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Abstract: In order to improve the detection accuracy of small
objects,
feature pyramid network ( NFPN) is proposed. Unlike the
layer-by-layer structure adopted in the feature pyramid network
(FPN) and deconvolutional single shot detector ( DSSD),
where the bottom layer of the feature pyramid network relies
on the top layer, NFPN builds the feature pyramid network
with no connections between the upper and lower layers. That
is, it only fuses shallow features on similar scales. NFPN is
highly portable and can be embedded in many models to
further boost performance. Extensive experiments on PASCAL
VOC 2007, 2012, and COCO datasets demonstrate that the
NFPN-based SSD without intricate tricks can exceed the DSSD
model in terms of detection accuracy and inference speed,
especially for small objects, e.g., 4% to 5% higher mAP
(mean average precision) than SSD, and 2% to 3% higher
mAP than DSSD. On VOC 2007 test set, the NFPN-based
SSD with 300 x 300 input reaches 79.4% mAP at 34. 6 frame/
s, and the mAP can raise to 82.9% after using the multi-scale
testing strategy.
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a neighborhood fusion-based hierarchical parallel

feature

Considering the problem of small object detection, a
neighborhood fusion-based hierarchical parallel fea-
ture pyramid network is proposed. This network extracts
features with rich context information and local details by
fusing the shallow features of similar scales, that is, the
constructed feature pyramid network has no connection
between the upper and lower layers. This network is inte-
grated into the SSD framework to achieve object detec-
tion.

Object detection is an important computer vision task
that uses image processing algorithms and models to de-
tect instance objects of a specific class in digital images,
providing fundamental information for further image un-

Received 2020-01-13, Revised 2020-08-05.

Biography: Mo Lingfei (1981—), male, doctor, associate professor,
1fmo@ seu. edu. cn.

Foundation item: The National Natural Science Foundation of China
(No. 61603091).

Citation: Mo Lingfei, Hu Shuming. Neighborhood fusion-based hierar-
chical parallel feature pyramid network for object detection[J]. Journal
of Southeast University ( English Edition), 2020, 36(3):252 —263. DOI:
10.3969/j. issn. 1003 —7985.2020. 03. 002.

derstanding. Objects can appear anywhere in the image in
a variety of shapes and sizes. Besides, detection is also
affected by perspective, illumination conditions, and oc-
clusion, making it a Gordian knot. Early object detectors
are closely related to hand-engineered features that are ap-
plied to dense image meshes to locate objects in the slid-
ing-window paradigm, such as the Viola-Jones ( VJ) face
1 " the histogram of oriented gradient ( HOG)
pedestrian detector'”, and deformable part models
(DPMs) ™. Recently, with the emergence of convolu-
tional neural networks (CNN) and the rapid development
of deep learning, object detection has also made great

detector

strides forward. Researchers have proposed many excel-
lent object detectors, which can be roughly classified into
the one-stage models and the two-stage models.

The two-stage model divides the detection tasks into
two phases and has become the dominant paradigm of ob-
ject detection. It generates a sparse set of candidate re-
gions (ROI) first ( via selective search™ or region pro-
posal network'™), and then classifies these ROIs into a
particular category and refines their bounding boxes.
R-CNN'"" and SPPNet ( spatial pyramid pooling convolu-
tional network)™ are classic works that implement this
idea. After years of research, the superior performance of
the two-stage detectors on several challenging datasets
(e.g., PASCAL VOC™ and COCO"") has been demon-
strated by many methods'*""™*' .

In contrast, the one-stage model can directly predict
the category and location of objects simultaneously, thus
abandoning the region proposal. Its straightforward struc-
ture grants it a one-stage model higher detection efficien-
cy with a slight performance degradation exchange.
SSD'"”" and YOLO'"® achieve ultra-real-time detection
with a tolerable performance, renewing interest in one-
stage methods.
have been proposed'"” ™.

Current state-of-the-art object detectors have achieved
excellent performance on several challenging bench-
marks. However, there are still many conundrums in the
field of object detection: 1) Feature fusion and reusing.
Features rich in high-level semantic information is benefi-
cial for object detection. ], L1300,
more characterized features through multiple feature fu-
sion. 2) The trade-off between performance and speed.
For the sake of practical applications, a delicate balance

Many extensions of these two models

Lin et a obtained
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must be struck between performance and detection speed.

