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Abstract: In order to reduce the scheduling makespan of a
workflow, three list scheduling algorithms, namely, level and
out-degree earliest-finish-time (LOEFT), level heterogeneous
selection value (LHSV), and heterogeneous priority earliest-
finish-time ( HPEFT) are proposed. The main idea hidden
behind these algorithms is to adopt task depth, combined with
task out-degree for the accurate analysis of task prioritization
and precise processor allocation to achieve time optimization.
Each algorithm is divided into three stages: task levelization,
task prioritization, and processor task
levelization, the workflow is divided into several independent
task sets on the basis of task depth. In task prioritization, the
heterogeneous priority ranking value ( HPRV) of the task is
calculated using task out-degree, and a non-increasing ranking
queue is generated on the basis of HPRV. In processor
allocation, the sorted tasks are assigned one by one to the
processor to minimize makespan and complete the task-
processor mapping. Simulation experiments through practical
applications and stochastic workflows confirm that the three
algorithms can effectively shorten the workflow makespan,
and the LOEFT algorithm performs the best, and it can be
concluded that task depth combined with out-degree is an
effective means of reducing completion time.

allocation. In

Key words: directed acyclic graph; workflow scheduling; task
depth; task out-degree; list heuristic
DOI: 10.3969/j. issn. 1003 —7985.2020. 04. 005

he explosive growth of data poses a huge challenge
T in terms of the efficiency and difficulty of data pro-
cessing'"’. As the increasing data volumes are being accu-
mulated, a powerful computation capability is required to
extract information. Previously, homogeneous computing
that improved the performance of computational compo-
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nents was no longer sufficient to meet the performance re-
quirements of large-scale scientific and engineering com-
puting'”. The heterogeneous distributed computing sys-
tem, as a new carrier of computing mode, is a computing
platform that interconnects a series of computing resources
with different performances through networks'”', which
can provide significant computing power. Grid compu-

M cloud computing™, edge computing'” and mo-

ting
bile cloud computing!” have been developed as typical
heterogeneous distributed computing systems in recent
years.

Workflow is an application process that can be fully au-
tomated. It is commonly used to describe scientific com-
putational problems with large structures and complex
logical processes, and has important practical implica-
tions'™ . It is widely used in geophysics,
Pl At the same time, it
has a natural close coupling with heterogeneous distribu-
ted systems due to the characteristics of workflow. In ad-
dition, research on the combination of them is ongoing.

astronomy,
bioinformatics and other fields

Task scheduling is the main object of the workflow re-
search, and its essence is to solve the mapping between
precedence constrained tasks and computing resources to
achieve optimization goals, such as shortening workflow
execution time, reducing execution costs, lowering ener-
gy consumption, or improving system reliability!""" . As
a common quality of service (QoS) element, time has al-
ways been an important goal of research due to its signifi-
cance'"™" .

The problem of minimizing the execution time of work-
flows in low complexity situations has been studied exten-
sively, but many algorithms only focus on different per-
formance and communication overheads of the processor
to formulate scheduling strategies. However, few have
incorporated the structure of the workflow, such as the
depth and out-degree of task, into the strategy. The out-
degree, as an important factor controlling workflow for-
mation, should be taken into account in this problem.
Many researchers have also experimentally adjusted the
magnitude of the out-degree to control the number of par-
allel tasks at the same level. Moreover, since the quality
of the solution is very sensitive to the priority assignment
of tasks, the out-degree facilitates the obtaining of more
accurate task priorities. Moreover, the levelization strate-
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gy can place tasks with identical depth at the same level
and select the task with the highest out-degree among
them for priority scheduling, which can effectively reduce
the workflow scheduling completion time by eliminating
scheduling blocking while maximizing the parallelism of
currently ready tasks.

