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Abstract: In order to maximize the value of information ( Vol)
of collected data in unmanned aerial vehicle ( UAV)-aided
wireless sensor networks (WSNs), a UAV trajectory planning
algorithm named maximum Vol first and successive convex
approximation ( MVF-SCA) is proposed. First, the Rician
channel model is adopted in the system and sensor nodes
(SNs) are divided into key nodes and common nodes.
Secondly, the data collection problem is formulated as a mixed
integer non-linear program (MINLP) problem. The problem is
divided into two sub-problems according to the different types
of SNs to seek a sub-optimal solution with a low complexity.
Finally, the MVF-SCA algorithm for UAV trajectory planning
is proposed, which can not only be used for daily data
collection in the target area, but also collect time-sensitive
abnormal data in time when the exception occurs. Simulation
results show that, compared with the existing classic traveling
salesman problem (TSP) algorithm and greedy path planning
algorithm, the Vol collected by the proposed algorithm can be
improved by about 15% to 30% .
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wireless sensor

n recent years, wireless sensor networks ( WSNs)
have been applied in forest monitoring, target track-
ing, disaster relief, etc. Data collection is one of the
most important operations in WSNs. With the develop-
ment of unmanned aerial vehicles (UAVs), using UAVs
in data collection of WSNs has become a hot topic. How-

Received 2020-06-18, Revised 2020-09-01.

Biography: Yan Feng (1983—), male, doctor, associate professor,
feng. yan@ seu. edu. cn.

Foundation items: The National Key R& D Program of China ( No.
2018 YFB1500800), the Specialized Development Foundation for the
Achievement Transformation of Jiangsu Province ( No. BA2019025),
Pre-Research Fund of Science and Technology on Near-Surface Detec-
tion Laboratory (No. 6142414190405), the Open Project of the Key La-
boratory of Wireless Sensor Network & Communication of Shanghai In-
stitute of Microsystem and Information Technology, Chinese Academy
of Sciences (No.20190907).

Citation: Yan Feng, Chen Jiahui, Wu Tao, et al. UAV trajectory plan-
ning algorithm for data collection in wireless sensor networks[ J] . Journal
of Southeast University ( English Edition), 2020, 36(4):376 —384. DOI:
10.3969/j. issn. 1003 —7985.2020. 04. 002.

ever, how to efficiently collect data by optimizing the
trajectory of UAVs in WSNs is still an open problem
which needs further study.

Many approaches have been proposed for data collec-
tion in UAV-aided WSNs. These approaches can be clas-
sified into two categories. In the first category, Ebrahimi

12
etal. '™

proposed the compressive data gathering (CDG)
algorithm to compress the data uploaded by the sensor
nodes (SNs) to the UAV. A data collection framework
was designed to improve data collection efficiency in
Refs. [34]. In Ref. [5], the balanced network commu-
nication protocol ( BNCP) was proposed to improve the
transmission efficiency during data collection. Zhan et
al. ' jointly optimized the UAV trajectory and node
wake-up scheduling to minimize the mission completion

time among all UAVs. Zeng et al."”

jointly optimized
the UAV trajectory and the total mission completion
time, as well as communication time allocation among
SNs to minimize the total UAV energy consumption.

Cheng et al.™

used the traveling salesman problem
(TSP) algorithm to plan a traveling path for mobile sinks
to reduce the delay time of data gathering. From the per-
spective of data compression, collection framework, rou-
ting protocols, and path planning, these studies enable
the UAV to minimize the energy consumption of the
UAYV or SNs when collecting data. However, the timeli-
ness of the collected data is rarely considered. SNs con-
tinuously generate sensing data and the size of the node
buffer is limited. If time-sensitive data is not collected in
time, it will overflow the buffer and lose its value. In ad-
dition, in scenarios such as target tracking, disaster moni-
toring, and emergency rescues, if the abnormal data can
be quickly collected, some actions can be taken to avoid
greater losses. Therefore, timely collection of time-
sensitive data becomes crucial.

