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Abstract: To solve the problem of energy transmission in the
Internet of Things (IoTs), an energy transmission schedule
over a Rayleigh fading channel in the energy harvesting system
(EHS) with a dedicated energy source (ES) is considered.
According to the channel state information ( CSI) and the
battery state, the charging duration of the battery is determined
to jointly minimize the energy consumption of ES, the
battery’s deficit charges and overcharges during energy
Then, the joint
formulated using the weighted sum method. Using the ideas
from the Q-learning algorithm,
scheduling algorithm is proposed to solve this problem. Then,
the Q-learning-based energy scheduling algorithm is compared
with a constant strategy and an on-demand dynamic strategy in
the battery’s deficit charges and the
battery’s overcharges. The simulation results show that the
proposed Q-learning-based energy scheduling algorithm can
effectively improve the system stability in terms of the
battery’s deficit charges and overcharges.
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transmission. optimization problem is

a Q-learning-based energy

energy consumption,

‘ x 7 ith the rapid development of the IoTs, energy har-
vesting has been regarded as a favorable supple-
ment to drive the numerous sensors in the emerging
IoT"". Due to several key advantages such as being pol-
lution free, having a long lifetime, and energy self-sus-
tainability, the energy harvesting systems ( EHSs) are
competitive in a wide spectrum of applications'.

The EHS generally consists of an antenna either separa-
ting or shared with data communications, an energy har-
vesting device (EHD) converting the RF signal from en-
ergy sources (ESs) to power, and a battery that stores the
harvested energy'”'. According to different ESs, the RF-
based energy harvesting system can be classified into two
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categories: EHS with ambient ESs and EHS with a dedi-
cated ES™'.

Recent research of the EHS mainly focuses on how to
effectively utilize energy from ambient or dedicated
ESs™™®. In Ref. [4], an energy neutrality theorem for
EHN was proposed and it was proved that perpetual oper-
ation can be achieved by maintaining the energy neutrality
of EHN. Then, an adaptive duty cycle ( ADC) control
method was further proposed in order to assign the duty
cycle online to achieve the perpetual operation of EHN.
In Ref. [5], a reinforcement learning-based energy man-
agement scheme was proposed to achieve the sustainable
operation of EHN. In Ref. [6], a fuzzy Q-leaning-based
power management scheme was proposed for EHN under
energy neutrality criteria. To achieve the sustainable oper-
ation of EHN, the duty cycle is decided from the fuzzy
inference system for the EHN. In fact, all the research
managed to adjust power in the EHS with ambient ESs to
maximize the utilization of the harvested energy. Howev-
er, due to the lack of the contact between the ESs and
EHDs, the energy transmission period in the EHS with
ambient ESs are more uncontrollable and unstable. How-
ever, in the EHS with a dedicated ES, the progress of en-
ergy transmission can be scheduled effectively due to the
dedicated ES which is installed to power the EHDs.
Hence, some research began to focus on the EHS with a
dedicated ES. In Ref. [3], a two-step dual tunnel energy
requesting ( DTER) strategy was proposed to minimize
the energy consumption at both the EHD and the ES on
timely data transmission. However, these existing strate-
gies did not consider the exhaustion or overflow of the
battery’s energy during the transmission. Hence, this pa-
per will concentrate on the online energy management
strategies to improve system stability in terms of the
battery’s deficit charges and overcharges.

In this paper, a Q-learning-based energy transmission
scheduling algorithm is proposed to improve the EHS
with a dedicated ES. Based on the basic theories of the
Q-learning algorithm'”, an energy transmission schedu-
ling algorithm is used to decrease energy consumption
through adjusting transmitted energy. By using the energy
scheduling scheme in this paper, the EHS can adjust the
transmitted energy of ES timely and effectively to change
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the energy consumption. First, the system model of the
EHS is presented in detail. Then, a multi-objective opti-
mization problem is formulated to improve system per-
formance in terms of the battery’s deficit charges and o-
vercharges. Next, a Q-learning-based scheduling algo-
rithm is proposed for the optimization problem. Finally,
the simulation results and conclusions are presented, re-
spectively.

