chooses

the NCR18650PF battery produced by Panasonic as the
model test object. The technical parameters of the battery
are shown in Tab. 1.

Tab.1 Parameters of NCR18650PF battery

Parameter Value
Rated capacity/(mA - h) 2 750
Rated voltage/V 3.6
Standard charge voltage/V 4.2
Discharge cut-off voltage/V 2.5
Standard charging current/C 0.5
Maximum continuous discharge current/A 10

The battery testing equipment BTS-4008, as shown in
Fig. 1, is selected to implement all charging and dischar-
ging experiments. This machine is equipped with eight
channels to install corresponding batteries. Constant cur-
rent, constant pulse current and many kinds of designed
running strategies are included in the range of its working
conditions. This test system communicates with the host
computer through the LAN. The charging and discharging
strategies are scheduled in the computer, which dominates
the BTS-4008 to perform the control strategies.

Fig.1 Platform of BTS-4008

1.2 Open circuit voltage

Considering that OCV is a static variable and the self-
discharge of the battery, the experiments are carried out
simultaneously with multiple batteries. The average OCV
is calculated to reduce the system error. The interval of
5% SOC is used in the measurement process. The meas-
urement steps are as follows:

e Charge to 4.2 V with constant current and constant
voltage, and remain stationary for 2 h;

e Start the 0. 5C constant current discharge and stop
after 5% of the maximum state is released;

e Record the voltage after staying for 1.5 h;

e Repeat the above steps until the discharge cut-off
voltage ;

e Conduct a 0.5C constant current charge and record
the data at intervals of 5% SOC after staying for 1.5 h
until it is charged to the nominal voltage.

Fig. 2 is the relationship between OCV and SOC. The
function of SOC-OCV is fitted by the polynomial fitting
method. Through numerous verifications, the eight-poly-
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Fig.2 The relationship of SOC and OCV

nomial is selected to match the bond to guarantee preci-
sion. The coefficients A, to A, of the fitting function are
shown in Tab. 2. It is apparent that the curves run
smoothly whether under high SOC or low SOC. The
OCV of charging is close to but above that of discharging
on account of the features of the lithium battery. Obvi-
ously at the beginning, the two lines grow more noticea-
bly than the remaining. When the remaining SOC is in-
sufficient, the uncontrolled chemical reactions occur in-

side the battery' ">,

Tab.2 The coefficient values of the fitting eight-polynomial in
charging or discharging process

Coefficients . : Values .
Discharging Charging
Ay ~628.25 ~677.25
A 2.63 s
As ~4.54 i
As 4.14 438
A4 ~2.16 5 g
As 646.89 687.16
A ~108.07 6.0
A 10.00 0.7
Ao 2.99 300

The fitting function error of OCV is plotted in Fig. 3.
From the diagram, it can be seen that the result of fitting
is convincing with the maximum error of 0. 03 V. The
eight-polynomial functions match well with the charging
and discharging curves.

0.03 ---- Discharging

— Charging

Error of OCV/V

Fig.3 The fitting function error of OCV

1.3 Coulomb efficiency

Due to the resistance issues, there is a difference in the
amount of electricity produced by different discharging
currents. With a large current, the battery cannot export
the whole amount of energy as expected, and some ener-
gy remains inside. Therefore, when estimating the SOC
of the battery, the coulomb efficiency must be consid-

ered ', In this experiment, C means that the charge-dis-
charge current is 2. 75 A.

W, is the amount of electricity discharged from the
battery with 0. 5C. W, is the amount of electricity re-
quired to return the battery to the pre-discharge state with
a specific current L. Set the charging coulomb efficiency
7. as the ratio of W, to W,.

W,, is the amount of electricity discharged from the
battery with a specific current L. W, is the amount of
electricity required to restore the battery to its pre-dis-
charge state with 0. 5C. Set the discharge coulomb effi-
ciency 7, as the ratio of W, to W,,.

To obtain the efficiency relationship, the coulomb effi-
ciency experiments at the rate of 0.25C, 0.375C, 0.5C,
0.75C, C, 1.25C, and 1.5C were carried out at room
temperature. The charge-discharge coulomb efficiency at
different rates is shown in Tab. 3.

