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Abstract: The representation of weak Hopf algebras is studied
by investigating the Gorenstein dimensions of weak Hopf
algebras and weak Hopf-Galois extensions. Let H be a weak
Hopf algebra with a bijective antipode, A a weak right H-
comodule algebra and B the H-coinvariant subalgebra of A.
First, some properties of Gorenstein projective H-modules in
the representation category are studied, and the fact that
Gorenstein global dimension of H is the same as the
Gorenstein projective dimension of its left unital subalgebra is
demonstrated. Secondly, by applying the integral theory of
weak Hopf algebras, on the one hand,
necessary condition that a projective A-module is a projective
B-module is given; on the other hand, the separability of the
functor A), — and that of the restriction of scalar function
z(—) are described, respectively. Finally, as a mean result,
the Gorenstein global dimension of a weak Hopf-Galois
extension is investigated under the condition that H is both
semisimple and cosemisimple.
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a sufficient and

he study of Gorenstein projective modules can be
T traced back to Ref. [1], where the G-dimension of
a finitely generated module over a two-sided Noetherian
ring was introduced. Furthermore,
Gorenstein projective modules was given in Ref. [2]. We
knew already that a module of G-dimension zero is actu-
ally a Gorenstein projective module. Gorenstein projec-
tive modules play an important role in many areas. For
example, they are widely used in the representation theo-

the definition of

ry of Artin algebras, the theory of stable and singularity
categories, and the cohomology theory of commutative
rings, and so on.

Weak bialgebras and weak Hopf algebras introduced in
Ref. [3] generalized the ordinary bialgebras and Hopf al-
gebras by weakening the comultiplication of unit and the
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multiplication of counit. Comultiplication is allowed to be
non-unital, but it is still coassociative. In exchange for
coassociativity, the multiplicativity of the counit is
replaced by a weaker condition, implying that the unit
representation is not necessarily one-dimensional and
irreducible. Weak Hopf algebras can provide us with a
good framework for studying the symmetries of certain
quantum field theories. Groupoid algebras, face algebras
and generalized Kac algebras are examples of weak Hopf
algebras.

The main purpose of this paper is to study the represen-
tation of weak Hopf algebras by investigating the Goren-
stein dimensions of weak Hopf algebras and weak Hopf-
Galois extensions. Let H be a weak Hopf algebra with a
bijective antipode, A a weak right H-comodule algebra
and B the H-coinvariant subalgebra of A. After recalling
some basic definitions and giving a summary of the fun-
damental properties concerned with weak Hopf algebras,
we study some properties of Gorenstein projective H-mod-
ules in representation category, and find that the Goren-
stein global dimension of H is the same as the Gorenstein
projective dimension of its left unital subalgebra. By ap-
plying the integral theory of weak Hopf algebras, on the
one hand, we give a sufficient and necessary condition
that a projective A-module is a projective B-module; on
the other hand, we describe the separability of the functor
AR, — and that of the restriction of scalar function ,(-).
Consequently, we investigate the Gorenstein global di-
mension of a weak Hopf-Galois extension.

1 Preliminaries

Throughout this article, k denotes a fixed field, and we
will always work over k. The tensor product X): = (¥,
and Hom-functor are always assumed to be over k. We
also use Sweedler’s notations for the terminologies on
coalgebras and comodules. For a coalgebra C, we write
the comultiplication A(¢) = Z ¢, ® ¢, for any c € C.
For a right C-comodule M, we denote its coaction by
p(m) = z mg, & m, for any m e M. For any unex-
plained definitions and notations, one may refer to Ref.
[4] or Ref. [5].

Definition 1" A weak Hopf algebra H is an algebra
(H,u,m) and a coalgebra (H, A, £) such that

A(xy) =A(x)A(y) (1)
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e(xyz) = Za(xy,)a(yzz) = Ze(xyz)g(y,z) (2)

Az(lH) :(A(IH)®1H)(1H®A(1H)) =
(1,®A(1,))(A(L,) ®1,) (3)

and there exists a linear map S: H—H, called an anti-
pode, satisfying

Y x,8(x,) = Y e(l,0)]1,
Y S(xpx, = Y 1,e(x1,) (4)
Y S(x,)x,8(x;) = S(x)

for all x, y, ze H, where A(1,) = Z 1, ®1,, A>=(A
®id,) °A.
Let H be a weak Hopf algebra. The images H, = ¢,(h)

and H, = g _(h) of the projections &, &.: H— H defined
by

e(h) = Y e(1,m1,, e(h) = Y 1,e(hl,)

are both separable subalgebras of H and commute with
H, and H, are called left and right unital
subalgebras, respectively.