This paper rethinks the feature fusion and reusing while
taking into account the inference speed. As an efficient
feature extraction method, FPN'"' has been adopted by

many state-of-the-art detectors'* """,

Heuristically,
this paper reconstructs the feature pyramid network in a
hierarchical parallel manner ( neighborhood fusion-based
hierarchical parallel feature pyramid network), and then it
is integrated into the SSD framework to verify its effec-
tiveness. The main contributions are summarized as fol-
lows: 1) Proposing a simple and efficient method for
constructing the context-rich feature pyramid network; 2)
Integrating the hierarchical parallel feature pyramid net-
work into the SSD framework and showing its perform-
ance improvement on standard object detection bench-
marks compared with some FPN based models.

1 Feature Pyramid Network

Many experiments have confirmed that it is profitable
to use multi-scale features for detection. For example,
SSD''" uses the multiple spatial resolution features of
VGG nets'™ . These multi-scale features taken directly

— Forward propagation

(a) (b)

from the backbone network can be consolidated into a pri-
mary feature pyramid network, in which the top layer has
rich semantic information but a lower resolution, while
the bottom layer has less semantic information but a high-
er resolution. Fig. 1 summarizes some typical feature pyr-
amid networks. In this figure, the circle outline repre-
sents the feature map, its larger size represents higher res-
olution, and its darker color represents stronger semantic
information. FPN""”' performs a top-down layer-by-layer
fusion of the primary feature pyramid network with addi-
tional lateral connections for building high-level semantic
features on all scales. On the basis of FPN, PANet ( path
aggregation network)'™ adds a bottom-up route to en-
hance its network structure, which is conducive to short-
ening the information propagation path while using low-
level features to locate objects. NAS-FPN"" can be re-
garded as the pioneering work of NAS application in ob-
ject detection. It automatically learns the structure of the
feature pyramid network by designing an appropriate
search space, but it requires thousands of GPU hours dur-
ing searching, and the resulting network is irregular and
difficult to interpret or modify.

o/
() (d)

Fig.1 Feature pyramid network. (a) FPN; (b) PANet; (c¢) NAS-FPN; (d) NFPN

Fig. 2 shows several similar methods for constructing
the feature pyramid network based on the SSD frame-
work. In this figure, the rectangular outline represents the
feature map, its width represents the number of channels,
and its height represents the resolution (i.e., 512 x 38 x
38). For brevity, some similar connections are omitted.
DSSD'" is inherited from SSD and FPN, building a
more representative feature pyramid network by layer-by-
layer fusing. In this case, low-resolution features are con-
stantly up-sampled to mix with high-resolution features.
RSSD (rainbow single shot detector) "
ture pyramid network in a fully connected manner. That
is, the feature map of each resolution in the feature pyra-
mid network is obtained by fusing all inputs. In the struc-
ture of Fig. 1(b), Fig.2(b) and Fig. 2 (c), the input
features inevitably undergo multiple consecutive resam-
pling for constructing the feature pyramid network, which
also causes some additional sampling noises and informa-
tion loss.

In order to alleviate this potential contradiction, and
take into account the training and inference speed, this

constructs a fea-

paper manually limits the resampling times of the input
features, ensuring that each feature map will undergo up-
sampling and down-sampling at most once. The model
structure is shown in Fig. 1(d) and Fig.2(d), which only
fuses shallow features on similar scales, abandoning mul-
tiple consecutive resampling used in DSSD and RSSD.
Subsequent experimental results demonstrate the effective-
ness of this approach. On the VOC 2007 test set, the NF-
PN-based SSD with 300 x 300 input size achieves 79.4 %
mAP at 34. 6 frame/s, DSSD'"” with 321 x 321 input a-
chieves 78.6 mAP at 9.5 frame/s, and RSSD"™ with
300 x 300 input achieves 78.5% mAP at 35.0 frame/s.
After using the multi-scale testing strategy, the NFPN-
based SSD can achieve 82.9% mAP.

2 Network Architecture

The neighborhood fusion-based hierarchical parallel
feature pyramid network ( NFPN) is shown in Fig. 1(d)
and Fig. 2(d), introducing a neighborhood fusion-based
hierarchical parallel architecture for constructing the con-
text-rich feature pyramid network. The basic unit of NFPN
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Fig.2 Methods for constructing the feature pyramid network based on SSD framework. (a) SSD; (b) DSSD; (c) RSSD; (d) NFPN-

based SSD

is the multi-scale feature fusion module ( MF module),
which is used to aggregate multi-scale features. This sec-
tion will introduce the MF module first, and then discuss
how to integrate MF modules to construct NFPN and em-
bed it into the SSD'"” framework.