1 System Model

Consider an RF-based EHS, where the EHD requests
and harvests energy from the ES, as shown in Fig. 1. The
harvested energy stored in the EHD’s battery is consumed
to send out data. Moreover, the system time is assumed
to be equally divided into N time slots and 7,(1 <n<N),
the duration of time slot n is constant and selected to be
Therefore, the
channel states remain invariant over each time slot but va-

less than the channel coherence time.

ry across successive time slots. Assume that the fading of
the wireless channel follows a correlated Rayleigh fading

1'" . Using the ellipsoidal approximation,
(9]

channel mode
the CSI can be deterministically modeled as

g, = h,107" (D

where v, is the uncertain parameter and # denotes the un-
certainty bound which is a non-negative constant; g, and
h, denote the actual and estimated channel gains at time
slot n, respectively.
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Fig.1 The energy-harvesting system

To charge the EHD, we assume that the ES transmits
energy at a constant power p~. First, before the EHD re-
ceives energy at time slot n, the voltage and energy
stored in the battery are denoted as v, and E., respective-
ly. The transmission duration of energy at time slot n is
T;. Then, after energy harvesting, the voltage of the
battery will increase by AV,. Mathematically, the char-

ging function can be deduced as'"”

Vn :‘/m(1 _C_”/(RC)) (2)

V.+AV =V (1 _e TR0y (3)
b1 )

En ZTCVV[ (4)

EZ+E;=%C(V”+AV)2 (5)
where ¢’ is the time consumed during charging the voltage
of the battery from 0 to V, with V_ volts of voltage; V_ is
the maximum voltage that the battery can approach. R
and C are the resistance and capacitance of the charging
circuit in EHD, respectively. Eq. (2) represents that the
battery needs to spend time ¢’ on voltage changing from 0
to V, and Eq. (3) represents that the voltage changes from
V,to V, + AV, after energy harvest at time slot n. Eq. (4)
and Eq. (5) reflect the relationship between the battery’s
voltage and stored energy. Using Eq. (2) to Eq. (5), the
charge duration can be derived as

(2Eeh)1/2 _ (2Eb)l/2
(2EM'? - (2E +2E,‘f)”2]

T = RCln[ (6)
where EI' represents the maximal energy that the battery
can store. Eq. (6) shows that the energy consumption is
affected by the amount of the expected received energy
E” and the residual energy in the battery E°. Considering
that the bad channel states can significantly reduce the ef-
ficiency of the battery charge, it is assumed that if the
channel state at time slot »n is bad, the ES will not send
energy to the destination node. Hence, Eq. (6) can be
further improved as

(2Ech)1/2 _(2Eb)l/2
(2E:h)l/2 _ (2E: +2E:le)l/2:|
0 g <p"

(7)

RC]n[

S

n

where p" denotes the charge power of a battery.

At time slot n, it is assumed that the EHD sends data at
transmitted power p<". Then, the residual energy at time
slot n +1 can be determined as

E,. =E, +E -p'T (8)
where T is the value of the working period of EHD T,; E|
is the real received energy of the battery, and its relation-

ship with energy transmitted by ES is

E, =np°T; | g, [’ (9
where 7 represents the conversion efficiency of a battery.
2 Problem Formulation

To efficiently make use of scarce transmission re-
sources, multiple objectives should be considered simulta-
neously. The primary objective is to save energy con-
sumption. In a practical system, most of the energy is
consumed for wireless transmission. Therefore, the pri-
mary objective becomes how to save transmission energy.
According to Eq. (6), the consumed energy is mainly af-
fected by E' and E’. Hence, adjusting it properly can sig-
nificantly reduce the consumed energy. Obviously, the
primary objective can be described mathematically by



Q-learning-based energy transmission scheduling over a fading channel 395

minimizing Eq. (7). After each charge, the EHD can stop
working due to the low residual energy of the battery. To
prevent this situation, the residual energy of the battery at
each time slot should be no less than the minimum energy
that ensures normal working. Therefore, the condition of
the battery’s energy exhaustion at time slot n can be de-
scribed as

E" <vE" (10)
where v represents the minimum capacity percentage of
the battery that can keep EHD normally. Meanwhile, due
to the limitation of the storage size, the overflow of the
battery’s energy will occur when the received energy is
too large. Therefore, how to avoid overcharges of the
battery should be taken into account as well. The condi-
tion of the battery’s overcharge at time slot n can be de-
scribed as

E +E -pT>ED (11)
In most cases, it is unlikely that the three objectives can
simultaneously be optimized by the same solution. There-
fore, some tradeoff between the above three objectives is
needed to ensure satisfactory system performance. The
most well-known tradeoff method is the weighted sum
method'" . Accordingly, the multi-objective optimization
problem can be converted into the following minimization
problem,
N-1
minf [ ¥ pT; +7I(E, +E) - p'T, > E) +
n=0

T,<T

wl(E, < vE) | (12)
where E( -) is the expectation operator; I( -) is an indica-
tor function and is used to show the occurrence of over-
charges or deficit charges; 7 and u are two small positive
constants, which are used to adjust the weight of deficit
charges and overcharges of the battery during the optimi-
zation.