Definition 2'"' A left integral in H is an element /e H
satisfying h/'= g (h)/for all h € H. Furthermore, if
e/(/) =1,, then it is said to be normalized. A normal-
ized right integral is defined similarly. A left or right in-

each other".

tegral in H is called non-degenerate if it defines a non-de-
generate functional on H", the dual space of H.
The spaces of left and right integrals in H are denoted

asf and f , respectively.
H H

1 r [3]

satisfies S(I) e J’

DS ® 4= D AR N, (5)

for all h € H. Meanwhile, according to Ref. [6], the left
1

integral A e J satisfies the following invariant properties
.

The left integral [ e f

H

and

for all h, ge H,

N ha(gh) = Y A(g,h)S(g) (6)

If a weak Hopf algebra H is finite dimensional, then it
has a bijective antipode S, in which inverse is denoted
as S”' in the following, and there exist non-degenerate

land)n € f

H

left integrals [ e f

H

such that Y /A(/,) =

1,'". Furthermore, the quasi-basis of A is 2 4® S
4) Bl Therefore, for all h e H,

Y AST( ) = e(h) (7)

Let H be a weak Hopf algebra with an antipode S. Ac-
cording to Refs. [8 —9], we have

&, 05:8‘ 035=SO‘9S’ &, oS:ES 08[=S0‘9( (8)

D h®e(h) = Y hl, ®S<12)} )
Y e(h) ®h, = Y S(1) ®1,h
D ®elh) = 211h®12} (10)
ng(hl) ®h, = 211 ® hl,
(11)

zs(hlg)hzh =¢e(8) }
Y e(hg)g, =e(h)g

Definition 3! Let H be a weak Hopf algebra, and A
a right H-comodule, which is also an associative algebra.
We call A a weak right H-comodule algebra if

plab) =p(a)p(b)

Zalw) ® 1(1) = z a o) ®31(a(1))

for all a, b e A.

Let H be a weak Hopf algebra, and A a weak right
H-comodule algebra. Then, according to Ref. [8], we
obtain that

(12)

(13)

za(ﬂ) ®gs(a(l)) = Zal(O) ®S(1(1)) (2
Yoaly, ®e(l)

Define the H-coinvariant subalgebra of A as

(14)

B:= A = {a e A ‘p(d) = Za(n) @{;\(d(])) }

Then, we know from Ref. [11] that

B={acalpa = Yal, @1, = X1,a®1, |

Definition 4" Let A be a weak right H-comodule al-
gebra and B the H-coinvariant subalgebra of A. The ex-
tension A/B is said to be weak Hopf-Galois, if the canon-
ical map

B:AR®A—>ARH, pla®yb) = Z abw) XD,
is an isomorphism, where ),:= ), is the relative tensor

product over H_ (A is a right H-module viay - a =

zg(yam)a(o) forall ye H, ae A, and H is a left

H -module via its multiplication) .

2 Gorenstein Global Dimensions for Weak Hopf
Algebras

For a ring R, we denote the class of projective left R-
modules by 2, and for an object M in ,M, the category
of left R-modules, we denote the projective and injective
dimension of M by p. dim,M and i. dim,M, respectively.

Definition 5'°' A left R-module M is Gorenstein pro-
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jective if there exists an ;,Hom( - ,7) -exact sequence
s sP,—P,—P’—P' -

such that M = Ker (P’ —P'), where every P, and P' are
projective.

Dually, Gorenstein injective left R-modules can be de-
fined.

Definition 6 For a left R-module M, the Gorenstein
projective dimension G. p. dim,M is at most n if there is
an exact sequence

0—G,—G, ——G,—>G,—M—-0

where every G, is Gorenstein projective.

Dually, the Gorenstein injective dimension G. i. dim,M
can be defined.

For any ring R, Ref. [ 14] shows us that

sup{G. p. dim,M | M e ;M| =sup!{G.i.dim,M | M e ;M}

The common value is called the left Gorenstein global di-
mension of R and denoted as G. gl. dim(R).

