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Abstract; Aimed at the problem that Fourier decomposition
method (FDM) is sensitive to noise and existing mode mixing
cannot accurately extract gearbox fault features, a gear fault
feature extraction method combining compound dictionary
noise reduction and optimized FDM ( OFDM) is proposed.
Firstly, the characteristics of the gear signals are used to
construct a compound dictionary, and the orthogonal matching
pursuit algorithm ( OMP) is combined to reduce the noise of
the vibration signal. Secondly, in order to overcome the mode
mixing phenomenon occuring during the decomposition of
FDM, a method of frequency band division based on the
extremum of the spectrum is proposed to optimize the
decomposition quality. Then, the OFDM is
decompose the signal into several analytic Fourier intrinsic
band functions ( AFIBFs). Finally, the AFIBF with the
largest correlation coefficient is selected for Hilbert envelope
spectrum analysis. The fault feature frequencies of the
vibration signal can be accurately extracted. The proposed
method is validated through analyzing the gearbox fault
simulation signal and the real vibration signals collected from
an experimental gearbox.
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used to

ith the development of modern industry, gearboxes

have been widely used in various mechanical
equipment due to their fixed transmission ratios, large
driving torque and compact structures. Gearboxes usually
work under harsh conditions and are prone to failure''’.
By analyzing the vibration signals of mechanical equip-
ment, the health of gears can be diagnosed and predic-
ted””’. However, the vibration signals measured in actual
engineering are doped with strong background noise and
interference source signals. Therefore, how to effectively
extract gearbox fault feature information under strong
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background noise and interference source signals is wor-
thy of further study.

In recent years, various non-linear and non-stationary
signal decomposition and analysis methods have been pro-
posed. Empirical mode decomposition (EMD) "’ as a
typical adaptive time-frequency analysis method, has
good time-frequency aggregation and does not need to
construct any basis function for matching signal compo-
nents. However, EMD has defects such as mode mixing
and endpoint effects. In order to solve the EMD mode
mixing problem, ensemble empirical mode decomposition
(EEMD) "' and other methods have been proposed one
after another. Non-parametric time-frequency analysis
methods based on the EMD decomposition theory such as
the local mean decomposition (LMD) s , ensemble local
mean decomposition ( ELMD )"’ empirical wavelet
transform (EWT) ") and variational mode decomposition
(VMD ) have been proposed successively, but these
methods also have certain shortcomings'® .

FDM is a non-linear and non-stationary data processing
method based on the Fourier theory and zero-phase filter
proposed by Singh et al. °', and has been successfully
applied to EEG. The time-frequency analysis of the signal
was later introduced into the field of mechanical vibration
signal processing. Currently, many scholars have carried
out much research work on FDM algorithm analysis and

21 " For instance, Liu et al. '

made some progress'
proposed a fault diagnosis method for rotor rubbing based
on FDM. Deng et al. """’ proposed a new optimized Fou-
rier spectrum decomposition method, called the band-
width Fourier decomposition ( BFD) for the early fault
detection of rolling bearings. Dou et al. "' proposed a
novel method for machinery fault feature extraction based
on FDM. FDM provides a new idea for the analysis of
nonlinear and non-stationary time series. In 2018,
Singh'"”’ proposed a new formulation of the FDM using
the discrete cosine transform, but mode mixing exists.
Therefore, a new method of selecting the cut-off frequen-
cy to overcome modal aliasing is proposed in this paper.
FDM is as sensitive to noise as other signal decomposi-
tion algorithms''. The actual vibration signal contains
much noise, and it also participates in FDM decomposi-
tion. Therefore, the noise causes the FDM decomposition
component to increase and aggravates the boundary effect.
It can be seen from the above that in order to achieve bet-
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ter decomposition effect when FDM is decomposed, the
signal needs to be pre-processed for noise reduction.