3 Online Scheduling Algorithm

In this section, optimization problem Eq. (12) is trans-
formed into a reinforcement learning problem. The Q-
learning algorithm first creates a Q-table which records
the Q-value of all the combinations of states and actions.
Then, through training, the Q-value converges and the
EHS can choose the best T at every state according to the
maximum or minimum value in the Q-table. The ele-
ments in Eq. (12) can be mapped into Q-learning ele-

ments as follows.
3.1 State

Channel state and residual battery energy are continu-
ous variables,
and finite. Therefore, we divided the ranges of the con-
tinuous variable into several intervals.

which should be converted into discrete

If different varia-

bles are located in the same interval, they are regarded
the same. To distinguish these intervals, we use continu-
ous natural numbers to label them and these numbers can
be regarded as different states.

In the proposed scheduling scheme, the channel states
are assumed to be discrete and finite. Without loss of gen-
erality, the range of the estimated channel gain can be di-
vided into D states. The states can be defined as

[0, ®,) d=1
Q= [a)dfl,a)d) d=2,3,...,D—1 (13)
[w,,, +) d=D

where 0 <w, <w, <...<w,_,. Therefore, at time slot n,
the channel state can be determined as

Ho=  arg (hep,) (14)

de{l,2,...,D
Similarly, the residual battery energy, which is also as-

sumed to be discrete and finite, can be divided into E
states as follows:

[0, o)) e=1
o,={lo,,0,) e=2,3,..,E-1 (15)
[o, ED) e=E

where 0 <o, <0, <...<o, | <EY. At time slot n, the
residual energy state can be determined as

E = arg E){E:e%}

n (16)
eefl,2,3 ...,
Using the residual energy and channel states, the cur-

rent composite state of the system is defined in a vector as

S ={H,E}A{1,2,3,...D}x{1,2,3, ... E} (17)

Eq. (17) represents that every state can be mapped into
the only combination of H, and E, .

3.2 Action

Obviously, the charging duration 7; can be viewed as
an action. Assume that the actions are discrete and divid-
ed into N levels. Therefore, the set of available actions
can be given as

J .
= T,j=0,1,2,..,N-1
A, {N—l ,j=0,1,2, }

(18)

3.3 Cost

In the optimization problem Eq. (12), the objective is
to save energy consumption, avoid overflow of a battery’s
energy and prevent a battery from draining. Therefore,
the total cost is determined as

(S, T) =p T +7I(E, +ES - p"T>E) +

wI(E, ., <vE})

n’

(19)

As different circumstances have different QoS require-
ments, by adjusting u and 7, the reward function is gener-
ic enough to satisfy different requirements in real systems.
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3.4 Action selection

Using the states, actions and cost functions defined
above, the received energy at time slot n can be selected
by

T? =arg minQ(S,, T)
T eA,

(20)

where Q(S,, T7) is the action-state value associated with
tuple [(S,, T7')]1. In matrix @, the value of an arbitrary
element is equal to the summation of its cost and the min-
imum discounted value of @ over all possible actions in
the next state.

After selecting the proper action, the next state of bat-
tery energy E, ., can be determined by Eq. (8) and Eq.
(16). Also, the next channel state H

n+l

can be obtained

by Eq. (14). Hence, combined with the information of

E,., and H,  ,, the next state S
Accordingly, matrix Q will be updated as
(S, 1)) =0(S,, T,) +ale(S, T)) +

y minQ(S, ., 7)) - Q(S,, T))]

is determined as well.

n+l

(21)

where « is the time-varying learning rate parameter; 7y is
the discount factor. The detailed procedures of the algo-
rithm are shown in Algorithm 1.

Algorithm 1 The Q-learning-based scheduling algo-
rithm

Step 1

Step 2 If rand() <&, randomly select an action from
A,. Else, select an action using Eq. (19).

Step 3 Calculate the cost using Eq. (18) and then de-
termine next state S, ..

Step 4 Update Q by Eq. (20).

StepS n=n+1, then go to step 2.

Initialization.

4 Simulation and Results

Under the same simulation environments, the proposed
algorithm is compared with the constant strategy algo-
rithm and the on-demand dynamic strategy algorithm'” in
terms of the battery’s deficit charges, the battery’s over-
charges and the total consumed energy. The proposed al-
gorithm and the reference algorithms are, respectively,
deployed at most 100 times in one trial, and the trial is
repeated 1 000 times. In other words, the ES transmits
energy to EHD in each trial, which will not stop unless
the battery’s energy is exhausted or transmission is carried
out more than 100 times. After trials are completed, the
data from simulations will be collected to analyze the per-
formance of the algorithms.