We know that G. gl. dim(R) =0 if and only if the ring
R is quasi-Frobenius'”'. In addition, R is left Gorenstein
hereditary if every submodule of a projective left R-mod-
ule is Gorenstein projective®’ | i.e. , G. gl. dim(R) <1.

In what follows, we always assume that H is a weak
Hopf algebra with a bijective antipode S. Then, the left
H-module category ,M, called the representation catego-
7% such that

® H is the unit object with a left H-action via h -+ x =
g (hx) forall he Hand xe H, ;

® For M,N e ,M, the tensor product is M N: =M
®y N, where the right H,-module structure on M is de-

ry, is an abelian monoidal category'

fined by m - x=5"'(x) - mforall me M and xe H,;

e The left H-module structure on M(X) N is defined by
the following diagnosing action & + (m®,n) =h, - m®,h,
n, foral he H, meM, neN;

e For M,N e ,M, a homomorphism between M and N
is left H-linear.

Proposition 1 If P is a Gorenstein projective left
H-module, then so is P) X for any left H-module X.

Proof If P is a Gorenstein projective left H-module,
then there is an ,Hom( — ,%) -exact sequence

P. ..._,p]_,pn_,p"_,p‘_,...

such that M = Ker (P’ —P'), where every P, and P' are
projective. As H, is separable, we can obtain an exact se-
quence

PRX: PR X->P,RX>P R X—>P QX

such that M®) X = Ker ( P’ ® X—P' ® X). Meanwhile,
every P, ® X and P' ® X are projective left H-mod-

ules'"”’. For any projective left H-module Q,

yHom(P® X,0) EHlHom(X,HHom(P,Q))

Hence, ,Hom(P® X,Q) is exact, as desired.
Theorem 1 Let H be a weak Hopf algebra with a bi-
jective antipode S. Then, G. gl. dim(H) =G. p. dim,H,.
Proof Obviously, G. gl. dim(H) =G. p. dim,H,.
Hence, we shall prove the reverse inequality. Assume
that G. p.dim,H, =n< + «.
quence

Then, there is an exact se-

0—G,—G, ,——G—G,—H—0

where every G, is Gorenstein projective.
H-module X, we obtain an exact sequence

For any left

Og}Gn ®1X;>Gn -1 ®LX*>. : .*)Gl ®1X;>
G, ®X—H X X—0

As H(® X=X, and every G,(X) X is Gorenstein projective
by Proposition 1, we obtain G. gl. dim ( H) < n. This
shows that G. gl. dim(H) <G. p. dim,H,.

3 Gorenstein Global Dimensions for Weak
Hopf-Galois Extensions

Throughout this section, H is always assumed to be a

weak Hopf algebra with a bijective antipode S, unless
!

!
otherwise stated. Then, let/ e f and X e j be two non-
.

H

degenerate left integrals such that » 4A(4) = 1,, and

we fix a weak Hopf-Galois extension A/B and use the fol-
lowing formal notation for the inverse of 8 for all he H,

B (1L, @) = 3, 1(h) ®,r,(h) e A®,A
such that

2 Zili(h)ri(h)(o) ®sri(h>(]) =1, ®,h (15)

by definition. Such elements enjoy the following proper-
ties.

Lemma 1™ ForallaeA and he H, we have

zil;(h)ri(h) = 28(h]<1))1(0)

S L) ®,r(h) g @uri(h) ) =
3 L(h) ®@ri(h) @b,
S X L) g ®,r(h) @1,(R) =
>3 L) ®uri(h) ®.S(h)
Consider the two functors:
ARy, — : yM— M, NB—ARN
b(=) MM, MM

where ,(—) is the restriction of the scalars functor.

(A®B - 73(_)) and (B(_> ’A®B _) are

Lemma 2
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double adjunctions.
Proof Note that the element Y A(a.,)a, e B

for ae A. Then, for all Ne ,M, we have a well-defined
map ¢:AXR,N—,Hom(A,N) given by

d(a®;n)(b) = 2 A(byaq))byag s n
a,be A, neN
Then, it is easy to check that ¢ is a morphism of left A-
modules, where ,Hom (A,N) e ,M via (a - f) (b) =
f(ba) for all a,be A and fe ,Hom(A,N). Meanwhile,
we claim that ¢ is a bijection with the inverse given by

¢:,Hom(A N) — A ®,N
o(f) = Zli(Sfl(/’)) ®Bf(r;<sil(/'>))