In the second category, some approaches are proposed
to collect time-sensitive data. Kaul et al. '” proposed a
metric of age of information ( Aol) to measure how new
Aol is defined as the time that has
passed since the latest information was generated. Two
different Aol indices, namely maximum Aol and average
Aol, were proposed in Ref. [10], and dynamic program-
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ming (DP) and the genetic algorithm (GA) were used to
optimize these two indices. Abd-Elmagid et al. """ stud-
ied the long-term weighted sum-Aol minimization prob-
lem. In Ref. [13], authors specifically defined the Aol as
the time which has elapsed from the moment that the node
generates the data packet to the time that the UAV col-
lects the data packet. The outdated packets are minimized
in the system through reinforcement learning (RL). As
1. " pro-
posed a UAV trajectory planning scheme to maximize the
number of served IoT devices. Hu et al. ' jointly opti-
mized the UAV’s trajectory, the time required for energy
harvesting and data collection to minimize the average
Aol of the collected data. Li et al. "' proposed a UAV-
aided data collection scheme to minimize the total mission
time for emergency applications. Liu et al. """ proposed a
trajectory planning policy to maximize information cur-
rency which is measured by the Aol of each sensor node.
Similar to the concept of Aol, Turgut et al. '™ put for-
ward a model of the value of information ( Vol) and pro-
posed an intruder tracking scheme taking into account the
Vol. Bidoki et al. " further described the value of in-
formation ( Vol) which decays with time and proposed a
sleep scheduling scheme to maximize the Vol and mini-
mize energy cost. Khan et al. " used the metric of Vol
in underwater wireless sensor networks and proposed a
greedy path planning ( GPP) strategy to collect data. In

for the time constrained IoT devices, Samir et a

addition, the metric of Vol is also applied to cloud com-
puting resource planning'*'' and endangered species mo-
nitoring'**'.

These Vol related approaches did not consider the time
limit of the UAV flight. In this paper, we aim to maxi-
mize the Vol of the collected data in a given period for
UAV-aided WSNs. The main contributions of this paper
First, a UAV-aided WSNs

model is proposed for data collection under a more practi-

are summarized as follows.

cal Rician channel. Based on the model, the data collec-
tion problem is formulated as a mixed integer non-linear
program ( MINLP). Secondly, the formulated problem is
divided into two sub-problems according to the node
type, and the maximum Vol first and successive convex
approximation (MVF-SCA) algorithm for UAV trajectory
planning is proposed to maximize the Vol of the collected
data within flight time. Finally, a series of simulations
are performed and simulation results show that the Vol
collected by the proposed algorithm is higher than that of
the classic TSP algorithm and the GPP algorithm.

1 System Model
1.1 Network model

In this paper, WSNs are considered for deployment in
forest areas for routine data collection and timely warning
of unusual events such as fires or illegal biological inva-
sions. The network model is shown in Fig. 1, which con-

sists of a series of sensor nodes and a UAV. M sensor
nodes are randomly distributed in the target area, which is
represented by the set S ={1,2, ..., M}. i &S is used as
the index of the node. SNs record the surrounding tem-
perature, humidity and pictures within a collection peri-
od. It is assumed that SNs can be divided into two cate-
gories according to the collected information. One is the
common nodes (CNs), represented by set S.. The data
collected by CNs is routine data within the preset normal
range with a low degree of emergency. The other is the
key nodes (KNs), represented by set S,. The data sensed
by KNs is abnormal data, which is not within the preset
normal range and has a high degree of emergency, S =35,
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Fig.1 Data collection model in UAV-aided WSNs

The UAV flies above the target monitoring area and
collects the data from the SNs. Due to physical limita-
tions, the endurance of the UAV is limited, and the bat-
tery needs to be replaced or charged in time when it is
low. So, we suppose that the flight time of a collection is
T. Assuming that the UAV flies at a fixed altitude of H
meters above the ground during the collection period T,
the flight trajectory projected by the UAV on the ground
can be represented as g(7), 0<t<T. Divide T into N
equal time slots with n = 1,2, ..., N as the index, and
the length of each slot is denoted as §,. When §, is small
enough, the position change of the UAV in §, is negli-
gible compared with the distance from the node to the
UAV. Since T is divided into N time slots, the trajectory
q(t) can be discretized into a sequence {g[n], 1<n<
N}, and gq[n] eR*! represents the horizontal coordinate
of the UAV in time slot n. The initial position and end
position of the UAV are denoted by ¢, and g, eR**', re-
spectively, which can be determined by specific applica-
tion scenarios.