On the basis of the preceding thoughts, this paper pres-
ents the following algorithms: level and out-degree earli-
est-finish-time ( LOEFT), level heterogeneous selection
value (LHSV), and heterogeneous priority earliest-finish-
time ( HPEFT). These algorithms are divided into three
stages, namely, task levelization, task prioritization, and
processor allocation. In the task levelization and task pri-
which
largely determines the completion time of the workflow,

oritization stages, a more precise task queue,
is obtained. In the processor allocation phase, the task
queue is acquired to achieve the precise positioning of the
processor to minimize the completion time of the work-
flow. Heterogeneous selection value (HSV) and earliest-
finish-time ( EFT) are two indicators used as the bases for
different algorithms to allocate processors. Simulation ex-
periments demonstrate that the LOEFT, LHSV, and
HPEFT algorithms can simply and efficiently achieve the
workflow of the makepan minimization, and the LOEFT
algorithm has the most optimal scheduling results.

1 Related Works

Among the workflow scheduling time optimization al-
gorithms, list heuristics has attracted widespread attention
due to its efficiency and practicality”™'. The classical het-
erogeneous earliest-finish-time ( HEFT), which was pro-
posed by Topcuoglu et al. "
in terms of robustness and schedule length. However, in
more complex cases, the HEFT algorithm often fails to
achieve desired scheduling results. On the basis of the

, achieved high performance

HEFT algorithm, Bittencourt et al. "' proposed the Loo-
kahead algorithm, which sets up a prediction mechanism
to schedule the current task to the processor that minimi-
zes the EFT of all subsequent tasks; unfortunately, its
complexity is high. The improved heterogeneous earliest
time (IHEFT) algorithm proposed by Wang et al. "' con-
siders the minimum value of the upward weight on differ-
ent resources as the ranking criterion. However, this ap-
proach cannot achieve good scheduling results in large-
scale workflows. The HSV algorithm proposed by Xie et
al. " can effectively reduce scheduling
caused by differences in computing resources. Neverthe-
less, in some types of applications, the HSV algorithm
will break the precedence constraint between tasks, po-
sing a serious threat to system security while prolonging
the makespan. Sih et al. ™ proposed a non-preemptive
DAG workflow dynamic-level-scheduling ( DLS) algo-

imprecision

rithm for DAG workflows, which not only takes into ac-
count the communication overhead between processing

units, but also integrates the processing unit interconnec-
tion topology information and supplements it with time
(communication overhead) and space ( processing unit
load) scheduling to eliminate resource competition. It al-
so constantly adjusts the task priority to fit the compute
nodes. The authors start from the homogeneous compu-
ting system and gradually extend to the heterogeneous
computing system. Daoud et al. ™
dynamic-critical-path (LDCP) algorithm for task schedu-
ling in processor-limited heterogeneous computing envi-
ronments. The LDCP algorithm is a static list heuristic
scheduling algorithm, and as such, it can be divided into
three phases. The first stage is the task sorting stage,
where at each step of the algorithm, the maximum value
of the sum of task execution time and communication
time on the path from the entry task to the exit task is the
author’s LDCP, and the tasks are sorted according to it.
The second stage is the processor selection stage. Based
on the insertion scheduling strategy'™', the task is as-
signed to the processor that will allow it to obtain the
minimum completion time. The third stage is the state
update stage. Once the running processor of the task has
been assigned, the system must update the state informa-
tion in time to reflect this scheduling. The experimental
results show that LDCP is superior to the HEFT and DLS
algorithms in reducing the workflow completion time, but
it has a higher time complexity than the HEFT algorithm.

