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Abstract: In order to solve the poor generalization ability of
the back-propagation ( BP) neural network in the model
updating hybrid test, a novel method called the AdaBoost
regression tree algorithm is introduced into the model updating
procedure in hybrid tests. During the learning phase, the
regression tree is selected as a weak regression model to be
trained, and then multiple trained weak regression models are
integrated into a strong regression model. Finally, the training
results are generated through voting by all the selected
regression models. A 2-DOF nonlinear
numerically simulated by utilizing the online AdaBoost
regression tree algorithm and the BP neural network algorithm

structure was

as a contrast. The results show that the prediction accuracy of
the online AdaBoost regression algorithm is 48. 3% higher
than that of the BP neural network algorithm, which verifies
that the online AdaBoost regression tree algorithm has better
generalization ability compared to the BP neural network
algorithm. Furthermore, it can effectively eliminate the
influence of weight initialization and improve the prediction
accuracy of the restoring force in hybrid tests.
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prediction;

he hybrid test, first proposed by Hakuno in 1969, is
T an effective test technique which combines a physi-
cal loading experiment and numerical simulation to evalu-
ate seismic responses of large complex civil structures. At
present, it has been widely focused on by researchers,
and certain research results have been achieved such as a
numerical integration algorithm'' ™', real time hybrid
test”! loading control™, time delay compensation[s] s
boundary condition'”, remote network collaborative hy-

8
t' ], etc.

brid test”', and an accurate numerical elemen
The hybrid test has been widely used in the test of large

and complex civil structures” "', However, when the hy-
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brid test is conducted on large complex structures, it is
impossible to perform a physical loading test on all criti-
cal parts. Thus, some key components or parts of the
structure are modeled and analyzed in the numerical sub-
structure. Due to model errors, the inaccuracy of the nu-
merical simulation will increase when the entire structure
enters nonlinearity. The two main reasons for model er-
rors are: 1) The assumed numerical model is too simple
to describe the nonlinear behaviors of the real structure or
component; 2) The uncertainty of model parameters.
When the proportion of the assumed numerical models
with model errors become larger, the accuracy of hybrid
tests will be reduced. Therefore, how to improve the mod-
el accuracy and restore the force prediction accuracy of the
numerical substructure has become an urgent problem.

Model updating is an effective method to improve the
accuracy of hybrid tests, which has been widely used in
finite element analysis over the past two decades. The
theory of model updating can be specified as follows: In
the process of hybrid tests, the data of the experimental
substructures can be used to recognize and update the nu-
merical model of numerical substructures with similar
hysteresis behaviors. Therefore, the model errors of the
numerical substructure are reduced, and the ability to pre-
dict the structural actual behaviors is improved.

1 Principle of Model Updating in Hybrid Tests

As shown in Fig. 1, the model updating hybrid test
consists of four parts, namely the numerical integration
module, the experimental loading module, the assumed
restoring force model module and the model updating
module. It can be seen from the figure that the restoring
force of the experimental substructure R, ,,, can be ob-
tained by inputting the displacement command d ., into
the loading system module. Unlike the traditional hybrid
test without model updating, the restoring force of the nu-
merical substructure R}, , ., can only be obtained by input-
ting the displacement d,°,, into the selected restoring
force model module. In addition, the restoring force of
the numerical substructure R}, ,,, can be obtained by input-
ting the displacement dy 5., into the model updating mod-
ule in the model updating hybrid test. In the model upda-
ting module, the data from the experimental substructure is
applied to identify and update the numerical model of the
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Fig.1 Procedure of model updating hybrid test

numerical substructures with similar hysteresis behaviors.
Many computational methods are applied to model upda-
ting to achieve better accuracy, such as parameter identi-
B4 intelligent algorithms!™™®

Among all the parameter identification methods, the
initial selected numerical model is usually simplified from
the experimental results, which means that the limited
number of parameters cannot fully describe the real non-
linear behaviors. In other words, the model gap between
the simplified model and the real model exists from the
early beginning of the hybrid tests. In contrast, the intel-
ligent algorithms can acquire more hysteresis information
that does not exist in the initial assumed numerical mod-
el, and can directly fit the constitutive model of the nu-
merical substructure. Therefore, the intelligent algorithms
address the shortcomings of the parameter identification
methods. the BP
neural network has a poor generalization ability and it is
relatively sensitive to initial weight, which will influence

fication methods etc.