The signal sparseness shows successful application in
the fields of image processing and compressed sens-
ing"*). Dictionaries are the key to success in sparse rep-
resentation. The design of the dictionary mainly includes
the analytical method and learning method'"’.
Iytic method is based on commonly used fast transforma-
tions and their variations such as the Fourier dictionary,

wavelet dictionary, Gabor dictionary and discrete cosine
15-16]

The ana-

dictionary'
lation speed, but there are many restrictions or assump-
tions, and the actual application effect is not good''”.
The learning method is based on the machine learning
techniques to construct sparse dictionaries such as sparse
K-SVD'"® and multi-scale dictionary learning '*'. This
kind of dictionary has a slow calculation speed and poor
anti-noise performance. When processing mechanical vi-
bration signals, the physical meaning of learning a dic-
tionary is not clear. For instance, Medina et al. ™ pro-
posed a sparse representation method of vibration signals
for gear fault detection and classification based on diction-
ary learning. Nagarajet al. '’ proposed a novel dictiona-
ry that was used to analyze EEG signals by improving the

linear frequency modulation function ( LFMF). Moreo-
[

. They have the advantage of a fast calcu-

ver, Lii et al. " introduced the dictionary into the pro-
cessing of mechanical fault signals. Therefore, the design
of the dictionary has a great effect on the diagnosis re-
sults. Based on the idea of the sparse signal representa-
tion, this paper proposes a compound dictionary using
prior knowledge of gearbox faults. It includes the gear
steady-state modulation ( SSM ) dictionary and impact
modulation (IM) dictionary. The SSM-IM dictionary
combined with the OMP algorithm is used to preprocess
the vibration signal for noise reduction.

In this paper, a fault feature extraction method of the
gearbox based on the SSM-IM dictionary noise reduction
and OFDM is proposed. Firstly, the SSM-IM dictionary
combined with the OMP algorithm is used to pre-process
the original vibration signal. Secondly, OFDM is used to
decompose the signal. Finally, the correlation coefficient
between each AFIBF component and the source signal is
calculated, and the AFIBF component with the largest
correlation coefficient is selected for the Hilbert envelope
spectrum. Through the envelope spectrum analysis, the
fault feature of the gearbox can be accurately extracted.
Simulation and experimental analysis verify the effective-
ness of the method proposed in this paper.

1 OMP and Compound Dictionary Design
1.1 The OMP algorithm

The basic idea of the OMP algorithm ™ is to iteratively
decompose the signal. The specific steps of the OMP al-
gorithm are as follows:

Step 1  Project a given signal x (¢) in the Hilbert
space to each atom of the overcomplete atomic library D
={g,,k=1,2,--- ,n}, where each vector g,,8,,"",&,
can be called an atom, and its length is the same as the
length of signal x(7). These vectors have been treated as
normalization, that is || x, || =1, the unit vector length
is 1, and Schmidt orthogonalization is guaranteed.

Step 2 Calculate the inner product of the signal and
each column (atom) in the over-complete atomic diction-
ary matrix. Firstly, it finds the atom with the largest in-
ner product of the original signal, i.e. , the best atom, in
the dictionary ;

[(x.g.) | =sup|(x.g) | (1)

where [ is the set of parameter groups Y. | {x, g.) | is
the inner product of signal x and atom g, .

Based on the law of conservation of energy, the signal
can be decomposed into the optimal reconstruction com-
ponent and the residual component :

x=(xg,)8, +R"'x (2)

where (x, g,_t> g, is the projection of the signal on the atom
g, after the k-th iteration; R'"'x is the remaining amount
of the (k +1)-th best match for the signal. (Rk”x,gr) =
0 indicates that in the k-th iteration, an atom g, best matc-

hing the current residual signal R“*'x will be found:

[x]°=(x,g )+ |R" "x|* (3)

To minimize the energy | Rx || for approaching er-
rors, g, €D is necessary to maximize |(x,g,) |.