Apart from list scheduling algorithms, other types of
algorithms can be classified into clustering and task dupli-
cation heuristic algorithms'”'. Huang et al. ™' proposed
three new task clustering approaches, critical path cluste-
ring heuristic ( CPCH), larger edge first heuristic
(LEFH), and critical child first heuristic ( CCFH), at-
tempting to minimize the communication cost over the ex-
ecution path to obtain better workflow scheduling per-
formance. The proposed scheme is evaluated through a
series of simulation experiments and compared with other

invented the longest-

cluster-based task graph scheduling methods. The experi-
mental results show that the proposed CPCH, LEFH, and
CCFH significantly outperform the typical schemes, with
an average makepan performance improvement of up to
21% for workflows with a large communication computa-
tion ratio (CCR). Similar to clustering heuristics, which
aim to eliminate inter-processor communication overhead,
duplication-based algorithms are proposed to replicate
their forerunners using idle slots in processors. In Ref.
[26], a workflow scheduling algorithm for heterogeneous
cloud environments based on task duplication is presen-
ted. The algorithm is divided into two stages. The first
stage computes the priority of all tasks and the second
stage schedules task replication by computing the data ar-
rival time from one task to another task. The proposed al-
gorithm aims at minimizing the workflow execution time
and maximizing the resource utilization. Simulation ex-
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periments verify the advantages of the proposed algorithm
in terms of makespan and average cloud utilization.

2 System Models

The scheduling system model comprises of a target
computing environment and an application model. The
target computing environment is assumed to be set P,
which is comprised of different p independent types of
processors that are fully connected. In addition, all inter-
processor communications are assumed to perform without
contention in a fully connected topology.

Workflow can usually be represented by a directed acy-
clic graph (DAG), whose model is G=(T, E, W, C).
Among them, T represents the set of all nodes, T = {¢,,
t,, t;, ..., t,}. Each node represents a task ¢, in the appli-
cation; E represents a set of directed edges that are con-
strained between tasks, that is, e; ;eE indicates that task
t, can be started after the execution of ¢,. 7, is a predeces-
sor task, and 7, is a successor task. Nodes without prede-
enry+ INOdES
without successor tasks are exit tasks and are marked as
Lexic-

plied to astronomical observation.

cessor tasks are entry tasks and are marked as ¢
Fig. 1 is a schematic of Montage workflow DAG ap-
W is expressed as a computation cost matrix of size

[Pl x|T
cessors, | T | represents the number of tasks to be execu-

, where \ P \ represents the number of pro-

ted, and w,, represents the execution time of task z, on
processor p,. C is represented as the communication cost
matrix of size |T| x |T

, and c; ; Tepresents the com-
munication overhead on edge ¢, ;. Tab. 1 shows an exam-
ple of the computation cost matrix of the Montage work-
flow in Fig. 1.

Fig.1 Montage workflow DAG graph

Tab.1 Sample computation costs

Processor 1 &) & Iy 5 153 Iy Iy ly Lo I 4B I3 4 Iis lie li7 lig L9 b
P 14 13 11 13 12 13 7 21 16 21 23 14 20 6 18 26 17 15 17 11
123 16 19 13 8 13 16 15 19 18 6 16 5 7 9 12 14 9 11 24 15
D3 9 18 19 17 10 9 12 23 7 16 12 11 16 13 20 18 14 13 12 7

In accordance with the task depth value, the workflow
is divided into several independent task sets from top to
bottom to maximize the parallelism of tasks at the same
level. In G=(T, E, W, C), if the level of the predeces-
sor task ¢, is expressed as level (7,), then the level of its
direct successor task is expressed as level(?;,) +1, and the
specific definition is

if 7, is an entry task (1)

otherwise

0
level(1,) = {
max (level(z,) +1)
t; e pred(t)

where pred (¢;) is the set of immediate predecessors of
task z,.

Similar to Ref. [20], the heterogeneity of the compu-
ting node is considered in the model, and the execution
time of each task on different processors is calculated to
improve accuracy. The specific calculation process is

if ¢, is an exit task

Wexil, k

max (c,; +rank, (¢, p,) +w,,)

t;e suce(t)

rank (t,,p,)=
(1P { otherwise

(2)

where succ (t;) is the set of immediate successors of task

t,.

