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Abstract: A size-dependent continuum-based model is
developed for the functionally graded ( FG) Timoshenko
micro-beams with viscoelastic properties, in which material
parameters vary according to the power law along its axial
direction. The size effect is incorporated by employing the
modified couple stress theory and Kelvin-Voigt viscoelastic
model, so that viscous components are included in the stress
and the deviatoric segments of the symmetric couple stress
tensors. The components of strain, curvature, stress and
couple stress are formulated by combining them with the
Timoshenko beam theory. Based on the Hamilton principle,
the governing differential equations and boundary conditions
for the micro-beam are expressed with arbitrary beam section
shape and arbitrary type of loads. The size effect, FG effect,
Poisson effect, and the influence of the beam section shape on
the mechanical behaviors of viscoelastic FG micro-beams are
investigated by taking the simply supported micro-beam
subjected to point load as an example. Results show that the
size effect on deflection, normal stress and couple stress are
obvious when the size of the micro-beam is small enough, and
the FG effects are obvious when the size of the micro-beam is
large enough. Moreover, the Poisson ratio influences the size
effect significantly and the beam section shape is also an
important factor influencing the mechanical behavior of the
micro-beam.
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unctionally graded ( FG) materials have been en-
F countered in a wide range of engineering applications
due to the fact that their properties can vary continuously
along one or two specific directions. The emerging mi-
cro-science has produced FG microstructures with various
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functions, which have the potential to be applied to micro
electro mechanical system (MEMS) devices' ™. Thus, it
is of practical significance to investigate the mechanical
behavior and deformation characteristics of FG micro-
structures since their size-dependent properties have been
observed from the experiments™ .

In recent years, the strain gradient elasticity' and
modified couple stress theories (MCST) ™ have been used
to deal with the real case problems of FG microstructures
because the traditional mechanics theory is neither ade-
quate to evaluate the accurate mechanical behaviors nor
adequate to justify the size effect of microstructures. Ac-
cordingly, much literature has covered the linear size-de-
pendent vibrations; i. e., bending and buckling of FG
micro-beams and micro-plates. For instance, Ke et al. el
studied the deflection, critical buckling load and natural
frequencies of FG micro plates based on the MCST and
Mindlin plate theory. The influences of the material
length scale parameter, gradient index and inner-to-outer
radius ratio on the mechanical behaviors were investiga-
ted. Lei et al."”" developed a size-dependent FG beam
model by using the strain gradient elasticity theory and si-
nusoidal shear deformation theory. Also, the influences
of the material length scale parameter, different material
compositions, and shear deformation on the bending and
free vibration behavior of FG micro-beams were investi-
gated. Thai et al. " investigated the static bending, buck-
ling and free vibration behaviors of both the homogeneous
core and FG skins micro-beams and the FG core and
homogeneous skins microbeams. Abazid et al. " investi-
gated the size-dependent bending response of the func-
tionally graded piezoelectric micro-plate that is subjected
to an external mechanical load, electric voltage and ele-
vated temperature.

The investigations of the mechanical properties of FG
microstructures covered not only the linear bending"*™"",
buckling!"® or vibrations'"™' but also the nonlinear char-
acteristics such as the geometric-type nonlinearities and
material nonlinearities. The geometric-type nonlinearities
of FG microstructures were widely taken into considera-

1622 . B . ..
16221 \while the material nonlinearities

tion in literature
have gradually attracted more attention.
Hamed"™' proposed a viscoelastic nonlinear theoretical

model for the functionally gradient beam-column, and

For example,

studied the redistribution of stress and strain over time and
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the creep buckling response. Ebrahimi et al. ' studied
the damped vibration characteristics of functionally graded
viscoelastic nanobeams based on the theory of non-local
strain gradient elasticity. Ghayesh'™' presented a size-de-
pendent model for FG viscoelastic micro-beams to investi-
gate the effects of parameters such as the gradient index,
excitation frequency, the amplitude of the harmonic load
and viscoelastic parameters on the nonlinear frequency of
the micro-beam.