However, in intelligent algorithms,

the accuracy of the constitutive model.

In order to solve the problem of poor generalization
ability and sensitivity to the initial weight of the BP neu-
ral network, an online AdaBoost regression tree algorithm
is proposed and adopted. First, some weak regressors are
selected for training; then the multiple weak regressors
are integrated into a strong regressor; and finally the
training results are generated. In order to verify the effec-
tiveness of the proposed model updating method, a nu-
merical simulation of a 2-DOF nonlinear structure is car-
ried out, and the results are compared with the BP neural
network algorithm.

2 Principle of Regression Tree Algorithm

The regression tree is a type of decision tree for regres-
sion. A decision tree is a tree-like model defined in the

Fig.2 The regression tree model diagram

feature space, as shown in Fig.2. The regression tree al-
gorithm proposed by Breiman et al."'” mainly includes
two steps: regression tree generation and regression tree
pruning.

2.1 Regression tree generation

The regression tree model consists of nodes and direct-
ed edges as shown in Fig. 2. The nodes include internal
nodes and leaf nodes. The circles and boxes in Fig. 2 re-
present internal nodes and leaf nodes, respectively. The
internal nodes represent the characteristics or attributes of
the samples, and the leaf nodes represent the prediction
value of the samples. The least squares algorithm is used
to generate the regression tree. The specific process is as
follows:

It is supposed that x and y denote the input and output
variables, respectively, and the training data set is D =
{(x,,¥), (x,,¥,), ..., (x4, yy) }. The input space is di-
vided into M regions, namely, R,,R,,....,R ,...,R, and
each region R, has a fixed output value c¢,,. Thus, the re-
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gression tree model can be expressed as
M
f = Ye,l(xeR,) (1)
m=1

where the optimal value of ¢, is set to be ¢,,, which is the
average value of output value y, in region R, .

¢, =ave(y, | x,eR,) (2)

The heuristic algorithm is used to segment the input
space. The j-th variable x" and the corresponding value s
are selected as the split variable and split point, respec-
tively. The next two regions are defined as

R(j.s) = {x [ 27 s} R,(Js) = {x [x7 >} (3)
Then, the best split variable x'” and the split point s are
searched for by solving the minimum value:

rr%j\n[min Zu(yi —cl)z + min Z (y, —¢,)?]

S xeR s 2 xeRyjs)
(4)
The best split points in R,(j, s) and R,(j, s) are as fol-
lows:

¢, =ave(y, \xieRl(j,s)), ¢, =ave(y, \x,.eRz(j,s))
(5)

After all the input variables (j, s) are traversed, the op-
timal partition variable x" is established and the input
space is divided into two regions one by one. Next, the
above segmentation process is repeated for each region
until the stop condition is reached. Thus, a regression
tree is generated.

2.2 Regression tree pruning

In order to prevent the over fitting of the above-men-
tioned regression tree model, it is necessary to prune the
generated regression tree to ensure its generalization abili-
ty. The pruning algorithm performs recursive pruning ac-
cording to the principle of loss function minimizing, in-
cluding the following two steps:

From the bottom of the regression tree T, to the top,
pruning is continued until the procedure reaches the root
nodes. Then, a pruned subtree sequence {7, T,, ..., T,}
is formed and the loss function of the subtrees during
pruning is calculated as follows:

C(T) =C(T) +a|T] (6)

where T is an arbitrary subtree; C(T) is the prediction er-
ror of the training data; | T'| is the number of leaf nodes
in a subtree; and the parameter a( «=0) measures the fit-
ting degree of the training samples and the complexity of
the model. C (T) indicates the entire loss of the subtree
T when the parameter is «. The pruning process is repeat-
ed till the root node.