Based on the previous equation, the heterogeneous up-
ward rank value is defined as

1

hrank (¢,) = 2

X Z rank, (¢, p,)

preP

(3)

The out-degree of a task (outd(?,)) is also a factor that
affects the priority of the task. If the task with a larger
outd(#,) is not scheduled first, then all subsequent tasks
will not be ready, thereby prolonging the makespan of the
workflow. Similar to Ref. [20], the product of the aver-
age upward ranking value and the out-degree is used as
the ranking criterion for task priority. This value is called
the heterogeneous priority rank value (HPRV). The cal-
culation formula is

HPRV(t,) =outd(¢,) x hrank (t,) (4)

EST (¢, p) represents the earliest execution time
available for task 7 on processor p. Correspondingly, the
earliest execution completion time of task # on processor p
is called the earliest finish time and is expressed as
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EFT(¢, p). The specific definitions are shown as

EST(t, p,) =
0 if 7, is an entry task
{max{avail[pk] , madx)(AFT( t)+c,;) } otherwise
t; € pred(1;
(5)
EFT(¢,, p,) =EST(¢t,,p,) +w,, (6)

where avail[ p,] is the EST when processor p, is ready for
execution; AFT(7)) is the actual execution finish time of
task #;. The maximum value of the start time of the pre-
decessor task of ¢, triggering ¢, is selected in each calcula-
tion to ensure that all data needed by task ¢, has arrived at
processor p,.

HSV combines the principles of “looking up” and “loo-
king down” to consider the EFT and the longest distance
exit time (LDET) to achieve processor allocation. The
specific definition is

HSV(t, p,) =EFT(¢, p,) xLDET(¢t,, p,) (7)

where LDET (¢,, p,) represents the longest time that ¢

takes from processor p, to exit task ¢ The calculation

exit *

formula is

LDET(t,, p,) =rank,(f,, p,) —w,, (8)

3 Algorithms

The LOEFT, LHSV, and HPEFT algorithms belong to
the list scheduling algorithm. The basic idea is to con-
struct an ordered task queue by assigning priorities to each
task in the task graph. Assigning each task in the task
queue, in turn, can complete the workflow. The proces-
sor minimizes time until all nodes in the task list have
been scheduled. The specific process and pseudo code are
as follows.

3.1 LOEFT algorithm

The LOEFT algorithm can be divided into three stages:
task levelization, task prioritization, and processor alloca-
tion. In the first stage, the workflow is divided into a hi-
erarchical set taskGroups composed of several group, in
accordance with the depth value k. In the second stage,
the HPRV corresponding to task 7 in each group, is calcu-
lated in turn, and the non-increasing order is placed in
group, on the basis of the HPRV. In the third stage, the
processor with the minimum EFT is assigned to the cur-
rent task. The specific steps are shown in Algorithm 1.

Algorithm 1 LOEFT algorithm

Input: DAG workflow G =(7, E, W, C), processors set P;
Output: task scheduling sequence SL.

taskGroups = (J;

calculate the depth value k of each task ¢ according to Eq. (1);
calculate the HPRV of each task ¢ according to Eq. (4);

group ¢ with the same depth value k into group,, and all group, form
taskGroups;

sort group, in taskGroups in ascending order according to the value of
k;
sort tasks in group, in non-increasing order according to the HPRV;
for all group, e taskGroups do

for all ¢ e group, do

calculate the EFT(¢, p) of ¢ on each processor p according to
Eq. (6):

assign ¢ onto the processor p with the smallest EFT(z, p);

save t-p pairs into the scheduling sequence SL;

end for

end for
return SL;

3.2 LHSYV algorithm

The LHSV algorithm is also divided into three stages:
task levelization, task prioritization, and processor alloca-
tion. Among them, the former two phases are the same
as the LOEFT algorithm, and the processor allocation
phase assigns the processor with the smallest HSV value
to the current task. The specific steps are shown in Algo-
rithm 2.