Due to their designability and excellent mechanical
properties, functionally gradient micro-beams are more
and more widely used in micron and nanometer devices
and systems. The research on micro-beams mainly fo-
cused on the elastic micro-beam and elastic functionally
gradient micro-beam under simple load, but the research
on viscoelastic microbeams under arbitrary load still needs
to be improved. In the present work, the aim is to devel-
op a viscoelastic axially functionally graded ( VAFG)
Timoshenko micro-beams model to study the static me-
chanical behaviors of the VAFG micro-beam with an arbi-
trary type of beam section shape and arbitrary type of
The size effect, FG effect, Poisson effect, and the
influence of the beam section shape on the mechanical be-
haviors of VAFG micro-beams are expected to be investi-
gated by taking the simply supported micro-beam, which
is subject to the point load, as an example. To the best of
our knowledge,

loads.

little literature has been published to
study all of the above characteristics of a VAFG Timosh-
enko micro-beam. The VAFG Timoshenko micro-beam
model, including the governing differential equations and
boundary conditions, is established. The size effect, FG
effect, Poisson effect, and the influence of the beam sec-
tion shape on the mechanical behaviors of the VAFG mi-
cro-beam are studied based on the size-dependent formu-
lations of deflection, stress and couple stress of
the simply supported viscoelastic FG micro-beam. This

strain,

work has certain reference significance for the design of
viscoelastic functionally gradient beams and their applica-
tion in micro-devices.

1 Modelling VAFG Timoshenko Micro-Beam
1.1 MCST descriptions of basic variables

The traditional theory of elastic-plastic mechanics does
not consider the micro-structure of materials and cannot
explain the size effect of the micro-structures. Therefore,
the couple stress theory and strain gradient theory, which
include the characteristic size parameters related to the
micro-structure of the material, were developed to inves-
tigate the size effect of the micro-structures. The couple
stress theory was simplified to the modified couple stress
theory to adapt to the engineering applications, which
contains only one characteristic size parameter, namely
the length scale parameter. Therefore,
ple stress theory is used to study the size effect of the

the modified cou-

VAFG micro-beam here. The strain energy density is a
function of both strain and curvature according to the
MCST which was first introduced by Yang et al.
Therefore, the strain energy of a deformed isotropic body
occupying volume V is given as

1
v, =7J-(0'8 + my,)dV (1)

where o, is the stress tensor; £ is the strain tensor; m; is
the couple stress tensor; and Xi is the curvature tensor.
The strain and curvature tensors are formulated as

1
£. =

J ?(u +u,) (2)

Xij =

1
7(0 +6,,) (3)

where u, are the components of the displacement vector
and @, are the components of the rotation vector.

1
0, = ?ei,‘kuk._/ 4)

where e,
Based on the Kelvin-Voigt scheme, one has

is the permutation symbol.

.

o, =0; 0] (5)
where 0-2 and U'Z are the elastic stress tensor and viscous
stress tensor, respectively.

m; =mg +my (6)

where m;; and m] are the elastic couple stress tensor and
viscous couple stress tensor, respectively. In Eq. (5), the
elastic stress tensor is formulated as

Ei ] (7a)

Y (R
Ti [(1+u)(1 2M)€kk 1+u

and the viscous stress tensor is formulated as

de h
o MK e M % (7
T (2w o e o Y
where 7 is the viscosity coefficient. In Eq. (6), the elas-
tic couple stress tensor is formulated as
e lz
(8a)

m. = E .
ij 1 +/.L ij
and the viscous couple stress tensor is formulated as

n _ lz aA/ij
i ="
mo ot

(8b)
where [ is the length scale parameter; E is the elastic
modulus; 7 is the viscosity coefficient; Xi is the curvature
tensors; and y is the Poisson ratio.

In addition,
cro-beam altering along its longitudinal direction is

the material parameter of the VAFG mi-
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k

X = (xiz;f) (X, -X,) +X, (9)

where X represents the elastic modulus E, density p, or
viscosity coefficient 7; x is the axial direction coordinate;
L is the micro-beam length; X is the maximum of X; X,
is the value of X at the left end of beam and k is the pow-
er-law exponent. The variations of material parameters of
the micro-beam under different conditions are plotted in
Fig. 1.

1 1 1

0.2 0.4 0.6 0.8 1.0
x/L

(b)

Fig.1 The variations of material parameters along axial direc-

tion of the beam. (a) The curves of material parameters and dimen-
sionless coordinate with different power-law exponents( X,, =2X;); (b)
The curves of material parameters and dimensionless coordinate with dif-
ferent material parameter amplitudes (k =2.5)

According to the Timoshenko beam theory, the dis-
placement components along x-, y- and z-directions are

u, =u(x, t) —yp(x,t), u, =v(x,t), u; =0 (10)

where u is the axial displacement upon axial loads; v and
¢ are the transverse displacement and the rotation angle
upon transverse loads, respectively; and ¢ is the loading
time.