Based on the validation data set, the cross validation

method is used to test the subtree sequence obtained from
the above process. Also, the optimal subtree T, is obtained
based on the independent verification data set. The deci-
sion tree with the smallest square error in the subtree se-
quence {7,,T,,...,T,} is selected as the optimal one. The
pruning diagram of the regression tree is illustrated in Fig.3

Tree T’

Subtree 7,

Subtree 7-T7,

Fig.3 The regression tree pruning diagram

3 Implementation of online AdaBoost regression
tree algorithm

For the constitutive model recognition of the nonlinear
components, large generalization errors cannot be avoided
when only one neural network model is adopted for train-
ing. The training results of multiple neural network mod-
els are more accurate than those of the single neural net-
work model, which is called the boosting method. The
representative boosting method is the AdaBoost algorithm
proposed by Freund and Schapire'® in 1995. Firstly, the
regression tree is selected for training and the weight of
each training sample is adjusted in each round of training.
Then, these regression tree models are integrated linearly
to vote out the final results. The diagram of the Adaboost
regression tree algorithm is shown in Fig. 4.

Fig.4 The diagram of Adaboost regression tree algorithm

In hybrid tests, the samples of the experimental sub-
structure in the current step are input into the Adaboost
regression tree model for training, and a strong regressor
is obtained. Then, after inputting the displacement of the
numerical substructure in the current step into the trained
strong regressor, the corresponding restoring force can be
directly predicted. The procedure based on the proposed
method is illustrated in Fig. 5.

3.1 Collecting training samples

After establishing the equation of motion of the entire
structure, the numerical integration scheme is applied to
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Fig.5 Procedure based on the proposed method in hybrid test

solve the equation to obtain the displacements of the ex-
perimental substructure and numerical substructure in the
i-th step, which are defined as dj, and dy,, respectively.
Then, the displacement of experimental substructure d, is
mechanically loaded onto the experimental substructure to
obtain the restoring force of experimental substructure Fy,.
Then, the displacement d;, and the restoring force Fy of
the experimental substructure in the i-th step are extracted
as the training samples to train the AdaBoost regression
tree model online.

3.2 Weight initialization of training samples

In the first loading step, the initial weight of training
samples is set to be

1 1 1 1 1
D, :{w“,wlz...wlj...,ww} (7)

where D represents the initial weight vector of the train-
ing samples in the first loading step; w, ; denotes the
weight of the j-th sample at the first iteration in the first
loading step. wy, = 1/N, j =1,2, ..., N, where N is the
number of training samples.

In the i-th step, the initial weight vector of the training
samples is set to be the weight vector trained after M iter-
ations in the (i —1)-th step:

D, =D, (8)

where M denotes the number of iterations and M is set to
be 20 in this paper. D) is the initial weight vector of the
training samples in the i-th step. D), ' is the weight vector
of the training samples trained after M iterations in the i-
th step.

3.3 Training AdaBoost regression tree model

In each loading step in the model updating hybrid test,
M iterations are executed to train the AdaBoost regression
tree model. In the m-th iteration (m =1, 2, ..., m, ...,
M), the initial weight vector of training samples at the m-
th iteration are set as the trained weight vector in the (m
—1)-th iteration. In the i-th loading step, the regression
tree in the m-th iteration is trained to obtain the regressor

V(%)

The updating criterion of the training sample weight is:
If the regression error of a certain sample point is small,
the weight of this sample will be reduced in the next itera-
tion; on the contrary, if the regression error of a certain
sample point is large, the weight of this sample will be
increased in the next iteration. Following the learning rule
of the AdaBoost regression tree algorithm, the weight of
unpredictable samples is increased and the prediction ac-
curacy of the restoring force is finally improved. The
training process mainly includes the following steps.