The goal of this system is to optimize the trajectory and
radio resource allocation of the UAV to maximize the Vol
collected within flight time 7. Therefore, the rest of this
section introduces the channel model between the UAV
and the nodes, the data transmission model and the value
of the information model.

1.2 Channel model

In most literature, in order to facilitate optimization,
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the channel between the UAV and nodes is modeled as a
deterministic LoS channel and follows the free space path
loss model. However, this simplified model is actually
inaccurate in urban and suburban areas, because it ignores
random shadowing and small-scale fading. Therefore,
our system adopts a more practical Rician channel to
model the transmission channel between the UAV and
nodes. The channel coefficient between node i and the

UAV in time slot n can be expressed as

h[n] = /B,[n] h[n] (1)

where B,[n] is a large-scale average channel power gain
that takes into account signal attenuation, including path
loss and shadowing; /,[n] is the small-scale fading coef-
ficient with E[ | A,[n] | ] =1.

The communication between the UAV and node is
shown in Fig. 2. Assume that the distance between the
UAYV and node i at time slot n is represented by d,[ n],
and d,[ n] is calculated as

dinl =./llgln) -w I’ + #* (2)

where H is the height of the UAV; ¢[n] denotes the pro-
jection coordination of the UAV’s position on the ground;
w, is the coordinate of the node.

Iy

djn]
q[n] Wi

Fig.2 Communication between the UAV and node

Then, the average channel power gain ;[ n] is mod-
eled as

Bilnl =B,d,[n] * (3)

where B, is the average channel power gain when the ref-
erence distance d, =1 m, and « represents the path loss
exponent, which is generally greater than or equal to 2 for
the Rician fading channel.

The small scale fading fz,.[n] can be written as

h,[n] = /Klilﬁi[n] + /ﬁizi[n] (4)

where K >0 is the Rician factor used to specify the power
ratio between the LoS and Rayleigh fading components.
h,[n] represents the deterministic LoS channel compo-

nent, \Ei[n] \ =1. ﬁi[n] represents the random non-
line-of-sight (NLoS) component, %,[n] ~CN(0,1).

1.3 Data transmission model

Assuming that node i uploads data to the UAV with
constant power P, the received power of the UAV in time
slot n is expressed as

Pnl =P|h[n] |’ (5)

Then, the signal-to-noise ratio (SNR) v,[n] of node i
in time slot n is calculated as

PB, | hiln] |*

O'Zdi[n]“ (6)

yilnl =
where ¢ is the noise power. The instantaneous achieva-
ble rate ((bit - s~')/Hz) of node i in time slot n can be
expressed as

Ri[nJ:K;XIOg2(1+7[[nJ) (7>

where ] is the spectrum proportion allocated to node i in
time slot n. In practice, 0<x; <1, Vn, i €S, and the
allocation of radio resources should meet the following re-
quirements ;

Ski<l  Vn (8)

ieS

1.4 Value of information model

The Vol is a metric originally proposed in game theory
which represents the price that the best player is willing to
pay for a piece of information. This metric is used in
WSN’s latest research and it is a way to assign higher val-
ues to recently detected data. The Vol of the sensing data
is the highest at the moment of the event, and then de-
creases with time. Different attenuation models can be
used to design Vol functions to meet the requirements of
different application scenarios, such as the ramp func-
tion, stair function, and exponential function. Ideally,
these functions should be constructed based on actual sta-
tistical data. In order to maintain generality, this paper
uses a decaying exponential function to simulate the Vol
function V,(¢).

V(1) =Ae " (9)

where A > 0 represents the initial Vol of the node; B is
the decay speed of Vol; 7, is the time of occurrence of
abnormal events. The higher the value of A, the higher
the initial Vol of the node, while the greater the value of
B, the faster the attenuation of Vol.