[(x,g,) |=asup|(x,g,) | 0O<a<l (4)

R'x=(R'x,g )g +R"'x (5)

The value of the participation signal is the termination
condition of the iteration. The basic idea of matching pur-
suit is to express the basic characteristics of a signal by a
linear combination of fewer atoms.

n-1
x=Y(Rxg)g, (6)
k=0

1.2 Design of compound dictionary

In sparse decomposition, the construction of the dic-
tionary directly affects the sparse expression of the signals
to be analyzed "’.
performance of the OMP algorithms. If the dictionary is
not selected correctly, the sparse representation of the sig-
nal may have a large deviation.

Most scholars extract the fault feature of gears in the
gearbox by constructing a single dictionary, and do not

Dictionary has a great impact on the

make full use of the structural parameters of the gearbox.
This paper constructs a composite dictionary based on the
mathematical model of the fault signal when the gearbox
fails, which includes a steady-state modulation ( SSM)
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dictionary and an impact modulation ( IM) dictionary,
which makes it more physical.
1.2.1 Constructing an SSM sub-dictionary

When gears have distributed faults, the vibration sig-
nals of most gear faults are expressed as amplitude modu-
lation ( AM) and frequency modulation ( FM) signals.
The mathematical model of the distributed fault is"*"

x(t) =[1+a,(t)]lcos(2mkf,t + @, +D, (1)) (7)

where a,(t) =sin(2nnf,t),b, (t) =sin(2mmf,t) ;f, is
the meshing frequency ;f, is the rotational frequency.

When a,(t) =0, Eq. (7) becomes the frequency mod-
ulation model;

x,(t) =cos(2mkf,t + ¢, + b, (1)) (8)

When b, (t) =0, Eq.(7) becomes the amplitude
modulation model:

x,(t) =[1+a,(t)]cos(2mkf,t + ¢, ) (9)

Letm,ne {1,2,3,---},and k is chosen so that the
atomic frequency covers the highest order of the meshing
frequency of the vibration signal. To better match the ac-
tual vibration signal, the atomic frequency is expanded by
+2Af( Af is the frequency resolution, Af =f./N, f, is the
sampling frequency ).

It can be seen that the characteristics of the gearbox op-
erating parameters and vibration signals are fully consid-
ered in the constructed SSM sub-dictionary.

1.2.2 Constructing an IM sub-dictionary

The vibration signal caused by local gear failure ( such
as pitting and broken teeth) is a series of periodic impulse
response functions, so a single impulse response is used
to construct the IM sub-dictionary.

x,(t) =exp( =1It,)cos(2mf,t +u) , t, =mod(t,1/f,)
(10)

where u e [O,%]; 1e[0,100] is the attenuation index.

When [ =0, Eq. (10) degenerates into a cosine dictionary.
Since the parameters of the atom are determined based
on the actual vibration signal, the true state of the faulty
gearbox can be better represented by the IM sub-dictiona-
ry.
Therefore, the constructed compound dictionary atomic
library is expressed as

d(t) ={x,(1) ,x, (1) ,x, (1) } Id(e) |, =1

(11)

1.3 Simulation evaluation index

In order to test the effectiveness and accuracy of a com-
plete compound dictionary (i. e. SSM-IM dictionary ) ,
the following evaluation indicators are introduced ™

Mean square error E

E, D (x, (k) —x(k))’

=1

(12)

N-1
k

_ 1
" TN

Comparability index C,,

X,X,
C,= < >~ (13)
(B I
Signal to noise ratio R,
N
> x (k)
R, = 10log| — - (14)

; (x(k) = (x,(k)))*

where N is the length of the signal; x and x,, is the source
signal and the reconstruction signal after the m-th itera-
tion, respectively.

1.4 Simulation analysis of SSM-IM dictionary

In order to comprehensively analyze the performance of
the SSM-IM dictionary, the Fourier dictionary, DCT dic-
tionary and LEMF dictionary*"’ combined with the OMP
algorithm are used to decompose and reconstruct the simu-
lation signal. Corresponding conclusions
through analysis and comparison.