Using the relationships expressed in Egs. (2), (3),
(4) and (10), the following components of the rotation
angle, strain and curvature with the components of dis-
placement and rotation angle are derived as

1 v
02'_2(¢+ax) (11)
_u_ 9 o _Liov_
su=hi-y i e =5 (fie) (12
__ Lo v
o= (5 o) (13)

and the other components of the rotation, strain and cur-
vature are zero. In view of the expressions of the rotation
angle, strain and curvature as well as the stress-strain re-
lationship, Egs. (7a) and (7b), the following compo-
nents of elastic stress and viscous stress with the compo-
nents of displacement and rotation angle are expressed as

e _  E(-p) du _dp
"*~*‘(1+,L)(1—2,L)(ax yax)

E v (14a)
o To(1 +m(a7‘9")
0_.,] — T](l _M) ( azu _ ang)
(I +p) (1 -2w) \ axot dxot (14b)
o7 :¢(&_6f¢)
»72(1 +p) \ axar ot

and the other components of elastic stress and viscous
stress are zero. Similarly, using the expression of curva-
ture, Eq. (13), and the couple stress, Eqs. (8a) and
(8b), the following components of the elastic couple
stress and viscous couple stress with the components of
displacement and rotation angle are expressed as

e __-lE (3¢ v
m*f‘4(1+ﬂ)(ax+ax2) (152)
_2 a2 a3v
" T 41+ ) ( axar axzaz) (155)

and the other components of the elastic couple stress and
viscous couple stress are zero.

1.2 Governing differential equations and boundary

conditions

The governing differential equations and boundary con-
ditions can be derived by Hamilton’s principle, which
reads as

SJ(Ek—VS—Un+Wp)dt=O (16)
0
where E, is the kinetic energy; V, is the elastic potential
energy; U, is the viscous energy and W, is the work done
by the external force. The variation form of the kinetic
energy is

5 foEkdt - f(plk,ﬁu) v - f fo(pi,iiﬁui)dtdv (17
\4 \4

where u,; and i, are the first and second derivatives of dis-
placement with respect to time, respectively; and u, re-
present the displacements in the directions of x, y and z,
as shown in Eq. (10).

The variation form of the elastic potential energy and
the viscous energy can be written as

5[ V.dr = [ [ (oipe, + midy)dvar  (18)
0 0Jv )

]

— n n
8| U,dr = [ [ (o70e, + migypavdr (o,
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The variation form of the work done by the external
force is

' t L
5fow,,dr = LJO(fxéu +£,6v + m.50.) dxdr +

x=L

f (Fou+F8v+Mdp) | di
0

x=0

(20)

where f, and f, are the components of the body force; m,
is the component of the body couple; F,, F, and M are
the applied axial force, and bending
moment at the two ends of the micro-beam, respectively.

Inserting Egs. (17), (18), (19) and (20) into the ex-
pression of Hamilton’s principle (Eq. (16)), the gover-
ning differential equations of the Timoshenko micro-beam
are obtained as

transverse fOI'CC,

o u aJ’O'“dA aJ-O'

- dA — +f =0 21
P azz ox ox 1 (21a)
d J' o ydA 9 f m; dA d f o’ ydA
S (oA o -
ox i 2 ox ox
afm;;dA |
n 1 A S =
Lcr.wdA MR ) +5m =0 (21b)
d| o dA azfmjdA 8fo'" dA
h ” +L A
9x 2 ax’
d° fm" dA
7) —f =0 (21¢)
ox®

and their boundary conditions at the two ends of the mi-
cro-beam can be expressed as

[otaa+ [onaa —F, =0 or u=0 (220)
A A

(Lo;ydA + %Lm;dA) + (LafxydA +

%Lml’sz) +M=0 or 8 =0 (22b)

dA 7 dA
[foran ot 2 foran e £ 1)
F, =0 or 6v=0 (22¢)