2.1 MF module

In order to aggregate multi-scale features obtained from
the backbone network, this paper introduces a simple
multi-scale feature fusion module called the MF module,
as shown in Fig. 3. The MF module takes three different
scale features as inputs (i.e., 4 x, 2 x, 1 x) and resam-
ples these features to the same resolution (2 x ) through
the down-sampling branch (4 x —2 x ) and the up-sam-

pling branch (1 x—2 x). The subsequent 3 x3 convolution

Cox4H*4W C2HX2W C,xHxW
_____ ) Lo
P 1] 1]
Max pooling Conv 3x3,256 Deconv kxk,C,
Conv 3x3.128 BN+ReLU BN+ReLU
g Conv 3x3,256 Conv 3x3,128
BN+ReLU BN+ReLU

Conv 3x3,512
BN+ReLU

SI2x2HX2W

Fig.3 Multi-scale feature fusion module

layer is designed to refine features and limit noise caused
by resampling. Instead of the element-wise operation used
in FPN'""®" and DSSD"”', the MF module adopts concate-
nation to combine multiple features, where the status of
different features is characterized by the number of chan-
nels. The output channel of the basic branch (2 x resolu-
tion) is set to be 256 to preserve more of its features,
while the output channel of the down-sampling and up-
sampling branches is set to be 128 to complement the
context information. By convention, each convolutional
layer is followed by a batch normalization ( BN) layer and
a ReLU(rectified linear unit) activation layer.

2.2 Stacking of MF module

Referring to the structure shown in Fig.2(d), NFPN
can be implemented by stacking MF modules in parallel
among layers of the primary feature pyramid network.
SSD'"”" performs detection tasks using six scale features
(denoted as C,, C, ..., C,, respectively) of the VGG-
16, Fu et al. '’ proposed the deconvolution module
and prediction module to build a context-rich feature pyr-
amid network in a layer-by-layer fusion manner, while
Jeong et al. "™ proposed the rainbow concatenation simi-
lar to a fully connected network. These structures can be
briefly formulated as

C; =deconv(C,,C; ) ()
P, = predict( C;" ) }
P, =rainbow(C,,C;,--,C,) (2)
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where deconv and predict are the deconvolution module
and prediction module in DSSD'"”’ | respectively; rain-
bow is the rainbow concatenation in RSSD"™. Finally,
{P,} combines into a context-rich pyramid network for
multi-scale detection. Considering DSSD and RSSD, the
input features of the feature pyramid network inevitably
undergo multiple consecutive resampling, which can ag-
gregate more contextual information, but introduce addi-
tional resampling noise.

To mitigate this contradiction, this paper manually lim-
its the times of resampling that each input feature needs to
perform, ensuring that each input can be up-sampled and
down-sampled at most, once. This method is a hierarchi-
cal parallel stacking of the MF module and can be formu-
lated as

P,=MF(C,_,,C,,C,.,) (3)

where MF represents the MF module shown in Fig. 3. In-
tuitively, NFPN reduces resampling times required for
each input feature, and only fuses shallow features with
similar resolution. Furthermore, the hierarchical parallel
structure does not increase the depth of the computational
graph as much as the layer-by-layer structure and is more
in line with parallel computing.

This paper is based on the SSD framework to verify the
performance of NFPN. In detail, the NFPN-based SSD
additionally introduces “conv3_3” (C, in Fig.4) as the
down-sampling branch of P, and deletes the up-sampling
branch of P, while increasing the number of channels of
its down-sampling branch from 128 to 256. In summary,
the NFPN-based SSD contains six parallel stacked MF
modules, as shown in Fig. 4.

C, & Cy c, G e o

P, P, P,

P; P, P,
<> MF module

Fig.4 Stacking of MF module

3 Experiments

Experiments were conducted on three widely used ob-
ject detection datasets; PASCAL VOC 2007, 2012"",
and MS COCO"*", which have 20, 20, and 80 catego-
ries, respectively. The results on the VOC 2012 test set
and COCO test-dev set were obtained from the evaluation
server. The experimental code is based on Caffe"’"’.