When the gear suffers local damage, its vibration sig-
nal is a modulation signal. Assuming that the gearbox is a
first-level reducer, its parameters are as follows;

The rotation frequency of the input shaft is 15 Hz, the
number of the teeth of the small gear is 25, and the num-
ber of the teeth of the large gear is 75. The meshing fre-
quency is 375 Hz, and the rotation frequency of the output

are drawn

shaft is 5 Hz. Assuming that one of the gears is locally
worn, the vibration signal can be approximated by
x, (1) =(1 +sin(3071) ) (cos(750mt) +sin(30mz) )
x, (1) =1.2(1 +sin(60mt) ) (cos(1 500mt) +sin(60mt) )
x, (1) =2(cos(2 250mt) +sin(30mwz) ) (1 +sin(30mt) )

x,(1) =1.2(exp( —100£,) )sin(750mt) .1, =m0d(t,%)

x(t) =x, (1) +x,(1) +x,(t) +x,(t) +n(1)
(15)

where x, (t) ,x,(t) and x,(7) are AM and FM signals;
x,(t) is an impulse signal; and n(t) is random noise
with a signal to noise ratio (SNR) of -5 dB. The num-
ber of the sampling points is 4 096 and the sampling fre-
quency is 3 kHz. The time-domain waveform diagram of
the simulation signal constructed according to the above
parameters is shown in Fig. 1.

In Fig.2, it can be seen that the SSM-IM dictionary can
more effectively reconstruct the simulation signal compared
with the DCT dictionary, Fourier dictionary, and LFMF
dictionary. Moreover, Figs.2(a), (b) and (c) show that
the signal reconstruction of the SSM-IM dictionary has the
lowest residual error, the best correlation and the smallest
E, compared with the DCT dictionary, Fourier diction-
ary, and LFMF dictionary.
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Fig.1 Simulation signal waveform. (a) The pure signal wave-
form; (b) The noise signal waveform

The results show that the SSM-IM dictionary has better
signal reconstruction accuracy and higher reconstruction
stability for extracting the gearbox fault feature.
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Fig.2 Simulation signal analysis results. (a) E,; (b) C,; (¢) R,

1.5 Analysis of the influence of noise on the SSM-IM
dictionary

The simulation results above show that the SSM-IM
dictionary has high accuracy in signal reconstruction. In
order to further explore the performance of the dictionary,

it is used to reconstruct the signal of noise with different
intensities , that is, the influence of noise. The simulation
signal of Eq. (15) is used to decompose and reconstruct
the noise signals with different SNR, which are -1, -3,
—5 and -7 dB respectively. In this part, the simulated
pure signal of Eq. (15) is regarded as a useful signal.

Fig.3(a) and Fig.3(b) are the trends of E_ and C,,
with the number of iterations, respectively. From Fig. 3
(a), the following conclusions can be drawn. First, for
noise signals with different strengths, the E,_ value tends to
decrease first and then increase as the number of iterations
increase. Secondly, when the signal-to-noise ratio is — 1
dB, the smallest E_ is 0.182 12. When the SNR is -3,
-5 and -7 dB, the minimum E that can be achieved is
0.182 12, 0.216 07 and 0.272 65, respectively. It can
be seen that signals with the SNR of -3, -5
—7 dB can also achieve better noise reduction with fewer
iterations. It shows that the performance of the SSM-IM
dictionary is more robust.

and
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Fig.3 Simulated signal analysis results. (a) E

(b) Cm

The following conclusions can be drawn from Fig. 3
(b). First, for signals containing different SNRs, the
value of C increases first and then decreases with the in-
crease in the number of iterations. Secondly, compared
with the SNR of -3, -5 and -7 dB, the change trend
of C,_ with the SNR of -1 dB can reach the maximum
value faster than that with the SNR of -3, -5 and -7
dB. In contrast, when the SNRis -3, -5 and -7 dB,
signals can also achieve a higher extraction accuracy with
fewer iterations.