Tab.3 Coulomb efficiency at different rates

Efficiency

Rates " - -
Discharging Charging
0.25C 0.980 0 0.9850
0.375C 0.977 3 0.983 2
0.5C 0.976 6 0.977 2
0.75C 0.970 9 0.974 1
Cc 0.965 0 0.970 7
1.25C 0.962 4 0.965 5
1.5C 0.961 3 0.963 1

The discharging current is positive, and charging is
negative. The relationship between the coulomb efficien-
cy and the current in Fig. 4 is

[-0.0065( ~1,,) +0.9882 <0 (1)
"'{—o.oos 81, +0.983 1 1>0
s Charging
S o Discharging
R - - Fitting(charging)
g~ = Fitting(discharging)
o\\~‘»~~~ R

1 1 1
0.5 1.5 2.5 35 45
Current/A

Fig.4 Fitting results between the coulomb and current
efficiency

2 Model Description

The lithium battery is a complex and nonlinear system.
Numerous kinds of experiments have been carried out to
establish the model, which can describe it accurately.
The equivalent circuit model is chosen for simplification
and applicability. Based on the dynamic characteristics
and working principles of the battery, the equivalent cir-
cuit model is developed by using resistors, capacitors,
and voltage sources to form a circuit network>'*. In this
work, a second-order equivalent circuit model with dual
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resistors is established in Fig. 5. Resistors are used for
ohmic polarization and the two pairs of the RC network
are for electrochemical polarization.

c, C,
ﬂ_gl—@
R R
oy 1 2
U 7 U
ou 1 y
-—
R
R

dchg

Fig.5 Second-order equivalent circuit model

In Fig. 5, the cell equivalent model includes an open
circuit voltage U ., which is used to represent the voltage
source and describe the static feature of the cell. Two RC
networks are composed of resistance polarization R, and
capacitance polarization C, to describe the battery polari-
zation phenomenon. Resistance R, is used to represent
the cell ohmic internal resistance during charging while
resistance R, represents the ohmic internal resistance
during discharging. A terminal voltage U, is connected to
electronic load. For the sake of calculation, R, and R,
are redefined to one parameter R,.

According to the Kirchhoff law of the circuit, the mod-
el equation is

U, =R,I
dU, U, 1
4~ RC TG )
dU, U, 1
AT RG TG,

U.,.=U,+U, +U, +U,

where U, is the voltage of R;; U, and U, are the two pairs
of RC networks; U, represents the terminal voltage. OCV
is replaced by U,,. Current / is positive during discharge
while negative during charging.

After discretizing ,Eq. (2) is changed into

U i fe "m 0 0 U,
Uy |= 0 e "m0 U,, |+
SOC, ., L O 0 1 SOC,
(e -1)R
( 17 - (3)
(e™"™ -1)R, /
X
_nT
- Q'l
UL,k+l = Uocv,k+l - Ul,k+l - U2,k+l -R,I;

where Q, represents the rated capacity of the lithium bat-
tery ; 7 is the coulomb efficiency; 7T is the sample period;
7, and 7, are the concentration polarization time constant
and activation polarization time constant, respectively,

T, =R,C,,7, =R,C,.

In order to apply the proposed recursive method to the
simplified battery model, an auto regressive exogenous
(ARX) model is required. The transfer function of the
battery impedance is calculated and presented in the s-do-
main. After the Laplace transformation, Eq. (3 ) is
changed from a time domain function to a frequency do-
Suppose that U(s) = U,, (s) -
U, (s), the transfer function is

main function'”’.

R, R,
+
7,8 +1

G(s) =7 =R, 4)

s

75 +1

Given the actual operating conditions of the lithium
battery of the EV, the working current can be regarded as
a linear combination of the pulse current at each sampling
time. Therefore, the Z-transformation is performed using
the pulse response invariant method.