1) Calculate the regression error of yi,,(x) at the m-th
iteration:

€n =Py, (x) #y) = 3, wl(y,(x) #y)  (9)

2) Calculate the weight coefficient of y! (x):

— (10)

i

al = Llog

m=" 3

When ¢, <1/2 and a,, =0, o, increases with e/, decrea-

sing, it means that, in the final prediction, the decisive

role of the regression tree model becomes larger while the
regression error becomes smaller.

3) The weight of the training samples is updated in

each iteration. The update rules are

i i i

Dl =W Wt o e Wh ) (11)
Wm+]j = Z]i”jexp( _aityjyin('xj)) j=],2, ceey N
(12)
Z, = X wyexp( = a,yy,(x)) (13)
=1

where Z, is the normalization factor, which makes the
sum of the weight coefficients 1.0.

3.4 Combining regression tree models

The M regression tree models are linearly integrated in-
to a strong regressor Y'(x) in the i-th step:

Y'(x) = Y a,,(x

m=1

(14)

The diagram of integrating regression tree models is
shown in Fig. 6.

3.5 Prediction of restoring force in hybrid tests

The restoring force of the numerical substructure in the
i-th step can be predicted by inputting the displacement
into the integrated regressor obtained above. Then, the
restoring force of the experimental substructure and nu-
merical substructure are fed back to the equation of mo-
tion. The five steps are repeated until the ground motion
input is completed.
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Fig.6 The diagram of integrating regression tree models

4 Numerical Validation

4.1 Model description
The online AdaBoost regression tree algorithm is evalu-
ated on a 2-DOF nonlinear structure as shown in Fig. 7. It

is assumed that there are no complex incomplete bounda-
ries and no obvious different loading histories.

Experimental substructure Numerical substructure

dli dN
,—> ,—>
Fy A
T oM, [ M,
G (@ENG) G OO
xg
e VAVAVE

Fig.7 A 2-DOF nonlinear structure model

The masses of the experimental substructure and nu-
merical substructure are M, = M, =2 500 t; the initial
stiffnesses are K, = K, =394 785 kN/m; and the damping
coefficients are C, = C, =5 026.5 kN/(m - s~'). The
ground motion recorded at the SimiValley-Katherine Rd
station on January 17, 1994 at the Northridge earthquake
is selected for numerical simulation. The peak seismic ac-
celeration is adjusted to 200 cm/s’. The Runge-Kutta
method is applied as the numerical integration scheme and
the sample time is set to be 0. 01 s. In this numerical
study, it is assumed that the real constitutive models of
the experimental substructure and numerical substructure
are both the Bouc-Wen model, that is

= Ay — n-l_ - n
Z X ,B\Z\ Z yxz} (15)

F=akx+(1-a)Kz

where F is the restoring force of the structure; « is the
second stiffness coefficient; K is the initial stiffness of the
structure; Z is the hysteretic displacement; and 3, y, n
are the model parameters that control the shape of the
hysteresis curve. The real model parameters of the experi-
mental substructure and numerical substructure in this nu-
merical study are both set to be as follows; K =394 785

kKN/m, a=0.01, A=1, =100, y=40, n=1.

The input variables of the nonlinear hysteresis model
are set to be 6 variables as follows:d,,d, ,,F, |, F,_,
d, ,F, |Ad,and E, |. d, is the relative displacement of
the structure in the i-th step; Ad, =d, -d,_,; F,_, is the
restoring force of the structure in the i-th step; F,_,d,_, is
the energy consumption of the structure in the (i —1)-th
step; F,_, Ad, is the energy consumption of structure in
the i-th step; E,._,“g] is the cumulative energy consump-
tion of the structure in the (i —1)-th step, E, , =E, , +
i F,_d,_, i .

i-1

4.2 Results analysis

In order to verify the effectiveness of the proposed
method, three types of hybrid tests are analyzed and com-
pared in this numerical simulation, as shown in Figs. 8
and 9. The reference in the figures represents the true hy-
brid test; the BP algorithm in the figures represents the
model updating hybrid test based on the BP neural net-
work algorithm; the AdaBoot algorithm in the figures re-
presents the hybrid test of model updating based on the
AdaBoot regression tree algorithm.