In summary, after optimal matching, the correlation
between useful signals and reconstructed signals decreases
and E_ increases with the increase in iteration times. The
result shows that with the increase in iteration times, the



26

Mao Yifan and Xu Feiyun

noise signal is introduced into the reconstructed signal
again. Therefore, the useful signal can be obtained after
the appropriate number of iterations, while the residual
signal is noise.

2 The Optimized FDM ( OFDM)

Singh'"’ proposed a new formulation of the FDM using
the discrete cosine transform ( DCT). The block diagram
of the algorithm is shown in Fig. 4.

- ~ = Zaln)
i [B7] | ~ [PHR] = [FSS] — Zet

- = _’Zz.\/[”’]

Fig.4 The block diagram of FDM
Foreach i, ie[1,M],

1 N,_, +1<k<N,
. (16)
0 otherwise

ZchEnJ = \/%k:; lxcz[k]exp(j W) —

xi[n] +j)~cc2i[nj
l<isM, N,=0, N,=N-1

H,.[k]z{

(17)

FDM is a signal decomposition algorithm based on a
zero-phase filter. A cut-off frequency is required when
the signal is decomposed. The question is how to obtain
cut-off frequencies (CFs). The binary method is adopt-
ed to select CFs in the FDM algorithm (f,, =f,../2,f., =

Jon/2" oS = fo/2') s where f,

max max

is the maximum fre-
quency of a signal x(¢) and for the sampled signal, the
maximum frequency is half of the sampling frequency
(f./2).

Most of the fault signals of a gear are AM and FM sig-
nals, and the analytic Fourier intrinsic band functions
( AFIBF) obtained by using the binary cut-off frequency
selection method for FDM generate mode aliasing easily.
Therefore, this paper proposes a new method for selecting
the cut-off frequency to overcome the shortcomings of the
above method. The specific steps of the algorithm are as
follows ;

Step 1 Perform FFT on the collected vibration signal
x[t], that is X[ k] =FFT{x[]}, as shown in Fig.5(a).

Step 2 Envelope the FFT spectrum obtained in Step 1
to obtain the envelope spectrum of the FFT spectrum, as
shown in Fig.5(b).

Step 3  Extract the frequency value corresponding to
the main peak of the waveform in Step 2, such as (f;,f,,
Fuvreeuf)-

Step 4 Obtain the CFs of each band component using
the following formula.

ot hy thth hthy Ll th
e N R e |

2 2 72 2
(18)
5-
4k
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3
£
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g
<
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41
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=
22t
g
<
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A\
0 I QTN \S & )
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121

Jothh
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(¢)
Fig.5 Spectrum envelope analysis. (a) FFT spectrum; (b) En-

1500

velope of FFT spectrum; (c) Envelope

In order to analyze the noise sensitivity of the cut-off
-3, -5,
-7 dB noises are added to Eq. (15), respectively. Then

frequency method proposed above, - 1,

this method is used to perform a fast FFT spectrum enve-
lope, and the result is shown in Fig. 6. It can be seen that
the envelope of the spectrum can clearly envelope the

main peak points of the spectrum. Therefore, the method
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is also applicable to signals with a certain intensity of
noise, thus verifying the effectiveness of the method.
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T Wl Wit AN ! P
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Frequency/Hz
(d)
Fig.6 FFT envelope after adding different intensities of noise.
(a) -1dB; (b) -3 dB; (¢) -5dB; (d) -7 dB

In order to verify the effectiveness of the CFs selection
method proposed, the pure signal without noise in Eq.
(15) is taken as the simulation signal and compared with
the binary CFs selection method.

It can be seen from Fig. 7(b) that mode mixing will
occur among AFIBF1, AFIBF2 and AFIBF3 after signal
decomposition with unoptimized FDM, which causes er-
rors in subsequent signal processing and leads to the in-
correct identification of fault types.