Algorithm 2 LHSV algorithm

Input: DAG workflow G =(T, E, W, C), processors set P;
Output: task scheduling sequence SL.
taskGroups = J;
calculate the depth valuek of each task ¢ according to Eq. (1);
calculate the HPRV of each task ¢ according to Eq. (4);
groupt with the same depth value & into group,, and all group, form
taskGroups;
sort group, in taskGroups in ascending order according to the value of
k;
sort tasks in group, in non-increasing order according to the HPRV;
for all group, e taskGroups do

for all + e group, do

calculate the HSV (1, p) of t on each processor p according to
Eq. (7);

assign ¢ onto processor p with the smallest HSV (¢, p);

save f-p pairs into the scheduling sequence SL;

end for

end for
return SL;

3.3 HPEFT algorithm

The HPEFT algorithm is divided into two stages,
namely, task prioritization and processor allocation. The
stages are the same as the latter two stages of the LOEFT
algorithm, respectively. The specific steps are shown in
Algorithm 3.

Algorithm 3 HPEFT Algorithm

Input: DAG Workflow G = (T, E, W, C), processors set P;

Output: task scheduling sequence SL.

calculate the HPRV of each task ¢ in G according to Eq. (4);

sort tasks in G in non-increasing order according to the HPRV;

for all t € G do

calculate the EFT(¢, p) of t on each processor p according
to Eq. (6):

assign ¢ onto the processor p with the smallest EFT(z, p);

save f-p pairs into the scheduling sequence SL;

end for

return SL;
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In the task levelization phase, all tasks are classified
into different groups according to their own depth, and
thus the time complexity is O(#’); in the task prioritiza-
tion and processor allocation phase, all tasks and proces-
sors need to be traversed, which can be done in O(p x
). Therefore, the time complexity of the LOEFT,
LHSV and HPEFT algorithms are all O(p x ), which is
identical to that of the algorithm HEFT.

4 Experiments and Results

The HEFT algorithm was selected for comparison with
LOEFT, LHSV, and HPEFT, and all algorithms were
written in Java in a MacPro Workstation with Intel Xeon
Quad-Core@ 2. 80 GHz, 4 Cores, and 16 GB DDR3
RAM as the hardware configuration. Fast Fourier trans-
form (FFT), Gaussian elimination (GE), Laplace, and
random DAG instances generated by the Task Graph Gen-
erator (TGG)"" are analyzed. TGG is a handy, easy to
use tool specially designed to be used to develop task
graphs that are needed for research works in the areas of
task scheduling. Meanwhile, some parameters for genera-
ting task graphs, which are also consistently used in
Refs. [17, 28 —29], are given in Tab. 2.

Tab.2 The important parameter settings of task graph generator

Parameter Ranges
n [10, 511]
p {2,8,16,64,128,256,512}
r {0.1,0.5,1.0,5.0,10.0}
& {0.2,0.4,0.5,0.6,0.8,1.0}
P {0.5,1.0,5.0}

In particular, n denotes the number of DAG nodes; p
denotes the number of processors. r means the communi-
cation-to-computation ratio; the smaller the ratio, the
higher the communication cost, and vice versa. g is the
heterogeneous factor; the smaller the factor, the higher
the homogeneity. p is the parallelism factor; the larger
the factor, the higher the parallelism of application.
Then, TGG takes these parameters as input and outputs
some text files, which stores task-to-processor mappings,
computation cost values,
etc. Based on these output files, we further extract the
values, construct the topology, and then import them into

communication cost values,

the algorithm to observe the resulting output. In each
round of simulation, we try to diversify the combination
of parameters as much as possible in order to simulate re-
ality.

The two metrics, R and S, are presented to measure
the performance of the algorithm. R is the normalization
of the scheduling length, that is

R=g o 9)
min{w, ;}

preP

where the denomination is the summation of the minimum

computation cost of the critical path execution time, and
the molecule m is the actual execution time. The lowest R
indicates the best algorithm with respect to performance.
S denotes the speedup, which is computed by dividing
the minimum sequential execution time by the actual exe-
cution time m of the algorithm, which can be expressed as

min{ 2 W,;k}
teT

preP

- (10)
m

where the sequential execution time is computed by assig-

ning all tasks to a single processor that minimizes the cu-

mulative computation costs. Contrary to R, the highest §

indicates the best algorithm with respect to performance.