3.1 Training strategies

For the sake of fairness, almost all the training policies
are consistent with SSD'""’ | including the ground-truth
box matching strategy, training objective, anchor set,
hard negative mining, and data augmentation. The model
loss is a weighted sum between localization loss ( Smooth

L1) and classification loss ( Softmax). NFPN takes sev-
en scale features selected directly from the backbone net-
work as inputs, whose resolutions are 75>, 387, 197,
10*, 5%, 3*, and 17, respectively. The convolution and
deconvolution layers in NFPN do not use bias parameters,
and their weights are initialized by a Gaussian function
with a mean value of 0 and a standard deviation of 0. O1.
For the BatchNorm layer, the moving average fraction is
set to be 0.999, while the weight and bias are initialized
to be 1 and O, respectively. All the models are trained
with the SGD solver on 4 GTX 1080 GPUs, CUDA 9.0,
and cuDNN v7 with Intel Xeon E5-2620v4 @ 2. 10 GHz.
Considering the limitation of GPU memory, this paper u-
ses VGG-16"*" as the backbone network with a batch size
of 32, and only trains the model with input size 300 x 300.

3.2 Testing strategies

Inspired by RefineDet' ™ | this paper performed both
single-scale testing and multi-scale testing. The spatial
resolutions of the output features of MF module P, to P,
are 387, 19, 10*, 5%, 3%, and 1°, respectively. To per-
form multi-scale testing, P,, P,, and their associated
layers are directly removed from the trained model with
no other modifications. This will shrink the mAP of the
VOC 2007 test set from 79.4% to 75.5% when perform-
ing single-scale testing. Multi-scale testing works by im-
posing different resolution inputs to the model and aggre-
gating all the detection results together, and then uses the
NMS with a threshold of 0. 45 to obtain the final result on
PASCAL VOC dataset while using Soft-NMS on the CO-
CO dataset. The default input resolution is S, e { 1767,
2407, 304°, 304 x 176, 304 x 432, 368, 432%, 496°,
560, 624>, 688> |. Additionally, the image horizontal
flip operation is also used.

3.3 PASCAL VOC 2007

For the PASCAL VOC 2007 dataset, all the models are
trained on the union of VOC 2007 and VOC 2012 trainval
sets (16 551 images) and tested on the VOC 2007 test set
(4 952 images). This paper adopts a fully convolutional
VGG-16 net used in ParseNet ™' as the pre-trained model
and fine-tunes it using SGD with a momentum of 0.9 and
a weight decay of 2 x 10 ~*. The initial learning rate is set
to be 0.001, then reduced by a factor of 10 at iterations 6
x 10" and 107, respectively. The training cycle is 1.2 x
10° iterations.

Tab. 1 shows the results for each category on the VOC
2007 test set. Taking the GPU memory constraint into ac-
count, this paper only trains the model with input resolu-
tion 300 x 300 (i.e., NFPN-SSD300). Compared with
some models based on the feature pyramid network with a
similar input resolution (e.g., RSSD300, DSSD321,
and FSSD300 ), the NFPN-based SSD without intricate
tricks shows performance improvements in most catego-
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ries, producing the increase of mAP of 0.9% , 0.8% ,
and 0.6% , respectively. Although its accuracy is inferior
to some two-stage models, it guarantees real-time detec-

tion. After using the multi-scale testing strategy, the NF-
PN-based SSD can achieve 82.9% mAP, which is much
better than single-scale testing (79.4% mAP).

Tab.1 Detection results on the VOC 2007 test set %
Method SSD300'!7) RSSD300% DSSD321 (1! NEPN-SSD300 NFPN-SSD300 *

Backbone VGG-16 VGG-16 ResNet-101 VGG-16 VGG-16
Aero 79. 4 80.6 81.9 84.8 89.5

Bike 84.0 85.2 84.9 86.4 88.2

Bird 75.8 77.9 80.5 79.3 84.3

Boat 69.7 68.1 68.4 72.5 78.9

Bottle 50.7 54.5 53.9 56.7 66.5

Bus 86.8 87.9 85.6 86.7 89.2

Car 85.9 86.8 86.2 87.4 89.2

Cat 88.6 87.3 88.9 87.6 88.0

Chair 60. 1 62.4 61.1 62.7 68.5

APof

cach Cow 82.2 83.6 83.5 86.2 89.1
category Table 71.3 76.0 78.7 76.9 77.0
Dog 86.4 86.6 86.7 86.9 88. 1