4.1 Simulation settings

The constant energy transmitting power of energy source
node p® =10 W. The capacitance C and resistance R of
EHD are 1 k() and 2 nF, respectively. The maximum ca-
pacity of the battery in energy harvesting device ET' is

2 nJ. To maintain the normal function of EHD, the mini-
mum capacity percentage of a battery v is 5% . The con-
stant parameters in Eq. (12) are 0.4 and 0.2. Considering
that at every time slot, the ES cannot obtain information
about energy consumption during the EHD’s data transmis-
sion, the power used in sending the data by an energy har-
vesting device can be assumed to obey a uniform distribu-
tion, and the maximum power is set to be po" =1 mW.
Then, the proposed algorithm and the reference algorithms
can be simulated to compare their performance.

4.2 Performance comparison

For comparison purpose, the reference algorithms are
described as follows.

1) The constant strategy algorithm. In this strategy,
the EHD transmits constant energy. When the residual
energy of a battery is not greater than half of E, the
EHD will request a replenishment and charge the battery
to 95% of the maximum capacity according to Eq. (7)
and Eq. (9).

2) The on-demand dynamic strategy algorithm. To
avoid the overflow of arriving energy when the residual en-
ergy of a battery is too high, the ES adjusts its transmis-
sion energy adaptively based on the status of battery stor-
age. The higher the occupancy of the storage, the greater
the applied transmission energy. The occupancies of bat-
tery storage and the corresponding transmission energy are

1 2 19 X o5 19 18 1
= [%,%, ,%] X E‘: and En = [%,%, ,%]
With this strategy, the EHD is scheduled to request ade-
quate energy for the next data transmission.

Fig. 2 shows the performance comparison between the
proposed Q-learning algorithm and reference algorithms.

n

In Fig. 2(a), it is noted that the Q-learning algorithm
achieves an excellent performance in terms of the
battery’s deficit charges. As the reference algorithms do
not consider the effect of the battery’s deficit charges, the
battery’s energy cannot be prevented from becoming ex-
hausted during trials and the occurrence of the battery’s
deficit charges increases with the trials’ continuation. In
Fig. 2(b), the preference algorithms outperform the Q-
learning algorithm slightly in the overcharges. The reason
is that both the constant strategy and on-demand strategy
algorithms have considered the restriction of overcharges so
that the overflow of the battery’s energy never occurs dur-
ing trials. In Fig.2(c), both the reference algorithms con-
sume less energy than the Q-learning algorithm, but this
consequence is based on the degradation in its performance
of the battery’s deficit charges. To sum up, although the
Q-learning algorithm seems to consume more energy than
the reference algorithms, it actually provides better system
stability during the energy transmission period.

For the Q-learning algorithm, the size of action space
can be an important factor that influences algorithm per-
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formance. To verify how action space size affects algo-
rithm performance, the simulations of the Q-learning al-
gorithm with different action space sizes are executed un-
der the same simulation environment.
shown in Fig. 3.

The results are
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Fig.3 The averaged energy consumption of the Q-learning al-
gorithms with different sizes of action space

Assume that the size of state space is kept at 10 during
simulations. It can be seen that a large action space will

. . [12]
result in longer convergence time' ',

which is also dem-
onstrated in Fig. 3. Through the accumulated information
of multiple iterations, the information of CSI will be ob-
tained. In other words, the Q-learning algorithm spends
time in learning before the first 20 trials. In the practical,
for the first 20 trials, the system is in the progress of
learning, and thus the derived results are not optimal. Af-
ter the first 20 trials of learning, the system can grasp the
best strategy of all the states and the averaged energy con-
sumption of the ES converges to a constant value. In ad-
dition, the action space never becomes as large as possi-
ble. If the action space is large enough to obtain the opti-
mal averaged energy consumption, a larger action space
will only extend the convergence time without reducing
energy consumption.

5 Conclusions

1) The proposed Q-learning algorithm can solve the
proposed issue and achieves acceptable system perform-
ance over different Rayleigh fading channels in terms of
energy consumption, a battery’s deficit charges and over-
charges.

2) Compared with the two reference algorithms, the Q-
learning algorithm shows a significant advantage in avoi-
ding a battery’s energy from becoming exhausted. From
the practical view, it is worthwhile to sacrifice perform-
ance in energy consumption in exchange for better system
stability.

3) The size of action space can affect the Q-learning
algorithm’s performance. A small action space causes a
shorter convergence time, but cannot converge to the op-
timal solution. In fact, the Q-learning algorithm with a
larger action space can effectively reduce energy con-
sumption during a long time energy transmission.
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