The R and S values change with time. Smaller R value
and larger S value indicate a greater efficiency of the al-
gorithm.

Experiment 1 This compares the change trend of the
R value of each algorithm under the four different DAG
workflows when the number of tasks changes. The specif-
ic steps are as follows: fixing other parameters (p, 7, &,
and p) and changing the number of tasks. The results are
shown in Fig. 2. The experimental analysis shows that the
LOEFT algorithm performs best with the increase in the
number of tasks. Its average R value is 4. 5% lower than
that of the HEFT algorithm. In addition, the R value of
the HPEFT algorithm is 0. 3% higher than that of the
HEFT algorithm. The LHSV algorithm is 8. 9% higher
than the HEFT algorithm. Moreover, the HPEFT algo-
rithm is almost similar to the HEFT algorithm given that
they share a similar philosophy when dealing with task
scheduling. Meanwhile, the LOEFT and LHSV algorithms
use task-level strategies to increase the number of concur-
rent tasks at the same level. However, the HSV value,
which is adopted by the LHSV algorithm during the pro-
cessor allocation phase, is equal to O when the iterating

6

2.0r OLOEFT; SSHEFT

CJLOEFT; SSHEFT
S-gmHPEFT; =LHSV

Nz
70

Task number Task number
(a) (b)
5 COLOEFT; SNHEFT 2.0r 9LOEFT; SSHEFT
al g’ HPEFT; ESLHSV 16l gRHPEFT; ESLHSV
o3[
2 -
1

S 223 5
Task number

Task number

(¢) (d)
Fig.2 Average R under different task numbers. (a) Random
DAG; (b) GE; (c¢) FFT; (d) Laplace
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task is an exit task due to LDET(¢,,) = 0, that leads to
a random choice of the processors to f.,, thereby poten-
tially extending the workflow completion time.

Experiment 2 This compares the trend of the S value
of each algorithm under the four different DAG work-
flows when the number of tasks changes. The specific
steps are the same as experiment 1. The results are shown
in Fig. 3. Through the experimental analysis, it is proved
that with the increase in the number of tasks, the LOEFT
algorithm shows the best performance among four approa-
ches, with the S value being 3. 1% higher than the HEFT
algorithm. The HPEFT algorithm has the closest trend to
the HEFT algorithm, and its S value is reduced by
0.2% . The LHSV algorithm has the worst performance,
and its S value is reduced by 7. 8% . The task priority
phase of the LOEFT and the HPEFT algorithms is the
same as their processor allocation phase. The LOEFT
algorithm’s task-depth based levelization strategy increa-
ses the number of concurrent releases between tasks, and
the LOEFT algorithm can obtain more accurate task prior-
itization, which reduces the difference caused by the pro-
cessor performance difference.

COLOEFT; SWHEFT | 4~ COLOEFT; SSYHEFT
J9[ EmIHPEFT; SLHSY | 5| EBHPEFT; ESLHSV
3.0k ' Lol
3(5) 0.8
Q<O 2}
15 0.6
1.0 0.4
0.5 02

N

3

20 30 40 50 60 70 80 90 100 14 20 35 44 54 65 7790104
Task number Task number

(2) (b)

207 COLOEFT r COLOEFT; SNHEFT
g’ HPEFT gmHPEFT; ESLHSV
16 SNHEFT 3

ELHSV

0 2N RN | &
49 64 8
Task number

Task number
(¢) (d)

Fig.3 Average S under different task numbers. (a) Random
DAG; (b) GE; (c¢) FFT; (d) Laplace