Horse 87.6 88.4 88.7 88.3 89.2

Mbike 84.3 86.4 86.7 87.3 88.8

Person 79.6 80.0 79.7 80.2 84.7

Plant 52.5 54.9 51.7 53.5 61.8

Sheep 79.1 79.2 78.0 78.5 85.5

Sofa 79.5 78.8 80.9 79.3 81.6

Train 87.9 88.3 87.2 88.6 88.0

TV 71.3 76.9 79.4 77.8 82.3

mAP 77.7 78.5 78.6 79.4 82.9

Note: * multi-scale testing.

Tab.2 shows the inference speed and average precision
(AP) of some state-of-the-art methods. NFPN-SSD300
takes 28.9 ms to process an image (i.e., 34.6 frame/s
and 79. 4% mAP) with no batch processing on a GTX
1080 GPU, which exceeds DSSD321 in both inference
speed and detection precision but is slightly inferior to Re-
fineDet320. Compared with some methods with large input
sizes, NFPN-SSD300 only retains the superiority of infer-
ence speed.

In summary ,the NFPN-based SSD exhibits a significant
improvement in inference speed and detection precision
compared to the structure-oriented modified model
RSSD™’ and DSSD'"’. Referring to Fig. 5, with the
SSD300 model as a baseline, the mAP of NFPN-SSD300
is increased by 2% to 6% for classes with specific back-
grounds ( e.g., airplane, boat, and cow ), while in-
creased by 6% for the bottle class, whose instances are
usually small. It is proved that NFPN can extract more
fertile contextual information, which is beneficial for the
detection of small objects and classes with a unique con-
text. Due to the transportability of this structure, it can
also be easily embedded in other detectors to further boost
their performance.

3.4 Ablation study on PASCAL VOC 2007

To demonstrate the effectiveness of the structure shown
in Fig.2(d), this paper designs four variants and evalu-

Bg &

Airplane Boat Cow Bottle
(O NFPN-SSD vs. SSD; [[] NFPN-SSD vs. RSSD
<> NFPN-SSD vs. DSSD

Fig.5 Comparison of improved average precision (% ) of
specific classes on VOC 2007 test set

ates them on the PASCAL VOC 2007 dataset. The train-
ing strategies are inherited from Section 3. 3. In particu-
lar, the batch size is set to be 12, which is the largest
batch size that a single GTX 1080 GPU can accommo-
date. The basic module of NFPN is shown in Fig. 3,
which has three input branches, i.e., down-sampling,
up-sampling, and the basic branch. By cutting out differ-
ent branches, there are three variants: 1) down-sampling
+basic; 2) basic + up-sampling; 3) down-sampling +
basic + up-sampling. Furthermore, the fourth variant is a
cascade of the feature pyramid network and can be formu-
lated as

P’ =MF(C,_,, C,, Ci+l)} (4)