The transfer function after the Z-transformation is

a, +a,z” +a;z”’

G(a) = (5)
1% 24

The difference equation after discretizing is

UCk) =a,U(k-1) +a,U(k=-2) +a,I(k) +

ad(k-1) +a(k-2) (6)
a, —e VM4 e T
~T/r, - T/r,
a,=—-¢
1 1
a, :C7+C7+R0

1 2

a, = - (%+Ro)e'w“ - (CL+RO)6_T/T‘
1 2

_ -T/r, -T/7,
a; =R,e

where a, to a; are the parameters to be identified.
3 Parameter Identification
3.1 Identification method

The least squares method is a simple and effective iden-
tification method. It deals with the data obtained from
computational experiments. It takes the minimum square
sum of errors as the calculation benchmark. The recursive
least square is a widely used algorithm in different kinds
of least squares methods; however, it has some short-
comings. In the process of calculation, the old correction
value and the estimated value have no memory limitation.
With the experiment proceeding, more and more data is
collected, and the newly collected data will be easily in-
fluenced by the old data'""’. In order to avoid this phe-
nomenon, it is required to increase the weight of the new-
ly collected data in the calculation.

During the process of charging, the SOC value will in-
crease slowly with the accumulation of time, so it is a
slow time-varying parameter. For slow time-varying pa-
rameters, if the weight of historical data is not consid-
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ered, the ability of new observations to modify the pa-
rameter estimation will gradually weaken.

To solve this problem, the multiple forgetting factor re-
cursive least squares method is used in parameter identifi-
cation. The multiple forgetting factor least squares meth-
od can realize on-line identification parameters method
and has a strong robustness. It can weaken the influence
of external environmental changes on the model and im-
prove the identification accuracy to a certain extent. The
steps of the algorithm are as follows.

Step 1  Select appropriate § and set the initial value of
P, to ensure the convergence accuracy :

A

0= %al,az,a3,a4,a5}z}

7
P, =4I, b

Step 2 Collect the currents and output voltages at
contiguous moments and update the state variable matrix ;

nk:{U(k_l)vU(k_z)’I(k> ’I(k_l)’l(k_2>}—r
(8)
Step 3 The output voltage is estimated by the coeffi-

cient of the previous moment and the state value of the
current moment :

$=m0,_, =U(k) (9)

Step 4 Obtain the estimated error by comparing the
estimated value with the actual value.

ek:Uk—[AJk (10)

Step S The multiple forgetting factor is related to the
state variable matrix, covariance, estimation error and
noise value, and A, varies during the calculation process
but not more than 1.

2
1 e

1 +1’Z—1—LPk—l1’k—l—L R

A =1 (11)
Step 6 The extremum principle is used to obtain the de-
rivative, which is set to be 0 to calculate the gain matrix .

P, 7,

= (12)
Ay +1'A]'-Pk—lnk

k

Step 7 K, is calculated by the least square method
and the estimated error is used to update the parameters;
ék:ékfl-"Kk.ek (13)
Step 8 Update the variance matrix ;
Pk:Pkfl_Kkn:Pkfl (14)
A

Step 9 Cycle Steps 2 to 8.
3.2 Model verification

In order to verify the accuracy of battery model and
identified parameters, a few experiments are carried out at
room temperature and five batteries with the same state

are tested simultaneously. Referring to the hybrid pulse
power characteristic (HPPC) measurement, firstly, bat-
teries are charged to cut-off voltage at 4. 2 V, then
charged to a cut-off current for 0.055 A with4.2 V, and
then held for 2 h. After that, the pulse discharging
process is carried out with C. The constant current dis-
charge is performed for 6 min, and then held for 18 min.
The whole process is performed 10 times. The real-time
terminal voltage and current value of the charge and dis-
charge experiments are recorded. Through the Matlab
simulation, the parameters of the battery model can be
identified online by the multiple forgetting factor recursive
least squares method.

The concrete discharging strategy is plotted in Fig. 6.
The full state battery is released with 10% of SOC in con-
stant pulse currents every time. After each discharge, the
cell will be held for 18 min to calm down the OCV. As
the diagram shows, the terminal voltage declines regular-
ly under most conditions. It is clear that the voltage va-
ries considerably when the cell is at the end of dischar-
ging. The reason why this situation occurs is that the cells
in low SOC produce numerous complex chemical reac-
tions so that they result in abnormal performances.