Fig. 3 shows the Vol function curves with different A
and B, which can be viewed as three different data emer-
gency levels in WSNs. It can be seen from Fig. 3 that
events with higher A and B values (A, =10, B, =0.3)
are more urgent and will expire in about 15 min, while
events with lower A and B values (A, =5, B, =0.1) will
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expire in about 30 min. The data collected by CNs is rou-
tine data within the preset normal range with a low degree
of emergency, while the data collected by KNs is abnor-
mal data with a high degree of emergency. Therefore, the
Vol of KNs can be represented by the Vol attenuation
curve, while the Vol unattenuation curve (A, =1, B, =
0) can be used to represent the Vol of CNs.
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Fig.3 Vol functions with different parameters

2 Problem Formulation

In order to express the optimization problem with a
mathematical formula, we define sets, parameters and
variables for formulating our problem. § = {1,2,---, M|
is the collection of SNs, where M is the number of total
SNs. Q ={q[n]! is the trajectory sequence of the UAV,
where g[ n] is the UAV’s location at time slot n, 1 <n<
N. K= {«],V¥n,i} is the set of radio resource propor-
tions allocated to nodes. S, is the minimum amount of
data collected by the node. V, means that if node i up-
loads at least S, data before the data deadline, and the
UAV can obtain the corresponding Vol of V.. x; is a bina-
ry variable taking the value 1 if the UAV can successfully
collect the minimum amount of data S,
otherwise. X = {x,, Vi} is the set of the node collection
strategy. r,,, is the frequency band utilization required to
transmit the minimum data amount S where 7,
S,/ (B8,) in (bit + s™')/Hz; B represents the channel
bandwidth in Hz; and §, is the length of the time slot.
D, is the distance a UAV flies at maximum speed v, in

max max

a time slot §,, where D =V

max max

from node i; 0

min

8, in meter.

The objective of this paper is to jointly optimize the
UAV’s trajectory and radio resource allocation so as to
maximize the Vol collected by the UAV within flight time
T. Then, the proposed optimization problem P1 is formu-
lated as

rg}?)é;xiv (10)
N
s.t. Y R[n] =xr,, ieS (10a)
n=1
x,e{0,1} ieS (10b)
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Y k<1 0 <«ki <z (10c¢)
ieS

lgln+1] —gq[n]|l<D,, VnsN-1 (10d)
q[1]=q,, q[N]=g¢, (10e)

Constraint (10a) ensures that the UAV collects the da-
ta of node i within T at least S, . Constraint (10b) spec-
ifies the value range of the binary variable x,. Constraint
(10c) prevents the UAV from wasting resources on SNs
that cannot upload data within the deadline. If the node is
not selected to upload data (x, =0), then «; =0, and the
UAYV does not allocate the spectrum to node i. The flight
distance constraint of the UAV in a time slot §, is ex-
pressed by constraint (10d). Constraint ( 10e) specifies
that the initial and final flight positions of the UAV are at
q, and ¢, respectively. In practical applications, data
collectors can determine the starting and ending position
of the UAV based on many factors, such as the location
of its management property, regulations or charging sta-
tions.

According to the observation, problem P1 is a mixed
integer non-linear program ( MINLP) , which is NP-hard
due to the existence of the binary variable x, and the non-
convex constraint (10a). In the next section, the MVF-
SCA algorithm is proposed to obtain a sub-optimal solu-
tion of problem P1, which is a position sequence that
guides the UAV to maximize the collected Vol in the
flight period.

3 MVF-SCA Algorithm

As problem P1 proposed in Section 2 is a mixed integer
non-convex problem, it is generally difficult to obtain the
optimal solution. Therefore, in this paper, our goal is to
obtain an efficient sub-optimal solution of P1. First, ac-
cording to the different node types, problem P1 is divided
into two sub-problems. Then, the MVF-SCA algorithm
will be proposed to plan the trajectory of the UAV.