%f “ dA +—fm’7dA_o or 5(%)=0 (22d)
A

where
dA
R 7.\ ¢ ) al_aﬁfy
L””dA T U+ -20 ox ax a | (3
E(1 —pu) ou 0@ [ 2
f"”y (1+M)(1—2,L)( fdA‘yaxfydA)
(23b)
e _ _EA v
J:‘awdA T +;L)(ax -¢) (23¢)

Jrnyaa = ﬁ%ﬂ—zﬁ(:ﬂy - elraa)
(23e)

[[onan ﬁ(fx; W @0
o =V ie) @
f’” _4(_ll+2)(jx§t+%) (23

2 Solutions of VAFG Timoshenko Micro-Beam

The static bending problems of a simply supported
VAFG micro-beam with the geometry and cross-sectional
shape shown in Fig. 2 are solved by the above governing
differential equations for a VAFG micro-beam. The re-
sults of the VAFG Timoshenko micro-beam model are the
same as the traditional results of the VAFG Timoshenko
beam when the terms of the couple stress are ignored in
the VAFG Timoshenko micro-beam model.
the Timoshenko beam theory and Bernoulli-Euler beam
theory, the beam can be solved more accurately with a
smaller ratio of the feature size to the beam length using
the Timoshenko beam theory which considers the shear
deformation of the beam. Based on the theory of solid
mechanics, the Timoshenko beam theory has more advan-

According to

tage for the beam whose ratio of the feature size to beam
length is below 5. Therefore, the proposed model will be
used to study the mechanical behaviors of the VAFG mi-
cro-beam with the ratio of the feature size to the beam
length below 5.

q?i - :

x N
"
y

Fig.2 Schematic representation of an axially functionally gra-

H>

ded viscoelastic micro-beam

2.1 Formula of deflection and rotation angel

In view of Egs. (22a) to (22d), the boundary condi-
tions of the VAFG micro-beam in Fig.2 can be identified
as
x=0 - a‘x2

_d¢

[
’ o 0x

x=L ax x=

x=L
(24)
v ‘x:O =V ‘X:L :O
The displacement components and rotation angle com-
ponents at the mid-plane (y = 0) of the micro-beam
shown in Fig. 2 can be expanded in a Fourier series as

= ;:Uncos(nLﬂ)(l -

—r/A)

(25)
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(26)
(27)

where U,, V, and V¥, are the Fourier coefficients to be de-

termined and

A=

E (28)

The expressions of the displacement and rotation angle
in Egs. (25) to (27) satisfy the boundary conditions in
Eq. (24) for any U,, V, and ¥,. Similarly, the applied
load can also be expanded in the Fourier series as

q = ansin(%) (29)
where
0. = ¢ fasin{ "o

is the Fourier coefficient to be determined. Then, taking
a point load as an example, the point load is expressed as

(30)

q(x) =P5(x —xy) (3D

where 5(+) is the Dirac delta function; P is the magnitude
of the point load; x, is the application position of the
point load. Substituting Eq. (31) into Eq. (30), the Fou-
rier coefficient of the point load can be written as

0, (32)

—Esin e
= ()

Inserting the expressions of the displacement and rota-
tion angle (Egs. (25), (26) and (27)) into the gover-
ning differential equations ( Eqgs. (2la), (21b) and
(21c)), the system of algebraic equations can be ob-

tained as
EIIZCZ Un 0
EIIZCJ{V,,}: {Qn} (33)
ElIzCS l//n 0

E |, 0
[ 0 E I c,
-Elc, -Elc,
where E| is the elastic modulus at the left end of the mi-

cro-beam. The moment of inertia of the cross section is
I = f y2dA (34)
A

and the coefficients determined by the micro-beam size
and material parameters are

_peft/)‘ _ (1 _:“) nm 2
“ CPEN P+ (1 —2,L)( L) ¢ (598
_ d-w ()’
Cz_r§(1+,u)(1—2,u)y( L) G (350)

P 4

%= _(2r§(11+,u,)(an)2 T8 (1 +M)(nfﬂ) )G (35¢)

lZ 3

(”T“) )G (35d)

7 (zriulw)n:;fﬂrf(l ) :
(awimal T) e il 7))
(35¢)

where y is the centroid of the micro-beam section. The
viscoelastic modulus is defined as

o-([E )

xL - x"\* E, e
(o) (1 -a) a5 o
The radius of inertia for the neutral axis is
r= JIJA (37)