-]
3 — 45
<2 s - 3'52
§ b
1 2.5
0 L ! ‘ 1.5
0 5 10 15
Time/10%s

Fig. 6 Discharging strategy

The coefficients of the recursive process are plotted in
Fig.7. It performs the online identification process of the
model parameters. It is apparent that parameters a, and a,
fluctuate obviously while the trend of parameters a,, a,
and a4 vary steadily. The reason is that parameters a, and
a, are mainly affected by the ohmic internal resistance
while parameters a,, a, and a5 are affected by the capaci-
tance. Considering the temperature and the variable ca-
pacity, parameters a, and a, wave more significantly
compared with the others. Parameters are deeply influ-
enced by the ohmic internal resistance. It can also be in-
ferred from the diagram that when the voltage approaches

o=

Coefficient

Time/10%s

Fig.7 The change process of coefficient during the identification
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close to the cut-off voltage, all parameters vary dramatic-
ally, producing unexpected errors. However, as for EVs
when only focusing on the valid range 10% to 90% of
SOC, we can ignore the abnormal fluctuation.

From Fig. 8 and Fig. 9, it can be concluded from the
graphs that the second-order model with the multiple for-
getting factor least squares method can simulate the cells
well. The estimated voltage value closely follows the ter-
minal voltage value, which is collected by the constant
pulse discharging working condition. During the entire
experiment, the estimated error is within 0.3 V and the
estimated error occurs at the high voltage and low voltage
moments, that is, in high SOC and low SOC. When
SOC is in the range of 0 to 10% and 100% to 90% , a
large deviation is presented in the output voltage of the
second-order model. The estimation error has a peak val-
ue above average. However, the working range of the
EV lithium battery is generally 10% to 90% , so that the
accuracy of the model established can meet the require-
ments. At the same time, it can be concluded that the
fluctuation of error is synchronous with the current
change, indicating that every time the current changes,
an error will appear. The established second-order equiv-
alent circuit model needs reaction time to reach the steady
state, so the frequent dynamic response is not suitable for
the condition.

—Measurement
= Estimation

Voltage/V

Time/10%s
Fig.8 The estimation voltage and terminal voltage

03

0.2

0.1 ‘

Of—r— :

-0.1F

e T S e [ |
Time/10%s

Error/V

Fig.9 The error of voltages for identification

4 MVEKF Algorithm

From the above statement, the established equation of
state and observation equation are

SOC(k+1) 1 0 0 SOC (k)
U((k+1l) |=|0 e 0 U (k) |+
U,(k+1) 0 0 e ' U, (k)

_ar
0,
R(1—e ") l, + w, (15)
R,(1-e ")
U (k+1)=0CV(k+1)-U,(k+1) -
U,(k+1) =RJI(k+1) +v,, (16)

where w, and v, , are mutually uncorrelated Gaussian
white noise; 7 is the coulomb efficiency; T is the sam-
pling period; and I( k) is the output current at k moment.
In this paper, the current is positive when discharging and
negative when charging.

T
1 0 0 _ZQL
_ -T/7, _ "
A= 8 eO 70T/T’ . B= Rl(l—einf‘)
e 2
R,(1-e™ ™)
SOC (k) 50CY
Xk= Ul(k) , =[m e -1 —1]
U.(k)

where A is the state transition matrix; B is the input con-
trol matrix ; X, is the state variable; and H is the Jacobian
matrix.

The extended Kalman filter is a conventional method to
deal with predictable matters. One of the fundamental sit-
uations of choosing the algorithm is the Gaussian white
noise which is produced by actual problems. Therefore,
several conditions are supposed as follows: E[ U X, ] =
0; U, = HX" is the observed value at k moment; X, = X,
- X, is the state-filtered error. X, is a known variable,
E[X,] =0, E[X,X,] =X, then E{U,X|] = E[ HX, -
HX,)(X,-X,)"] =HP, =0. P, is the state-filtered co-
variance of the EKF at k moment.

In the actual EKF filter, the Jacobian matrix obtained
at the prediction moment also has a deviation due to a
certain deviation of the predicted values' ™
H_ P, #0.