The flow chart of the MVF-SCA trajectory planning al-
gorithm is shown in Fig. 4. If there is time-sensitive ab-
normal data in the monitoring area, namely KNs, then
the UAV uses the MVF algorithm to fly to the KNs as a
priority to collect node data. Otherwise, the UAV uses
efficient SCA algorithms for routine data collection. If an
area of the UAV is abnormal in the routine data collection
process, the node sends a data collection request to the
UAV, and the UAV responds to the request, changes the
flight path and uses the MVF algorithm to collect abnor-
mal data.

The MVF-SCA algorithm is not only suitable for time-
insensitive daily data collection, but also can timely col-
lect time-sensitive abnormal data in the region. Next, the
MVF algorithm for collecting the KNs and the SCA algo-
rithm for collecting CNs are described.
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collected?
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Fig.4 The flow chart of the MVF-SCA algorithm

3.1 MYVF algorithm

The data stored in KNs is an abnormal value that ex-
ceeds the preset value range. Due to the limited cache ar-
ea of the node, if the abnormal data is not uploaded to the
UAYV in time before the cache area overflows, there may
be a problem of data loss or being overwritten by other
data. Therefore, it needs to be collected in time. Due to
the timeliness of KNs, in order to maximize the Vol col-
lected from KNs, the UAV should fly to the location of
KNs at the maximum speed and collect data from the KNs
first. In addition, in order to speed up the collection rate,
KNs should occupy the entire spectrum when uploading
data, that is, «; =1, Vi &S,. Therefore, the sub-prob-
lem P2 can be specifically expressed as

max Y, x,V, (11)
0.X KicS,

N
s.t. Y R[n] =xr,, ies, (11a)

n=1
xel0,1]  ies, (11b)
lgln+1] -g(n]|<D,,  VnsN-1 (llc)
ql1]=q,, q[N]=¢; (11d)

For the trajectory planning of the UAV collecting KNs,
we propose the MVF algorithm, which allows the UAV
to plan the trajectory according to the Vol of KNs, giving
priority to the node with the largest Vol. Among all the
KNs that need to be collected, the UAV will first collect
the node with the largest Vol in the uncollected node. If
the UAV can arrive at the node and collect enough data in
the rest time slot, then the UAV will fly to the node to
collect data; otherwise, the UAV will select another node
from the unmarked nodes and carry out a similar process.

The pseudo-code of the MVF algorithm is shown as fol-

lows.

Algorithm 1 The MVF algorithm for collecting data
of KNs

Input: gy, Vs Sons I, 6,5 the location of all KNs;

the initial Vol of all KNs.
Sort all KNs based on their initial Vol.
Calculate the distance from the KN to the current lo-
cation of the UAV d,,
Set the number of time slots N«—7/8§,
Set the updated time N'«—N
for i €S, do
Select the node with the highest Vol among un-
marked nodes
v
if Z R,[n] = x;r,, and d,,,/N'<8,v,,, then
n=1

t " max

Find the minimum time to collect the KN and
update the flying time N’
Update the location of the UAV
else
Mark the KN and update the flying time N’
end if
end for
Output: The trajectory for the UAV collecting the data
of KNs.

3.2 SCA algorithm

Next, the collection of CNs will be considered. Since
the Vol of CNs is a constant, maximizing the Vol of CNs
is to maximize the number of collections of CNs within
T. Therefore, the sub-problem P3 can be specifically ex-
pressed as

Ign;%,.;x’ (12)

N
s.t. Y R[n] =xr,, i e, (12a)

n=1
x,e{0,1} ies, (12b)
Yrki<l 0<k<I (12¢)

ieS,
lgln+1]-q[n]|<D,, ns<N-1 (12d)
q[lj =4, q[N:I =45 (126)

The sub-problem P3 is still an integer non-convex
problem, which is difficult to solve. First, we relax the
binary variable x, to let it to be continuous from O to 1,
but the relaxed version of P3 is still non-convex. Second-
ly, we introduce the slack variable B = {b] =0,V n,i e
StandC={c'=0,Yn,ieS.|. Let Q" =1{q [n],Vni
represent the given trajectory in the r-th iteration. Then,
similar to Ref. [23], log,(1 +y,[n]) can be expanded
by the first-order Taylor. By using the convex approxi-
mation of | g[n] - w,||” to approximate the function
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log, (1 + vy,[n]), the following inequality can be ob-
tained in the r-th iteration.

log, (1 +y,[n]) =g n]AA[[n] ~[[n] -

(llgln] -w I - lg[n]-w [ (13)
where
_— P, | |*
Al[n] =log, 1+i02]:[n]aﬂ) (14)
r _ Pﬁoa‘ﬁf ZInge
L["J"zK[n](aﬁﬁ[n]“2+fwo\ﬁy ) (15)
Jln]l=H+|lq[n]-w| (16)

Then, problem P3 can be rephrased as problem P4 as
follows .