The system of the algebraic equations (Eq. (33)) can
be solved as

cc
(ﬁn — an 1 24 (38)
E\I(csc, +c,c, +c cyc5)
-0 c,c
] — > Qn 22 4 (39)
EI (cyc, + ¢ c, +c c5¢5)
: Qn(c3c§ +¢,05C5) (40)

= 2 2
E\I ci(cyc, + ¢ cy + ¢ cy¢5)

Inserting Eqs. (38) to (40) into the displacement and
rotation angle components expressions ( Eqgs. (25) to
(27)), the displacement and rotation angle components
in the normalized form are obtained as

_ EIL
U=—>u =
PL
v - 2sin( m-m")czc4
nmTx —t/A
cos( —|(1 —e
,ZT L'(c,c3 + ¢,c; + ¢ c5¢5) ( L )( )
(41)
_ EI
V=—=v =
PL
v ZSin(mrxP)(c}c; + ¢,65C5)
. nx —t/A
sin| —=|(1 —e¢
UZT L'c,(cic; + ¢,¢; + ¢ cy¢5) ( L )( )
(42)
. _EI
YT P
v 2sin( mzx")clq
z . - . \,OS(anx)(l _ e—x/,\)
=t L'(c,¢;, +c,c; +c cy¢5) L
(43)

where u, v and ¢ are the dimensionless axial displace-
ment, dimensionless deflection and dimensionless rotation
angle, respectively.
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2.2 Formula of strain and curvature

Inserting Eqs. (38) to (40) into the strain expression
Eq. (12), the strain components in the normalized form
are obtained as

2 presin (1T ¥
N narsin c,c,
_ E\l 3 ( L N
&, = &, =
" PLy, ™ n=1 ymaxL3(C3C§ + Clczzt +¢,0,¢5)
. nXx,
2yn1-rsm( 7 P)clc4

) ) sin(%)(l -

(44)

3 2 2
ymaxL (CSCZ + clc4 + c1c3c5

ITTX,

m'rsin( )(c3c§ + c,c5¢5)

E I l
_ . _ B
€y = PL Ey = z L3 ( 2 + 2 + )
Y max i Ay Lc(c 6, + ¢y + ¢y
. nTX,
Sin CCy
L

2 2 2
Yo L (€56, +€,C4 + €050

eft//\)

oo -
(45)

where the other components of strain are zero.
Substituting Eqs. (38) to (40) into the curvature ex-
pression ( Eq. (13)), the strain components in the nor-

N L
4E]IZ N L 1-4

X = Xez = z 3 2 2 +
v PLy, " =t \ VL (e3¢5 + 6y + ¢ic5¢5)

malized form are obtained as

2nwsin(

. [ nmX,
2(nq-r)251n( T P)(c3c§ +c,05C5)
. n'n'x) -1/
sin| —= (1 —e™")
ymaxL4c3(63c§ +clci +c,c5¢5) ( L
(46)
where the other components are zero. & ., € . and X -

are the dimensionless axial strain, dimensionless tangen-
tial strain and dimensionless curvature, respectively.

2.3 Formula of stress and couple stress

Inserting Eqgs. (38) to (40) into the stress expression
(Egs. (14a), (14b) and (5)), the strain components in
the normalized form are obtained as

- _ Iz _ ( 1 - Iu’) .
a-xx - a-,xx -

: PLy,, (1 +w (1 -2u)

N 25in( nﬂx")czcmw + Zynq-rsin( nq'rxp)0104

L . [ nmx
3 5 5 sm( —)G
— VoL (€36, + €/C) + €, C5¢5) L
(47)

where ¢ is the dimensionless normal stress.

Inserting Eqs. (38) to (40) into the couple stress ex-
pression (Egs. (15a), (15b) and (6)), the couple stress
components in the normalized form are obtained as

- mlez
mxz = 2 =
PLYy .
v 2m-rLsin( X ) c e+ 2n2’n'zsin( nﬂx")(qci + ¢,¢4¢5)
2 2 4 2 2
=l 41 +w)y,L'(csc, + ¢, +cc5¢5)
sm(%)lzG (48)

where m _ is the dimensionless couple stress.
3 Numerical Calculation and Discussion

The numerical simulation for the deflection, rotation,
normal stress and couple stress of the VAFG Timoshenko
micro-beam is conducted as below by using the series so-
lutions in Eqgs. (42), (43), (47) and (48). The series so-
lutions can achieve a convergence solution with terms less
than 10, and we numerically simulate using 30 terms for
ensuring the accuracy since the calculation method will
not require too much time.