It can be seen from Fig. 7(d) that the OFDM effective-
ly overcomes the problem of mode mixing among various
components caused by the frequency division of FDM
with binary CFs, and verifies the validity of the proposed
frequency band division.
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Fig.7 Comparison of FDM before optimization and FDM after
optimization. (a) AFIBFs of FDM before optimization; (b) The FFT
of AFIBFs of FDM before optimization; (c¢) AFIBFs of FDM after opti-
mization; (d) The FFT of AFIBFs of FDM after optimization

3 Procedure of SSM-IM-OFDM

In order to solve the problem of the gearbox fault feature
extraction under the influence of the strong background
noise and interference source signal, this paper proposes a
method based on the combination of the SSM-IM dictiona-
ry and OFDM. The detailed process description is as fol-
lows:

1) The measurement signal is obtained from the gear-
box with a partial faulty gear.

2) The SSM-IM dictionary and OMP method proposed
in this paper are used to perform noise reduction prepro-
cessing on the gearbox fault signal.
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3) The OFDM is used to decompose the gear fault sig-
nal after noise reduction and preprocessing to obtain sev-
eral AFIBFs.

4) The cross-correlation criterion is used to select the
AFIBF component with the largest correlation coefficient
between each component and the denoised signal, and
then the Hilbert envelope spectrum demodulation is car-
ried out on the component. The frequency spectrum char-
acteristic of the demodulation result is analyzed to achieve
the accurate extraction of the gearbox fault feature.

4 Experimental Verification
4.1 Public data verification

In order to verify the effectiveness of SSM-IM-OFDM ,

this section uses the prognostics and health management
(PHM) 2009 Challenge Data to verify the fault data of
helical gears on small and medium-sized test benches.
PHM 2009 Challenge Data is a complete set of gearbox
data from the 2009 International Competition of the PHM
Association, including the faults of gears, bearings and
shafts. The experimental platform structure is shown in
Fig. 8. There are three shafts (input shaft, idler shaft,
and output shaft) inside. The two sets of the meshing
gears used in the experiment are the spur gear mode and
helical gear mode. Vibration sensors are installed on both
sides of the box to collect data. The input speed of the
gear is 50 Hz, the sampling frequency is 66.67 kHz, the
number of sampling points is 67 000.

Tachometer Gear 1(G1)
| » Spur:16 teeth L
I T Helical:32 teeth B
Epg Gear 3(G3) |_]Acceleration
E at_ o Spur:48 teeth Idler > Spur:24 teeth [ sensor 21
] Helical:96 teeth  Shaft Helical:
Acceleration | L 48 teeth
sensor 1 _| Gear 2(G2) x Spur:40 teeth |
] Helical: e
S0tecth | Oppt
Gear 4(G4)

(a)

(b)

Fig.8 Schematic diagram of PHM 2009 Challenge Data installation and example of gear fault. (a) Schematic diagram of PHM 2009

Challenge Data installation; (b) Example of gear fault

This paper takes helical gear fault as an example. Com-
bined with the relevant parameters of speed and gearbox,
the two-stage meshing frequency and fault feature frequen-
cy of each gear can be obtained, as shown in Tab. 1.

Tab.1 Feature frequency of the gearbox

Meshing frequency/Hz Feature frequency/Hz

High speed  Low speed fa Jo Ja Jaa
1 600 800 50 16.67 16.67 10

Fig.9 shows the time domain waveform and Hilbert en-
velope spectrum obtained by OFDM. As shown in Fig. 9
(a), the signal waveform contains a large amount of noise
and is affected by multiple interference sources between the
transmission members, so there is no obvious periodic im-
pact. In Fig. 9(b), the harmonic 2f, and 6f, of the fault
feature frequency can be found, but the fault feature fre-
quency f, and its harmonic 3f,, 4f,,--- are interfered with
by other frequencies and cannot be clearly identified.