QI)‘(nKa)G(BZ{x’ a7
N
s. t. ¢l =X, ies, (17a)
n=1
¢! <kb] ieS, (17b)
bl<é& [ n] ieS, (17¢)
0=sx,<1 ieS, (17d)
(IESES| Vn,ieS, (17¢)
Yki<l 0<k<I (171)
ieS,
lgln+1] -q[nll <D,, VnsN-1
(17g)
ql1]=q,, q[N]=g¢; (17h)

Consider constraint (17b), the non-convexity factor
Kb} is on the larger side of the inequality. To deal with
this constraint, we simply use the equivalent difference of
the convex function x'b! = [ (k! +b!)> = (k| = b})*]/4
to replace the right side of (17b), and linearize the con-
cave term (k| +b})*/4 of the constraint at the r-th itera-
tion. Therefore, constraint (17b) is approximate as

1

1
nsi t',n T,n 2 - :.1 _ r.z 2
c 4(K, +b7") 4(K1 b))+

L =y (= b by (18)

2
Using the above approximation, problem P3 can be
converted into a convex problem. We optimize the prob-
lem by iteratively updating parameters &;[ n]. Algorithm
2 summarizes the SCA algorithm.
Algorithm 2  SCA algorithm for collecting data of
CNs
Input; S . ; the error tolerance &.

min

Set initial trajectory Q" = {q' [n], Vn}, the re-

source allocation k", Vn,i,r=1

While (Obj(r —=1) =Obj(r)) >& do

Solve the convex problem P4 by interior-point solv-
ers to obtain the trajectory ¢'*'[n], Vn,

and k""", ¥n, YieS,

Update the trajectory of the UAV

Update the resource allocation

r—r+1

End while

Output; The trajectory for the UAV collecting the data

of CNs.

4 Performance Evaluation
4.1 Simulation environment

We assume that SNs are randomly distributed in the
target region and the scale of the target region is 500 m x
500 m. The CVX toolbox and the numerical convex sol-
ver SDPT3 are used to solve our optimization problem.
We set the initial and final positions of the UAV to the
center of the target area ([250, 250] ). The algorithm is
run in Windows 10 with a CPU i7-6700. Details of the
parameters in the simulation are listed in Tab. 1.

Tab.1 Parameters for simulations

Parameter Value
Network size/(m x m) 500 x 500
Node transmission power P/W 0.2
UAV altitude H/m 50
Channel power gain g8,/dB -60
Noise power ¢>/dBm -110
Maximum UAV speed v,,,./(m «s~") 30
Error tolerance & 1073
Slot length §,/s 0.01
Path loss exponent « 2.5

4.2 Performance evaluation

4.2.1

In this part, the complexity of the proposed MVF-SCA
algorithm will be evaluated. In order to collect KNs data
faster, we use the MVF algorithm. The next node to be
collected by the UAV preferentially selects the node with
the largest Vol, and allocates all radio resources to this
node when collecting. This is essentially a greedy algo-
rithm with a time complexity of O(n). In order to collect
more CNs data in the remaining flight time after collec-
ting KNs, we use the SCA algorithm. For the SCA algo-
rithm, the overall complexity of problem P4 depends on
the solver used to solve P4. In particular, problem P4 is a
convex problem, so several interior-point solvers can be
used to solve it. Therefore, we use the number of New-