The idea of the MVEKEF is to recalculate the Jacobian
matrix using state-filtered values in the EKF method:

[m

, therefore,

H; =

aSOC

-1 - 1]
X=X,

The covariance matrix is updated using H," as the ob-
servation matrix, resulting in a more accurate modified
covariance matrix P,,, so H; P, =0.

The modified covariance extended Kalman filter
(MVEKF) algorithm is described in the following. The
OCYV characteristics are firstly studied based on numerous
charging and discharging experiments. From many kinds
of experimental data, the empirical formula of the cou-
lomb efficiency is built to indicate the battery capacity.
According to Refs. [ 19 —20 ], the second-order equiva-
lent circuit model is established to describe the battery and
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the parameters are identified online with the multiple for-
getting factor recursive least squares method. The
MVEKEF algorithm uses the imported parameters from the
online identification results to calculate the battery cells.
In the end, the SOC is compared with the real SOC ac-
cording to the algorithm. The steps of the algorithm are
as follows:

Step 1 Input off-line data( OCV, coulomb efficien-
cy)and on-line parameters (R,C)

Step 2 Calculate the prediction process

X, =A-X_ +B-I(k) +w,

Step 3  Calculate the Jacobian matrix at the prediction

moment
- 190CV 1 -1
kT [ aS0C X=X, ]
Step 4  Calculate prediction covariance and Kalman
gain

P, =A-P,_, FAT +0
K =P, - (Hki)T : [Hki ‘P, (Hki)T+RJ7]

Step 5 Obtain a filtered estimate
X,‘ =X;/[71 +K, LU(k) - U(k>]

Step 6 Recalculate the Jacobian matrix at the obser-
vation moment
Step 7 Recalculate prediction covariance and Kal-
man gain
K =P, - <Hk+ )T : [HI: P, - (Hk+ )T +R] -
Pi:[I_Kk 'HJ:J P, - [I_Kk H;:J +
K, -R-H;

Step 8 Compare data analysis and algorithm perform-
ance.

5 Experiments and Verification

In this paper, a second-order equivalent circuit model
with dual resistors is established to describe the battery.
The parameters of the cell are identified online by the
multiple forgetting factor recursive least squares method.
Based on these parameters, the MVEKF algorithm is pro-
posed to estimate the SOC. To guarantee the the accura-
cy, the MVEKF as well as the EKF algorithm is written
in Matlab. Constant current discharge, constant current
pulse discharge and the DST condition test are carried out
to verify the results.

5.1 Constant current discharge

The estimation results of the constant discharge tests are
plotted in Fig. 10 and Fig. 11 with the initial SOC values
of 0.98 and 0. 7, respectively. Fig. 10 is an estimation
result when the initial value of the SOC is known, and
Fig. 11 is an estimation result when the initial value of the
SOC is unknown. Based on the second-order RC equiva-

lent circuit model, it is indicated that both the EKF and
MVEKEF filtering algorithms can obtain accurate estima-
tion results. The SOC estimation error of the battery
model is under 2% . In this kind of discharging strategy,
the current fluctuation is not large and the system noise is
relatively small. According to the RC model, the EKF al-
gorithm and the MVEKEF algorithm produce pleasant filte-
ring effects. From Fig.11, the MVEKF algorithm is
more closer to the true value. It is faster to converge to
the true line than the EKF algorithm, so the MVEKF is
more efficient. The newly-established algorithm recalcu-
lates the covariance in the iterative process with the modi-
fied estimation and updates the process gain. The gain is
used for the next state estimation to decrease errors of the
filter. After every calculation, the result will be modified
and the MVEKF gradually behaves better. It is concluded
from the diagram that when the initial state is unknown,
the convergence speeds of the EKF algorithm and the
MVEKEF algorithm are similar, and both have a strong ro-
bustness. However, the MVEKF algorithm is more effi-
cient and reaches stability faster compared with the EKF.
---- MVEKF

— SOC-true

1 1
1500 2500

Time/s

(a)

3500

0.98

---- MVEKF
EKF
— SOC-true

0.96
0 094+
2

092} “

0.90 N 5

1 1 I I 1 s ]
100 150 200 250 300 350 400
Time/s

(b)

Fig.10 The relationship between SOC and time in SOC (¢ =
0) =0.98. (a) SOC variation with time in constant discharge tests;
(b) Partial enlargement at the beginning of the simulation

1.0 - - EKF

0.8 k. e MVEKF
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Fig. 11 The relationship between SOC and time in SOC
(t=0) =0.7

5.2 Pulse current discharge

The estimation results of pulse discharge tests are plot-
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ted in Fig. 12 and Fig. 13 with the initial SOC values of
0.98 and 0.7, respectively.