Experiment 3 This compares the change trend of the
R value of each algorithm under the four different DAG
workflows when the number of processors changes. The
specific steps are as follows: fixing other parameters (7,
r, &, and p) and changing the number of processors. The
obtained results are shown in Fig. 4. According to the ex-
perimental analysis, in the process of increasing the num-
ber of processors, the increasing order of the average R
value is as follows: LOEFT, HEFT, HPEFT, and
LHSV. The R value of the LOEFT algorithm is 4. 7%
lower than that of the HEFT algorithm, and the R values
of the HPEFT and LHSV algorithms are 0. 7% and 4%

higher than that of the HEFT algorithm, respectively.
This is caused by the task prioritization obtained by the
LOEFT algorithm that achieves precise positioning of the
processor on the basis of more accurate task prioritiza-
tion. In addition, the HSV value, which is the selection
criterion of the LHSV algorithm processor, misjudges the
exit task, thereby extending the completion time of the
workflow.

2.0 COJLOEFT; SSHEFT
EmHPEFT; ESLHSV

6 JLOEFT; SYHEFT
| mmHPEFT; ESLHSV

L . BN

£

16 32 64 128256
Processor Number

16 32 64 128256512 0548
Processor number

() (b)

CILOEFT; SSHEFT
2.0r ggHPEFT; ESLHSV

%% %

2.0 COLOEFT; SNHEFT
g HPEFT; ESLHSV

048

16 32 64 128256
Processor number

4 8
Processor number

() (d)

16 32 64 128256

Fig.4 Average R under different processor numbers. (a) Ran-
dom DAG; (b) GE; (c) FFT; (d) Laplace

Experiment 4 It compares each algorithm’s S value
under the four different DAG workflows when the number
of processors changes. The specific steps are the same as
experiment 3. The results are shown in Fig.5. According
to the experimental analysis, with the increase in processor
number, the decreasing order of the average S value is as
follows: LOEFT, HEFT, HPEFT, and LHSV. Compared

3.5~ CJLOEFT; SSHEFT
30 =mHPEFT; ESLHSV 12

BN N

[DOLOEFT; SNHEFT
g HPEFT; ESLHSV

o, 208
1.5
1.0
0.5
074 8 16 32 64 128256512 07478 16 32 64 128256
Processor number Processor number
(a) (b)
6~ [OLOEFT; SYHEFT 40- DLOEFT; SNHEFT
5 gHPEFT; ESLHSV e HP ; ELHV
4 N N =}
3
2
1
0

16 32 64 128256

4 8
Processor number

(o) (d)

6 32
Processor number

Fig.5 Average S under different processor numbers. (a) Ran-
dom DAG; (b) GE; (c) FFT; (d) Laplace
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with the HEFT algorithm, the change trend of the LOEFT
algorithm positively increases, the change trend of the
HPEFT algorithm is the closest, and the change trend of
the LHSV algorithm negatively increases. This result also
confirms the conclusion drawn from the previous experi-
ments that the LOEFT algorithm has a clear advantage o-
ver the three algorithms in terms of time optimization.

5 Conclusions

1) As application completion time has a profound im-
pact on users, systems, and the environment, optimizing
it is an ongoing research topic in computing systems.

2) As a special application, workflow is commonly
used in scientific research. Aiming at the scheduling time
optimization problem of the static workflow under the het-
erogeneous distributed computing system, three algo-
rithms are proposed, namely, LOEFT, LHSV, and
HPEFT. In particular, task depth is incorporated into task
out-degree, thus enabling the proposed algorithms to min-
imize workflow completion time in a simple and efficient
Among them, the LOEFT algorithm has a-
chieved excellent scheduling results.

manner.

3) The model studied in this paper is relatively simple,
and the proposed equation is coarse in granularity. Thus,
there is a possibility for further improvement. Next, we
will highlight the difficulty of the problem and consider
imposing a duplication strategy for tasks with a large out-
degree, and simultaneously optimize the time and reliabil-
ity of workflow scheduling.
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