3.1 Size effects

Fig.3(a) plots the curves of the dimensionless deflec-
tion vs. dimensionless axial coordinate with different di-
mensionless section diameters. It is observed that each
curve of dimensionless deflection forms a saddle shape
whose altitude increases with the increase in the dimen-
sionless section diameter. This illustrates that the bending

stiffness declines with the increase in the dimensionless

7
6k
5k
7 4r dll:
9 —a—]
=3k ——3
—a—35
2F ——7
1H
O 1 1 1 L Y
0.2 0.4 0.6 0.8 1.0
x/L
(a)
1.2
1.0+
0.8}
o 0.6
=
——0.2
0.2+ ——0.3
——04
0 —+— (.4(traditional results)
0 5 10 15 20
d/l
(b)

Fig.3 Curves related to the size effect on stiffness. (a) Varia-
tion of dimensionless deflection with dimensionless axial coordinate (v =
0.38,k=2.5); (b) Variation of the maximum dimensionless deflection
with dimensionless diameter (x =L/2,k=2.5)
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section diameter of the micro-beam, which has an obvi-
ous size effect on the bending stiffness of the micro
beam. The curves are flat when the deflection reaches the
maximum value, which is due to the reasonable distribu-
tion of material stiffness.

Fig. 3(b) presents the variation of maximum dimen-
sionless deflection with the dimensionless section diameter
under the conditions of different Poisson ratios. It is clear
that the maximum dimensionless deflection increases rap-
idly with the increase in the dimensionless section diame-
ter when the dimensionless section diameter is below 5
and becomes stable when the dimensionless height is
above 15. The traditional dimensionless deflection does
not vary with the increase in the beam size and the size-
dependent results gradually become the same as the tradi-
tional results when the beam size is large enough. This
means that the size effect on bending stiffness is obvious
when the dimensionless section diameter is below 5, but
it can be ignored when the dimensionless section diameter
is above 15. Furthermore, the initial slope of curves in-
which
means that the smaller the value of Poisson ratio is, the

creases with the decrease in the Poisson ratio,

more obvious the size effect on bending stiffness is.

Fig. 4 (a) presents the variation of the dimensionless
normal stress with the dimensionless section diameter un-
der different Poisson ratios. It is observed that the dimen-
sionless normal stress increases rapidly when the dimen-
sionless diameter is below 5 and tends to be a stable value
when the dimensionless diameter is above 15. The tradi-
tional results do not vary with the variation of the dimen-
sionless diameter, and the size-dependent results gradual-
ly tend to the traditional results when the dimensionless
diameter is large enough. This means that the size effect
on normal stress is obvious when the dimensionless sec-
tion diameter is below 5, while it can be ignored when
the dimensionless section diameter is above 15. Further-
more, it is clear that the initial slope of the curve of di-
mensionless normal stress increases with the increase in
the Poisson ratio, which means that the size effect on the
normal stress of the micro-beam is more obvious when the
Poisson ratio increases. Fig. 4 (b) presents the variation
of the dimensionless couple stress with the dimensionless
section diameter under the conditions of different Poisson
ratios. It is found that the dimensionless couple stress de-
creases rapidly when the dimensionless diameter is below
5 and tends to O when the dimensionless diameter is above
15. This indicates that the size effect of couple stress is
clear when the dimensionless section diameter is below 5,
while it can be ignored when the dimensionless section di-
ameter is above 15. The phenomenon indicates that the
influence of the couple stress of the micro-beam decreases
with the increase in the beam size so that the mechanical
behavior of the micro-beam inclines to the traditional re-
sults when the size is large enough. In addition, it is

clear that the absolute value of the initial slope of the
curve increases with the increase in Poisson’s ratio, which
means that the size effect on couple stress of the micro-
beam is more obvious when the Poisson ratio increases.