Indeed, on the one hand, for all a,be A and ne N,
by Lemma 1, we have

pp(a @zn) =
D2 LS @A (r (S ag, ) r (S ag, < n =
Y Z,_l,.(S*‘(/))r[(s*‘a(o))\(r,,(s”am) Qpn =
D D LSS (1,)agAS™ (4 Dag,) @y =

1)

(
21(0)“(0)3(517](/2)1(1))/\(5171(/1)a(1)> Xpn =
_ Q)
zl(0>a(0>)‘(s l(/)1<1>a<1>) Xpn =
Z 1(0>ato>/\(571(/)1<1>a<|>) Xyn

On the other hand, for all b € A and fe ;Hom(A,N) , by
Lemma 1, we have

bo(f) (b) =
D2 A L(ST()) ()b L(STH()) )
fCr(S7()))n =
D 2 A, )b (ST (/) (87 (4))) =

(5)

Z)\(bu)/zﬁ)g(sil(/l‘)l(l))f(b(n)lm)) =
Z)\(/§>3(Sil(/i)b<1)1(1))f(b(ml(())) =
z)\(/é)é‘(s_](/i)b<1>)f(b(0))n = f(b)

Hence, the adjoint isomorphism theorem, (A®), -,
s(=)) and (,(-),A®, - ) are double adjunctions'"”’.

By Lemma 2, we have the following assertion.

Corollary 1  If P € ;,M is projective, then A (X),P
€ .M is projective.

Lemma 3 If H is semisimple and P € ,M, then P is
projective as a left A-module if and only if P is projective
as a left B-module.

Proof As H is semisimple, we know that H is finite

T
dimensional and there is 7 e f , which is normalized"’,
H

i.e., (%) =1,. Then, forallacA,

Zial"(iy) ®,ri(F) = Zili(:Z) ®yri( A)a
(16)

In fact, by Lemma 1, we have

(2 el (N @) =

by zial,’(/%”f(j%m ®ri( Ao =
> S al(F)r( 7)) ®a T =

)

2“1<o>8<%1<1>) ®52:72 =
2“1«» XA ) = Z“(m ®,Ze (ag,) =
Zam) ®, Aa, = ,3( Zil;(/% ®BV[(,%CI)

as needed.

Consider that P is a projective left B-module and let
M,N e M. Suppose that 5: M—N and &: P—N are left
A-module morphisms such that § is surjective. Since P is
projective as a left B-module, there is a left B-module
morphism f: P—M such that § of =£. Define

f:PHM, }‘(p) = z,l'(%) “f(r,(7) - p)

for all pe P.
Obviously, f is a morphism of left A-modules by
(16). Moreover,

8f(p) =
D LD (D) Ep) = Y e( A ) E(p) =
N e(e, (Do) ~€(p) = Y e(1)1, - &(p) =
1, - &(p) =€&(p)

where the third equality follows™® . Hence, § of = £

Thus, P is projective as a left A-module.

Conversely, suppose that P is projective as a left A-
module. It follows from Lemma 2 that (A®), —,,(-))
is an adjoint pair. Since A is projective as a right B-mod-
ule'™ | we obtain that the functor A %), — is exact.
Hence, ,(-) preserves projective objects. Therefore, P
is projective as B-module.

Definition 7"
ant functor F; %— is separable if for all objects M,N e
C, there are maps ¢, ,: Hom, (F (M), F(N)) —
Hom,(M,N) , satisfying the following conditions

1) For @ € Hom,(M,N), we have ¢, y(F(a)) =a.

2) Given M' ,\N' e ¢, feHom _ (F(M) ,F(N)) ,ge
Hom,(F(M'),F(N')), a e Hom, (M, M'), B e
Hom,(N,N'), we have F(B)of=g ocF(a) and 8 o

v () =0u ().
Lemma 4

Let Z'and &7 be categories. A covari-

1) If H is semisimple, then ,(—) is sepa-
rable.
2) If H" is semisimple, then A®), — is separable.



Gorenstein dimensions for weak Hopf-Galois extensions

487

Proof 1) Let 7 e f such that ¢ ( 7) =1,,. By the
H

proof of Lemma 3, we can know that the element

z ili(/% ®,r.( 7) is exactly the separability idempo-
tent, i. e. , the extension A/B is separable. Hence, the
restriction of scalars functor ,(—) is separable ™.