Pi:MF(Pi*—]’ P, Pi*+])
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Tab.2 Inference speed vs. detection accuracy on PASCAL VOC dataset
Type Method Backbone Input size mAP/% Speed/_l BétCh GPU
VOC 2007 VOC 2012 (frame + s7') size
Faster R-CNN'¢/ VGG-16 ~1 000 x 600 73.2 70.4 7.0 1 Titan X
Faster R-CNN[3! ResNet-101 ~1 000 x 600 76.4 73.8 2.4 1 K40
Szi::s MR-CNN! 2] VGG-16 ~1 000 x 600 78.2 73.9 0.03 1 Titan
R-FCN!"3 ResNet-101 ~1 000 x 600 80.5 77.6 9.0 1 Titan X
CoupleNet“ﬁ] ResNet-101 ~1 000 x 600 82.7 80.4 8.2 1 Titan X
YOLOv1!'®] VGG-16 448 x 448 66.4 21.0 1 Titan X
YOLOv2!2! Darknet-19 544 x 544 78.6 73.4 40.0 1 Titan X
SSD512!17] VGG-16 512 x512 79.8 78.5 19.0 1 Titan X
SSD513!1] ResNet-101 513 x513 80.6 79.4 6.8 1 Titan X
RefineDet512 %) VGG-16 512 x512 81.8 80.1 24.1 1 Titan X
S(;I; RefineDet512 * 15! VGG-16 512 x512 83.8 83.5
Ssp321 1) ResNet-101 321 x321 77.1 75.4 11.2 1 Titan X
SSD300! 17 VGG-16 300 x 300 77.2 75.8 46.0 1 Titan X
DSOD300!% DS/64-19248-1 300 x 300 77.7 76.3 17.4 1 Titan X
RefineDet3202% VGG-16 320 x 320 80.0 78.1 40.3 1 Titan X
RefineDet320 * [%) VGG-16 320 x320 83.1 82.7
RSSD512!20] VGG-16 512 x512 80.8 16.6 1 Titan X
FSSD5121%] VGG-16 512 x512 80.9
DSSD513(1! ResNet-101 513 x513 81.5 80.0 5.5 1 Titan X
RSSD300 %] VGG-16 300 x 300 78.5 76.4 35.0 1 Titan X
One FSSD300% VGG-16 300 x 300 78.8
stage with DSSD321 1! ResNet-101 321 x321 78.6 76.3 9.5 1 Titan X
FPN SSD300 VGG-16 300 x 300 77.7 75.8 41.4 1 1080
SSD300 VGG-16 300 x 300 77.7 75.8 48.1 8 1080
NFPN-SSD300 VGG-16 300 x 300 79.4 77.1 34.6 1 1080
NFPN-SSD300 VGG-16 300 x300 79.4 77.1 37.7 8 1080
NEPN-SSD300 * VGG-16 300 x 300 82.9 82.4
Note; * multi-scale testing.

where { P;" | constitutes a junior feature pyramid network
and {P,}

Tab. 3 records the evaluation results. It is observed that
the variant with three input branches shows better detec-
tion performance than those variants with two input bran-
ches (mAP 78.6% vs. 78.1% and 78.2% ). The casca-
ding of feature pyramid networks can also contribute to

the detection performance (i.e., 0.5% higher), but the

constitutes a senior feature pyramid network.

corresponding memory consumption will also increase.
Accordingly, this paper selects the variant model with
three input branches in other experiments. Attempts have
also been made to integrate the FPN structure into the
SSD framework, but it cannot converge to a matching de-
tection performance.

Tab.3 Ablation study on the VOC 2007 test set

Basic Down- Up- Cascade
Method branch sampling  sampling Eq. (4) mAP/ %
branch branch
SSD300 76.7
NFPN-SSD300 v v 78.1
NFPN-SSD300 v v 78.2
NFPN-SSD300 v v v 78.6
NFPN-SSD300 v v v v 79.1

Note: ./ denotes choosing this branch or strategy.

3.5 PASCAL VOC 2012

For PASCAL VOC 2012 dataset, all the models are
trained on the union of VOC 2007 and VOC 2012 trainval
sets plus VOC 2007 test set (21 503 images) and tested on
the VOC 2012 test set (10 991 images). The training set is
an augmentation of the training set used in Section 3.3, at-
taching about 5 000 images. Therefore, the NFPN-based
SSD model that iterates 6 x 10 times in Section 3. 3 is used
as a pre-trained model to shorten the training cycle. Other
training strategies are consistent with those discussed in
Section 3.3. The evaluation results are recorded in Tab. 2
and Tab. 4. Considering similar input sizes (i.e., 3007,
321%), the NFPN-based SSD still shows performance im-
provement compared with SSD, RSSD, and DSSD. After
using the multi-scale testing strategy, the mAP of NFPN-
SSD300 can also catch up with RefineDet320.