The SSM-IM-OFDM proposed in this paper is used for
analysis. Feature extraction and noise reduction are per-
formed on the signal through the SSM-IM dictionary and
OMP algorithm. The result after the 50th iteration is se-
lected as the reconstructed signal and decomposed by the
OFDM and calculate the correlation coefficient between

Time/s
(a)
2 60
: 2
Eq i o
S
220
=
g % 50 T00 150
Frequency/Hz

(b)
Fig.9 Gearbox fault signal. (a) Time-domain waveform; (b)
Hilbert envelope spectrum by OFDM
each AFIBF and the original vibration signal. The results
are shown in Tab. 2. The AFIBF9 component with the
largest number of correlations was selected for the Hilbert
envelope spectrum as shown in Fig. 10. The fault feature
frequency f, and harmonics 2f; ,3f;, -+, 8f, of G3 can be
clearly identified in Fig. 10. With the SSM-IM-OFDM,
more feature frequency information can be obtained,
which effectively reduces the effect of background noise
and irrelevant frequencies.

Tab.2 Correlation coefficient of each AFIBF with the original signal

Correlation coefficient C, C, C; C,

Cs Cs G Gy G Cio Ci

Values 0.001 0.024 0.009 0.087

0.060

0.117 0.396 0.356 0.580 0.516 0.296
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Fig.10 Hilbert envelope spectrum of AFIBF9 component

4.2 Methods contrast I

The fast kurtogram method ( FK) 12 and EMD are ef-
fective fault diagnosis methods, so they are used as a
benchmark for evaluating the performance of SSM-IM-
OFDM. Fig. 11 shows the analysis results of the FK. As
shown in Fig. 11 (b), the fault feature frequency 2f; and
harmonics 3f; ,4f, ,5f,,6f, are also identified. However,
this method greatly weakens the signal strength, and the
corresponding spectral amplitude is much smaller than the
SSM-IM-OFDM. In Fig. 12, after EMD decomposition,
the Hilbert envelope spectrum processing is performed on
the IMF1 and IMF2 components. Whether it is the enve-
lope spectrum of IMF1 or IMF2, the extracted fault char-
acteristic frequency can be used for fault diagnosis, but
some harmonics are missing.

By comparing the results, the advantages of the SSM-
IM-OFDM are proved. In the gearbox fault diagnosis, its
performance is better than that of the FK and EMD. In
order to verify the above analysis conclusion, further re-
search will be carried out in the next section.
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Fig.11 The PHM data analysis results obtained by FK. (a)
Kurtogram of the signal; (b) The Hilbert envelope spectrum
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Fig.12 The PHM data analysis results obtained by EMD. (a)
The Hilbert envelope spectrum of IMF1 ; (b) The Hilbert envelope spec-
trum of IMF2

4.3 Laboratory data verification

In order to further verify the effectiveness of the SSM-
IM-OFDM, laboratory data is used for verification. The
gearbox test bench in the laboratory is shown in Fig. 13.
The gearbox input shaft is connected to the motor through
a coupling, and the acceleration sensor is installed in the
gearbox ’ s shaft end. The data collection is completed by
the MFD310 system developed by our laboratory. The vi-
bration data unit of the gearbox test bench is mm/s’. The
gearbox consists of 2 shafts, the gear ratio is 46: 31, the
data sampling length is 4 096 points, and the sampling
frequency is 3 838.77 Hz. The gear meshing frequency is
307 Hz, the frequency of shaft [ is f; =10 Hz, and the
frequency of shaft I is f;, =7 Hz.

Fig. 13  Gearbox test bench

Figs. 14 (a) and (b) are the time-domain waveform
and Hilbert envelope spectrum by OFDM, respectively.
In Fig. 14 (b), the fault feature frequency f, can be
found, but its harmonic 2f} ,3f; ,--
other frequencies and cannot be clearly identified.