2) Note that A is a weak left H " -module algebra under

the action p—a = Y ¢(a, )a, foracA, peH" 2

As H" is semisimple, there exists a normalized left inte-
!

gral A e f . Then, A—1, =1,, and the map F;A—B
"

defined by F(a) = A—a is a B-bimodule projection"*'"’.
This assumes that B is a direct summand of A as a B-bi-
module. Hence, the unit 1 ,— (=) (A®, - ) of the
adjunction (A®), — ,,(-)) is a split monomorphism*’.
So, the induction function A®), — is separable "’

Corollary 2 1) If H is semisimple, then M is a left
A-module direct summand of AXK),M for all M e ;M.

2) If H" is semisimple, then N is a left B-module di-
rect summand of AX),N for all Ne ,M.

Proof 1) As H is semisimple, we know from Lemma
4 that ,(-) is separable. Hence, the counit e: (AX), — )
o,(=)—1,, of the adjunction (A®), —,,(-)) is a cosp-
lit epimorphism'""’ | that is, there is a natural transforma-
tion €:1 ,—(A®;, - ) o,(—) such that €, c€,, = id for all
Me M. Thus, M is a left A-module direct summand of
AR M.

2) As H" is semisimple, we have that A®R), — is sepa-
rable by Lemma 4. Hence, we also know that the counit
5(=)o(A®, - ) —1 ,, of the adjunction (,(-) ,A®), - )
is a cosplit epimorphism'""’. Thus, N is a left B-module
direct summand of AX),N for all Ne ;M.

Lemma 5 If Ne ;M is Gorenstein projective, then A
XN e ,M is Gorenstein projective.

Proof Suppose that N is a Gorenstein projective left
B-module. Then, there is a ,Hom ( -, &”)-exact se-
quence

P "*)PI*)PO*)PO—PPI—P .

such that N = Ker( P°—P'), where every P, and P' are
projective. Since A is projective as a right B-module, we
obtain that AR),P is exact and A®R),N = Ker(AR) P’ —A
®,P'). We also obtain that AX),P" is projective for ev-
ery i because of the assertion that ,(—) is exact and AX),
— is a left adjoint ™',

Let us suppose finally that Q € ,M is Gorenstein projec-
tive. Then,

JHom(A®,P,Q) =,Hom(P,Q)

However, ,Q is projective since ,(—) is a left adjoint of
A®, - which is exact. Thus, ,Hom (P, Q) is exact
since N is Gorenstein projective, and so, ,Hom(A®),P,

Q) is also exact, which implies that AX),N is Gorenstein
projective.
Theorem 2 If H is a semisimple and cosemisimple
weak Hopf algebra, then G. gl. dim(A) = G. gl. dimB.
Proof Assume that G. gl. dimB=n< + .
M e ,M, as a left B-module, there is a Gorenstein projec-

For any

tive resolution ;
0—G,—G, ,——G,—>G,—M—-0

where every G, is Gorenstein projective. Since the functor
A, — is exact, it induces a left A-module exact se-
quence

0-A®,G,—AR,G, ——
ARG, ARG —AR;M—0

From Lemma 5, we know that every AX),G, is Goren-
stein projective, and thus, G. gl. dim, (A®,,M) < n.
Since M is a direct summand of AX),M as left A-modules
by Corollary 2, G. gl. dim , M <n""
(A) =n.

Suppose that G. gl. dim(A) = ¢<n = G. gl. dimB.
Then, G. gl. dim,(A®,N) <g for any N € ;M. There-
fore, ,Ext'(A®,N,U) =0 for all i > ¢ and all projective
left B-module U™, Since N is a left B-module direct
summand of A®),N and the functor ,Ext( -, U) pre-
serves finite direct sums, ,Ext(N,U) =0 for all i > ¢ and
all projective left B-module U, and, hence, G. gl. dim,N
<g. This implies that G. gl. dim (A) < G. gl. dimB.
Therefore, in view of the above discussion, we have
G.gl. dim(A) =G. gl. dimB.

Corollary 3 Let H be a semisimple and cosemisimple
weak Hopf algebra. Then, A is quasi-Frobenius ( rep.
left Gorenstein hereditary ) if and only if so is B.

In particular, if R#H is a weak smash product of a
weak left H-module algebra R ( see Ref. [ 24 ] for the def-
initions) , then R#H is quasi-Frobenius (rep. left Goren-
stein hereditary) if and only if so is R.

. Hence, G. gl. dim
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