Complexity analysis

ton steps expressed in C, as an indicator of its complexi-
ty. In practice, the Newton step depends on the size of
the problem and the number of recursive iterations before

converging from a given initial point. Based on Ref.
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[24], the worst case C, that reached the local solution in
problem P4 can be expressed as follows: C, is proportion-
al to the square root of the problem size, where the prob-
lem size is the total number of variables for the optimiza-
tion problem. Solving problem P4 requires constantly it-
erating and updating variables. In the worst case, all SNs
are CNs, M is the number of CNs and N is the number of
time slots, then there are 3MN + 2N + M variables in
problem P4. Therefore, in each iteration, the complexity

of solving problem P4 is approximately /3MN +2N +M ,
which in the worst case will lead to the overall complexity

of R /3MN +2N + M, where R is a finite number of it-
erations, depending on the value of the tolerance &.
4.2.2 Trajectory planning

The trajectory of the UAV planned by the MVF-SCA
algorithm is shown in Fig. 5. There are 4 KNs and 16
CNs in the network. The UAV starts from the central
point of the monitoring area [ 250,250 ] and returns after
a collection period 7. In order to maximize the total Vol
collected, the UAV first collects the KNs represented by
the red asterisk mark. The UAV adjusts the trajectory to
collect the most urgent KNs. When collecting CNs repre-
sented by the green dots marks, the UAV can allocate ra-
dio resources to collect multiple nodes in the same time
slot. The black cross mark represents the node that has
not been collected by the UAV or that has not uploaded
the minimum amount of data in the collection period T.
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--- UAV trajectory
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4001 el * KNs
e CNs
ok X Uncollected nodes
300F % XN T
%\ _____ Se--¥ I .
000
: X '/’
100F ‘,' _______________ .
0 ' ' ' ' '
0 100 200 300 400 500
x/m

Fig.5 UAV trajectory planning by the MVF-SCA algorithm

4.2.3 Data collection

The performance of the proposed MVF-SCA algorithm
is compared with that of the classical TSP algorithm'® and
the GPP algorithm ™. Fig.6 shows the change of Vol col-
lected by the UAV in collection period T as the number of
network nodes increases. In the simulation, we maintained
that KNs accounted for 20% of the total SNs. The increase
in the number of nodes leads to the increase in the density
of network nodes, which will help the UAV to collect
more nodes in 7 and obtain a greater Vol. The MVF-SCA
algorithm proposed has an improvement of about 15%
compared with the TSP algorithm, and an improvement of
about 30% compared with the GPP algorithm.

7001
—=—MVF-SCA
——TSR
——GPP

600
500F
400

Vol

300
200
100+

(=

10 20 30 40 50 60 70 80 90 100
Number of nodes

Fig. 6 The comparison of collected Vol by different algorithms

Finally, the effect of the minimum data amount S, on
the performance of different algorithms is studied. As
shown in Fig.7, when S, =0 Mbit, there is no require-
ment for the amount of data uploaded by the node. As
long as the UAV collects data greater than 0 bit at the
node to obtain the Vol of the node, the Vol collected by
the UAV is the largest. As S, increases, the total Vol
collected during the flight time 7" of the proposed MVF-
SCA algorithm, GPP algorithm and TSP algorithm has
decreased by varying degrees. As S . becomes larger,
the time for the UAV to collect a node becomes longer,
so that the number of nodes collected within the limited
flight time 7 decreases, and the Vol of the collected data
decreases accordingly. The proposed MVF-SCA algo-
rithm is always better than the GPP algorithm and TSP al-
gorithm for the same S, collection performance, because
the MVF-SCA algorithm jointly optimizes the UAV traj-
ectory and radio resource allocation for different attributes
of the nodes.

200
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Fig.7 The collected Vol vs. the minimum data amount S,

5 Conclusions

1) The data collection problem in UAV-aided WSNs is
investigated in this paper. The Rician model and the con-
cept of Vol are considered.

2) The problem is formulated as a mixed integer non-
linear program problem which is non-convex. The prob-
lem is then transferred to two sub-problems according to
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the node type. A UAV trajectory planning algorithm is
proposed to solve the two problems.

3) Simulation results show that the Vol collected by
the proposed algorithm can improve by 15% to 30%
compared with the classical TSP algorithm and the GPP
algorithm.
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