The SSM-IM-OFDM is used to analyze the gearbox
fault signal actually measured in Fig. 14 (a). The SSM-
IM dictionary is combined with the OMP algorithm for
feature extraction and noise reduction of the measured sig-
nals, and the signal after the 20th iteration is selected as
the reconstructed signal, which is decomposed by
OFDM. Then the correlation coefficient between each
AFIBF and the original vibration signal is calculated, and
the results are shown in Tab. 3. The AFIBF3 component
with the largest correlation number was selected for Hil-

is interfered with by
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Time-frequency diagram of the gearbox fault signal.
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Fig. 14
(a) Time domain diagram; (b) Hilbert envelope spectrum by OFDM
bert envelope spectrum analysis, and the results are
shown in Fig. 15. It clearly shows the fault feature fre-
quency and its harmonic components of 7 Hz on shaft [I .
Based on this, it is judged that the large gear in the gear-
box is faulty, and the analysis result is consistent with the
actual situation. Using the SSM-IM-OFDM can obtain
more feature frequency information, and effectively re-
duce the effect of background noise and irrelevant fre-
quencies.

Tab.3 Correlation coefficient of each AFIBF with the original
signal

Correlation coefficient  C; C, Cs C, Cs
0.0100 0.0117 0.1189 0.2341 0.036 8

Values
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Fig. 15 Hilbert envelope spectrum of AFIBF4 component

4.4 Methods contrast II

This part also uses FK and EMD as comparison meth-
ods. Fig. 16 shows the analysis results. In Fig. 16 (b),
the fault feature frequency 7 Hz and its harmonic frequen-
cy 14 Hz are also identified, but many interfering fre-
quency components around them will affect the accuracy
of fault diagnosis. In addition, this method greatly weak-
ens the signal strength, and the corresponding spectral
amplitude is much smaller than that of the SSM-IM-
OFDM. In Fig. 17, after EMD decomposition, Hilbert
envelope spectrum processing is performed on the IMF1
and IMF2 components. After Hilbert envelope spectrum
processing on IMF1, the fault feature frequency is not
clear, and therefore, fault diagnosis cannot be per-
formed. Similarly, after IMF2 is processed by the Hilbert
envelope spectrum, although it can extract the fault fea-

ture frequency, it is smaller than the fault feature frequen-
cy component extracted by the method proposed in this
paper.

The research of laboratory data further verifies the ef-
fectiveness of the proposed method for gearbox vibration
signal analysis and fault diagnosis. In addition, the ad-
vantages of the SSM-IM-OFDM are highlighted by com-
parison with the FK and EMD.
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Fig.16 The laboratory data analysis results obtained by FK.
(a) Kurtogram of the signal; (b) The Hilbert envelope spectrum
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Fig.17 The laboratory data analysis results obtained by EMD.
(a) The Hilbert envelope spectrum of IMF1; (b) The Hilbert envelope
spectrum of IMF2

5 Conclusions

1) In most cases, the gearbox distributed fault can be
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modeled by a stable modulation signal, while local faults
can be modeled by a impact modulation signal. There-
fore, a compound dictionary ( SSM-IM ) based on the
modulation signals of distributed faults and local faults is
established, and the dictionary design has a clear physical
meaning and wide versatility. The performance is better
than that of the DCT dictionary, Fourier dictionary and
IFMF dictionary.

2) FDM is an algorithm based on the Fourier theory
and a zero-phase filter, which decomposes non-linear and
non-stationary signals into a series of single-component
signals with physical significance at instantaneous fre-
quencies. In order to suppress the mode aliasing effect
caused by the binary cut-off frequency selection method
in the FDM decomposition process, a new cut-off fre-
quency selection method is proposed to optimize the Fou-
rier decomposition algorithm, which improves the fre-
quency band division accuracy and decomposition quality
of FDM.

3) In order to solve the problem of difficult extraction
of the gearbox fault feature information under strong
background noise and interference frequency, a gearbox
fault diagnosis method based on the combination of the
SSM-IM dictionary and OFDM is proposed. The validity
of the proposed method is verified by the analysis of PHM
data and laboratory gearbox failure data.
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