3.6 MS COCO

MS COCO'™ is a large-scale object detection, seg-
mentation, and captioning dataset. For the object detec-
tion task, COCO train, validation, and test sets contain
more than 2 x 10° images and 80 object categories. Object
detection performance metrics include AP and average re-
call(AR).
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Tab.4 Detection results on the VOC 2012 test set %
Method SSD300!17) RSSD300% DSSD321 11! NFPN-SSD300 NEPN-SSD300 *
Backbone VGG-16 VGG-16 ResNet-101 VGG-16 VGG-16
Aero 88.0 88.0 87.3 88. 1 9.1
Bike 82.8 83.8 83.3 83.4 87.7
Bird 74.5 74.8 75.4 76.4 84.2
Boat 61.7 60. 8 64.6 66.3 72.4
Bottle 47.5 48.9 46.8 50.4 65.9
Bus 83.1 83.9 82.7 83.2 86.6
Car 78.9 78.5 76.5 80.2 87.8
Cat 91.7 91.0 92.9 91.4 93.2
Chair 58.2 59.5 59.5 60.6 68. 1
AP of Cow 80. 1 81.4 78.3 82.2 87.9
each
category Table 63.9 66. 1 64.3 65.1 67.7
Dog 89.5 89.0 91.5 90.3 92.2
Horse 85.7 86.3 86.6 87.8 91.0
Mbike 85.5 86.0 86.6 85.6 89.7
Person 82.5 83.0 82.1 83.4 89.2
Plant 50.3 51.3 53.3 50.8 62.5
Sheep 79.6 80.9 79.6 81.8 87.0
Sofa 73.6 73.7 75.7 73.5 73.0
Train 86.7 86.9 85.2 87.6 89.4
TV 72.2 73.8 73.9 74.6 80.0
mAP 75.8 76.4 76.3 77.1 82.4

Note; * multi-scale testing.

By convention'™’ | this paper uses a union of 8 x 10*
images from the COCO train set and random 3.5 x 10*
images from the COCO validation set for training ( the
trainval35k split) , and uses the test-dev evaluation server
to evaluate the results. The pre-trained model and optimi-
zer setting are the same as Section 3.3, while the training
cycle is set to be 4 x 10° iterations. The initial learning
rate is 10, then decays to 10 * and 10 ~* at 2.8 x 10 it-
erations and 3. 6 x 10’ iterations, respectively. The exper-
imental results are shown in Tab.5, and some qualitative
test results are shown in Fig. 8 and Fig.9.

Similarly, to verify the validity of the feature pyramid
network constructed in the NFPN-based SSD, the detec-
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Fig.6 Comparison of improved AP (% ) and AR (% ) on
MS COCO test-dev set

tion results are first compared with DSSD, which in-
tegrates FPN and ResNet-101 into the SSD framework
with no other tricks. As can be seen from Fig. 6, the NF-
PN-based SSD has been improved in various detection
evaluation metrics (e.g., AP and AR) compared with
SSD. Additionally, compared with DSSD, the NFPN-
based SSD is only inferior in the detection of large ob-
jects. That is, the NFPN-based SSD has more perform-
ance improvements for small objects. Fig.7 visualizes the
first 8 channels of the feature map used to detect small
objects. For some images that only contain small in-
stances, the feature map in SSD300 used for detection on-
ly has few activated neurons, which makes it difficult to
locate objects. The combination of NFPN and SSD gives
the model a stronger feature extraction capability so that
the feature map used for detection can retain more useful
information, as shown in the fourth row of Fig.7. Com-
paring the feature maps in DSSD and NFPN-SSD, it is
not difficult to find that NFPN-SSD can extract more de-
tailed information, which is especially beneficial for the
detection of small objects.

Considering additional FPN-based detectors ( e. g.,
RetinaNet400, NAS-FPN) , the NFPN-based SSD is still
inferior in detection accuracy, but it is superior in infer-
ence speed (34.6 vs. 15.6 and 17. 8 frame/s). Due to
the portability of NFPN, it can also complement these
methods to further improve their performance.
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Tab.5 Detection results on MS COCO test-dev set