0.25-
0.20

0.15

0 5 10 15 20
dll

(a)

0.06
0.05
0.04

i< 0.03
0.02

0.01

0 5 10 15 20
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Fig.4 Curves related to the size effect on normal stress and
couple stress(x =L/2, k=2.5,y=d/2). (a) Variation of dimen-
sionless normal stress with a dimensionless diameter; (b) Variation of di-
mensionless couple stress with a dimensionless diameter

Fig.5(a) plots the curves of the maximum dimension-
less deflection vs. the loading time with respect to differ-
ent values of the Poisson ratio, which aims to study the
size effect on the viscous properties of the VAFG micro-
beam. It is observed that the dimensionless deflection in-
creases with the increase in the loading time and gradually
tends to become a stable value, which is due to the vis-
cous property of the micro-beam. Moreover, the stable
value decreases with the increase in the Poisson ratio and
the initial slope of the curves increase with its decrease.
This means that the viscous property of the micro-beam is
more obvious when the value of the Poisson ratio be-
comes smaller.

Fig.5(b) plots the curves of the maximum dimension-
less deflection vs. the loading time with respect to differ-
ent values of the dimensionless section diameter. The di-
mensionless deflection increases with the increase in load-
ing time and gradually tends to be a stable value due to
the creep property of the VAFG micro-beam. Also, the
stable value increases with the increase in the dimension-
less section diameter, which illustrates that the stiffness is
better with a smaller beam size. Furthermore, the initial
slope of the curves increases with the increase in the di-
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which indicates that the
viscous property of the micro-beam is more obvious when
the feature size of the micro-beam becomes larger.

mensionless section diameter,
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Fig.5 Curves related to the size effect on viscosity. (a) Varia-
tion of the maximum dimensionless deflection with loading time (x =L/
2, k=2.5,d/l=7); (b) Variation of the maximum dimensionless de-
flection with loading time (x =L/2, k=2.5,v=0.38)

3.2 Functionally graded effects

Fig. 6(a) plots the curves of the dimensionless deflec-
tion vs. the dimensionless axial coordinate with different
values of the power-law exponent. It is clear that the peak
of the curve is flatter when the power-law exponent be-
comes larger, while the maximal value of deflection is
constant. This means that the stiffness distribution of the
micro-beam can be adjusted by changing the value of the
power-law exponent of material parameter expression.
Fig. 6(b) plots the curves of the dimensionless deflection
vs. the dimensionless axial coordinate with different vari-
ation amplitudes of material parameters. It is clear that
the curve is flatter when the variation amplitude of the
material parameter becomes larger, and the peak value of
the dimensionless deflection decreases with the increase in
the variation amplitude of the material parameter. This
indicates that the larger the variation amplitude of the ma-
terial parameter is, the smaller the deflection is.

Fig. 7(a) plots the curves of the dimensionless deflec-
tion vs. the dimensionless diameter with different power-
law exponents. The maximum dimensionless deflection
increases with the increase in the value of the power-law
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Fig. 6 Curves related to the FG effect of deflection. (a) Curves
of the dimensionless deflection vs. the dimensionless axial coordinate
under the conditions of different power-law exponents (X,,/X, =2, v =
0.38,d/l=7); (b) Curves of dimensionless deflection vs. dimension-
less axial coordinate under the conditions of different variation ampli-
tudes of material parameter (k=0.5,d/l=7,v =0.38)
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Fig.7 Curves related to the FG effect of deflection. (a) Curves
of the maximum dimensionless deflection vs. the dimensionless diameter
under different power-law exponents (x/L =0.25, X, /X, =2, v =
0.38); (b) Curves of the maximum dimensionless deflection vs. the di-
mensionless diameter under different variation amplitudes of material pa-
rameters (x/L=0.5,k=1.5,v=0.38)
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exponent, and the increasing amplitude is insignificant
when the dimensionless diameter is below 5. Also, the
increasing amplitude of the maximum dimensionless de-
flection with the increase in the value of power-law expo-
nent becomes obvious when the dimensionless diameter is
above 10. This means that the FG effect of the power-law
exponent is obvious when the dimensionless diameter is
above 10, but it can be ignored when the dimensionless
diameter is below 5.

Fig. 7(b) plots the curves of the maximum dimension-
less deflection vs. the dimensionless diameter with differ-
ent variation amplitudes of the material parameter. It is
clear that the maximum dimensionless deflection increases
with the increase in the value of variation amplitude of the
material parameter, and the amplitude increases clearly
when the dimensionless diameter is above 5. This means
that the FG effect of the variation amplitude of the materi-
al parameter becomes more obvious with a large beam
feature size.