LOg ---- MVEKF
08 N~~~ e EKF
— SOC-true
0 0.6F
o)
0.4}
0.2}
0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Time/10%s

Fig.12 The relationship between SOC and time in SOC(r =
0) =0.98
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Fig.13 The relationship between SOC and time in SOC (¢ =

0) =0.7. (a) SOC variation with time in pulse discharge tests;
(b) Partial enlargement at the beginning of simulation

Fig. 12 is an estimated result when the initial value of
the SOC is known. Fig. 13 is an estimated result when the
initial value of the SOC is unknown. When the initial
SOC is uncertain, the MVEKEF algorithm converges to the
real value more quickly. There are some differences be-
tween these two working conditions. The constant pulse
experiments produce periodic current variation, which can
test the efficiency to follow the real state. From the two
diagrams, it can be seen that the MVEKF algorithm has
better filtering effects and fewer estimation errors. Every
time the current changes, it still performs stably and pres-
ents more precise results compared with the EKF algo-
rithm. The online identification of parameters ensures the
accuracy of the model, so that the expected results are
obtained.

5.3 DST experiments

The estimation results of dynamic stress tests are shown
in Fig. 14(a) and Fig. 14(b) with the initial SOC values
of 0.98 and 0.7, respectively. As is known, the working

environments of EV are complex and multiple. The DST
experiments simulate the running situations of EV. Under
DST working conditions, not only does the current vary
very frequently, but the running noise is uncontrolled.
The current is changeable all the time, which requires one
algorithm with high efficiency as well as a high level of
filtering. From the graph, the EKF algorithm results in a
larger estimation error, especially, in the charging
process. With numerous kinds of experimental data being
updated, it is easily affected by the measurement noise.
Whether in the discharging or charging process, the
MVEKEF produces fewer errors and follows the real SOC
better than the EKF. What should be noted from the dia-
gram is that several large errors occur in some moments.
This is accounted for the uncontrolled internal resistance
in abrupt current. Under most conditions, this algorithm
matches well with the real condition.
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Fig. 14 The relationship between SOC and time in DST exper-
iments. (a) SOC variation with time in SOC(¢=0) =0.98; (b) SOC
variation with time in SOC(t=0) =0.7

6 Conclusions

1) To obtain a stable and accurate SOC estimation for
lithium batteries, an on-line SOC estimation algorithm
was proposed by combining the online identification
method and MVEKF algorithm. One accurate cell model
is established based on the equivalent circuit model. The
coulomb efficiency is considered as a parameter which in-
fluences the available capacity when estimating SOC.

2) The model parameters are identified on line by the
multiple forgetting factor recursive least squares method.
At the same time, based on these parameters, the
MVEKEF algorithm is selected to estimate the SOC. The
second-order model can accurately estimate the terminal
voltage of lithium batteries in EV, but its effect is limited
to high and low voltage parts. However, considering that
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the effective range of EV is 10% to 90% of SOC, the
model can meet the requirements.

3) Experiments including constant discharging, con-
stant pulse discharging and the DST test are performed on
the lithium batteries to verify reliability and robustness.
The results indicate that the MVEKEF filtering algorithm is
superior to the EKF algorithm. In the complicated char-
ging and discharging conditions of EV, the advantage of
the MVEKEF filtering algorithm is more obvious. Under
constant current discharge and pulse current discharge
conditions, both the EKF and MVEKEF algorithms can es-
timate SOC well, but under DST conditions, the EKF has
large deviations. The error is larger and unstable, espe-
cially during charging, while the MVEKF algorithm can
stably estimate the SOC with high precision and a strong
robustness. Therefore, the new algorithm is suitable for
the complex and variable working conditions of electric
vehicles.
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