i APs,/ AP,/ AP/ AP,/ AP/ Speed/
Type Method Backbone Input size AP/ % . iy GPU
% % % % % (frame + s7)
Faster R-CNN ** [0 VGG-16 ~1000x600 21.9 42.7 7 Titan X
Two R-FCN** [13] ResNet-101 ~1000x600 29.9 51.9 10.8 32.8 45.0 9 Titan X
stages CoupleNet ** [16] ResNet-101 ~1000%x600 34.4 54.8 37.2 13.4 38.1 50.8 8.2 Titan X
Faster R-CNN ** [33 ResNet-101 ~1000x600 34.9 55.7 2.4 K40
YOLOv2!? Darknet-19 544 x544  21.6 21.6 19.2 5.0 22.4 35.5 40 Titan X
SSD512!17] VGG-16 512x512 28.8 48.5 30.3 10.9 31.8 43.5 19 Titan X
SSD513!11 ResNet-101 513 x513 31.2 50.4 33.3 10.2 34.5 49.8 6.8 Titan X
YOLOv3!% Darknet-53 608 x 608 33.0 57.9 34.4 18.3 35.4 41.9 19.6 Titan X
RefineDet512% VGG-16 512 x512 33.0 54.5 35.5 16.3 36.3 44.3 24.1 Titan X
:2; RefineDet512 * (25 VGG-16 512x512  37.6 58.7 40.8 22.7 40.3 48.3 Titan X
SSD300! 17! VGG-16 300 x 300 25.1 43.1 25.8 6.6 25.9 41.4 46 Titan X
SSD32111) ResNet-101 321 x321 28.0 45.4 29.3 6.2 28.3 49.3 11.2 Titan X
DSOD300 ** [2] DS/64-192-48-1 300 x300  29.3 47.3 30.6 9.4 31.5 47.0 17.4 Titan X
RefineDet320!% VGG-16 320x320 29.4 49.2 31.3 10.0 32.0 44.4 40.3 Titan X
RefineDet320 * (25 VGG-16 320 x 320 35.2 56.1 37.7 19.5 37.2 47.0 Titan X
Two Faster R-CNN!%J ResNet-101-FPN  ~1333x800 36.2 59.1 39.0 18.2 39.0 48.2 6 M40
stages Faster R-CNN (3! ResNet-50-FPN  ~ 1333 x800 36.6 58.5 39.2 20.7 40.5 47.9 13.5 V100
with Mask R-CNN3! ResNet-50-FPN  ~1333 x800 37.4 58.9 40.4 21.7 41.0 49.1 10.2 V100
FPN Cascade R-CNN!*%J ResNet-50-FPN  ~1333 x800 40.4 58.5 43.9 21.5 43.7 53.8 10.9 V100
DSSD513 (1! ResNet-101 513 x513 33.2 53.3 35.2 13.0 35.4 51.1 5.5 Titan X
RetinaNet800 2! ResNet-50-FPN 800 x800  35.7 55.0 38.5 18.9 38.9 46.3 6.5 M40
RetinaNet800 2! ResNet-101-FPN 800 x800  39.1 59.1 42.3 21.8 42.7 50.2 5.1 M40
NAS-FPN!3! ResNet-50 640 x 640 39.9 17.8 P100
One NAS-FPN (3] ResNet-50 10241024 44.2 10.9 P100
S:iif NAS-FPN! %! ResNet-50 1280 %1280 44.8 7.6 P100
FPN DSSD321 1! ResNet-101 321 x321 28.0 46.1 29.2 7.4 28.1 47.6 9.5 Titan X
RetinaNet400 2! ResNet-50-FPN 400 x400  30.5 47.8 32.7 11.2 33.8 46.1 15.6 M40
RetinaNet400 2! ResNet-I01-FPN 400 x400  31.9 49.5 34.1 11.6 35.8 48.5 12.3 M40
NFPN-SSD300 VGG-16 300 x300  29.3 49.5 30.5 10.6 30.5 45.4 34.6 1080
NFPN-SSD300 * VGG-16 300 x300  35.8 57.6 38.3 20.6 38.5 48.2 1080
Notes: * multi-scale testing; ** using the COCO trainval split as the training set.
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Fig.7 Visualization of features used to locate small objects. (a) Feature map with a resolution of 38 x38 in SSD300; (b) Feature map with a
resolution of 64 x64 in DSSD513; (c¢) Feature map with a resolution of 32 x32 in DSSD513; (d) Feature map with a resolution of 38 x38 in NFPN-SSD300
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Fig.8 Qualitative results for dense objects on COCO test-dev set. (a) Input images; (b) Results of SSD300; (c¢) Results of NFPN-SSD300

4 Conclusions

1) The hierarchical parallel structure of NFPN elimi-
nates the successive resampling of features and does not
increase the depth of the computational graph as much as
the layer-by-layer structure. Additionally, the gradient
can be passed back to the shallow layer along a shorter
path, which is beneficial to the optimization of the mod-
el.

2) The hierarchical parallel feature pyramid network is
more conducive to the parallel acceleration of GPU.

3) NFPN is highly portable and can be embedded in
many methods to further boost their performance. It is
demonstrated to be effective by integrating NFPN into the
SSD framework, and extensive experimental results show
that NFPN is more proficient for detecting small objects
and classes with specific backgrounds.
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