3.3 Poisson effects

Fig.8(a) plots the curves of the dimensionless deflec-
tion vs. the Poisson ratio with different dimensionless di-
ameters. It is clear that the maximum dimensionless de-
flection increases with the increase in the dimensionless
diameter. The absolute value of the slope at the end point
of the curve increases with the increase in the dimension-
less diameter, which indicates that the larger the dimen-
sionless diameter, the more obvious the Poisson effect of
deflection. Therefore, the variation amplitude of the stiff-
ness along with the change of the Poisson ratio is more
slight with a smaller feature size. Fig. 8 (b) plots the
curves of the dimensionless deflection vs. the Poisson ra-
tio with different loading times. It is clear that the maxi-
mum dimensionless deflection increases with the increase
in loading time. The absolute value of the slope at the
end point of the curve increases with the increase in load-
ing time, which indicates that the longer the loading
time, the more obvious the Poisson effect of deflection.

3.4 Influences of inertia radius

Fig. 9 plots the variation of the dimensionless deflection
of the beam with the dimensionless inertia radius under
It is clear that the di-
mensionless deflection increases rapidly when the dimen-

different dimensionless diameters.

sionless inertia radius is below 1, which means that the
stiffness of the beam decreases obviously with the increase
in the inertia radius when r,/I <1. Also, Fig.9(a) shows
that the influence of the inertia radius is more obvious with
smaller dimensionless section radii, which indicates that
the influence of the beam section shape on the stiffness of
the beam is more obvious with a smaller beam size.

Fig. 10(a) plots the variation of the dimensionless
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Fig.8 Curves related to the Poisson effect of deflection. (a)
The curves of maximum dimensionless deflection vs. the Poisson ratio
with different dimensionless diameters (k =2.5, X, /X, =2, t=400);
(b) Curves of the maximum dimensionless deflection vs. the Poisson ra-
tio with different loading times (k =2.5, X, /X, =2,d/1=T7)

(b)

Fig.9 Curves related to the influences of inertia radius (x = L/

2, k=2.5). (a) Variation of the dimensionless deflection with the di-
mensionless inertia radius; (b) Variation of dimensionless rotation angle
with the dimensionless inertia radius
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normal stress with the dimensionless inertia radius under
It is observed that the
dimensionless normal stress increases rapidly when the di-
mensionless inertia radius is below 1 and then gradually
tends to a stable value, and the influence of the dimen-
sionless diameter on the dimensionless normal stress is
small. This means that the normal stress is influenced ob-

different dimensionless diameters.

viously by the micro-beam section shape when r /I <1,
and the influence of the micro-beam section shape can be
ignored when r /I >2. Fig. 10(b) presents the variation
of the dimensionless couple stress with the dimensionless
inertia radius under different dimensionless diameters. It
is observed that the dimensionless couple stress increases
rapidly when the dimensionless inertia radius is below 1
and the curve becomes more flat with the increase in the
dimensionless diameter. This means that the couple stress
is influenced obviously by the micro-beam section shape
when r /I <1, and the larger the micro-beam size is , the
smaller the influence of the micro-beam section shape on
the couple stress is.
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Fig.10 Curves related to the size effect on normal stress and
couple stress(x =L/2, k=2.5,y=d/2). (a) Variation of dimen-
sionless normal stress with dimensionless inertia radius ; (b) Variation of
dimensionless couple stress with dimensionless inertia radius

4 Conclusions

1) The size effect on the deflection, normal stress and
couple stress are obvious when d/I <5, and the size
effect can be ignored when d/I >15. Also, the smaller

the value of the Poisson ratio, the more obvious the size
effect on the deflection, while the larger the value of the
Poisson ratio is, the more obvious the size effect on the
normal stress and couple stress is.

2) The influences of FG parameters are related to the
deformation of the VAFG Timoshenko micro-beam. The
FG effects caused by both the power-law exponent and
the variation amplitude of material parameters are obvious
and tend to be stable when the dimensionless diameter is
below 5.

3) The larger the dimensionless diameters and the load-
ing time, the more obvious the Poisson effect of the de-
flection.

4) The deflection, rotation angle, normal stress and
couple stress increase rapidly with the increase in the di-
mensionless inertial radius when the dimensionless inertial
radius is below 1. The rotation angle and normal stress tend
to be a stable value when the dimensionless inertial radius is
above 2 and the deflection and couple stress increase slower
when the dimensionless inertial radius is above 2.
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