8 —Reference
6- ——BP algorithm
----Adaboost algorithm
?é 2k i
=]
< of
£
8-2
3
& _4 E h
—6M
-8 5 10 15 20 25

Time/s
Fig.8 Comparison of the restoring force prediction of the nu-
merical substructure with online AdaBoost regression tree and
BP neural network algorithm

4 =
BP algorithm
31 —— Adaboost algorithm
g 1
€ 9
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8
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e 2f
3F
_4 1 1 1 1 J
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Fig.9 Comparison of the restoring force prediction error of the
numerical substructure with an online AdaBoost regression tree
and BP neural network algorithm
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Fig. 8 and Fig. 9 show the comparison of restoring
force prediction error and restoring force prediction error
of the numerical substructure in three simulation cases,
respectively. It can be seen from Fig. 8 that the restoring
force of the numerical substructure predicted by the Ada-
Boost regression tree algorithm is in good agreement with
the real value, while the restoring force predicted by the
BP algorithm has a large error at the turning point.

Fig. 9 shows that the maximum absolute error of the
predicted restoring force based on the BP neural network
algorithm is larger than that of the AdaBoost regression
tree algorithm on the whole. The AdaBoost regression
tree algorithm gradually adapts to the new data through
online training and reduces the prediction error of the re-
storing force over time.

In order to quantify the prediction error of the restoring
force, the dimensionless error index is utilized in this
study. The root mean deviation (RMSD) is

true

where F™ denotes the true restoring force of the structure
in the i-th step; and F, is the predicted restoring force of
the structure in the i-th step. Fig. 10 shows the RMSD
comparison between the BP neural network algorithm and
the AdaBoost regression tree algorithm.

0.4r
——BP algorithm

0.3 —— Adaboost algorithm
a |
o2}
24

0.1F

0 5 10 15 20 25

Time/s

Fig.10 Comparison of the RMSD with the online AdaBoost
regression tree and BP neural network algorithm

It can be seen from Fig. 10 that in the initial stage of
hybrid tests, the prediction errors of the BP neural net-
work algorithm and AdaBoost regression tree algorithm
are relatively large. However, as time goes on, the pre-
diction errors of the restoring force in both cases gradually
decrease and tend to stabilize.

In the stable stage, the RMSD of the online AdaBoost
regression tree algorithm is 0. 117 9, and that of the BP
neural network algorithm is 0. 228 2. The prediction ac-
curacy of the online AdaBoost regression algorithm is
48.3% higher than that of the BP neural network algo-

rithm. In addition, the average one-step time of the pro-
posed method is 0. 12 s, which meets the requirements of
slow hybrid tests. Therefore, the method proposed in this
paper can significantly improve the model accuracy in hy-
brid tests, and has reference value for the application of
intelligent algorithms to the hybrid test of model upda-
ting.

5 Conclusion

1) The numerical analysis of a 2-DOF nonlinear struc-
ture is conducted to verify the effectiveness of the pro-
posed method.

2) Compared with the online BP neural network algo-
rithm, the absolute error of the restoring force prediction
is reduced by 72. 5% and the relative root mean square
error is reduced by 48.3% when the online AdaBoost re-
gression tree algorithm is adopted, which verifies the ef-
fectiveness of the proposed method.

3) The generalization ability of the recognition system
is improved. The research results are significant for the
application of intelligent algorithms to improve the model
accuracy in a hybrid test.
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