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Abstract: To improve the control performance of nonlinear
ultra-supercritical (USC) thermal power units, an improved
min-max fuzzy model predictive tracking control ( FMPTC)
strategy is proposed. First, a T-S fuzzy model is established to
approximate the dynamics of the nonlinear boiler-turbine
system. Then, based on an extended fuzzy model containing
state variables and output variables, a min-max FMPTC is
derived for output regulation while ensuring the closed-loop
system stability and the inputs in their given constraints. For
greater controller design freedom, the developed controller
adopts a new state- and output-based objective function. In
addition, the observer estimation error is regarded as a
bounded disturbance, ensuring the stability of the entire
closed-loop control system. Simulation results on a 1 000 MW
USC boiler-turbine model illustrate the effectiveness of the
proposed approach.
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he massive consumption of fossil fuels and environ-
T mental degradation motivated many researchers to
find more efficient ways to save energy and reduce gas e-
missions and pollutants. Ultra-supercritical (USC) ther-
mal power units have significant energy saving and envi-
ronmental improvement effects. Compared with supercrit-
ical units, USC units have a thermal efficiency increase
of 1.2% 4% , which is more obvious than in convention-
al coal-fired generating units. High-efficiency and low-
emission USC thermal power units are the main direction
of future thermal power construction.
However, the problem of controlling it is extremely
challenging because of the severe nonlinearity in the wide
operation range, the coupling between multiple variables,
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the hard constraints on manipulated variables, and un-
known disturbances''™ . Traditional proportional-integral-
derivative ( PID) control is difficult to meet the control
objectives. To this end, it is of urgence to develop ad-
strategies to
systems’ operation performance. Model predictive control
(MPC) is widely accepted as an optimal control method
for industrial processes due to its inherent robustness,
ability to handle constraints, and receding horizon imple-
mentation of optimal control inputs. Linear dynamic ma-
trix control (DMC)" and generalized predictive control

vanced control improve boiler-turbine

(GPC) " are used for boiler-turbine systems. Simulation
results verify that linear MPCs can achieve better control
effects than PID controllers. However, the control quality
of linear MPCs deteriorates due to system nonlinearity
during the wide-range operation of units.
method-based predictive
(NMPC)"™ and fuzzy neural network and input-output

Collocation
nonlinear model control
feedback linearization-based NMPC'™' are proposed for
boiler-turbine systems. Although control performance is
improved, nonlinear optimization is time-consuming. Be-
sides, it is often difficult to obtain accurate nonlinear
models of NMPC for complex industrial processes.

An alternative method is to use fuzzy model predictive
control (FMPC) based on the T-S model to solve these
problems. The T-S fuzzy dynamic models have been
widely accepted to represent nonlinear dynamics in the
control community. Many state feedback FMPC"” ™" and
output feedback FMPC methods'''™"* have been devel-
oped. These FMPC methods adopt the min-max strategy,
which is first proposed in Ref. [13]. Unfortunately, most
of the above min-max FMPC methods are derived from
state adjustment and stability problems.
track reference signals, especially in plant parameter vari-
ations or uncertainties, their output tracking performance
cannot always be guaranteed. In industrial applications, it
is more necessary to study tracking control methods,

For stepwise

which are more complicated than the stabilization control
design''. In Refs. [15 — 16], fuzzy model predictive
( FMPTC ) methods are developed
through a state and disturbance observer, a steady-state
target calculator, and a stable predictive controller. How-
ever, they need to assume that the corresponding input of

tracking control
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desired output trajectories is known. An extended state
observer-based FMPC'”' and generalized discrete-time
nonlinear disturbance observer-based FMPC!"™ are pro-
posed to overcome nonlinearity and disturbances simulta-
neously. However, its compensation operation is added
directly to the input, causing the overall optimality to be
destroyed. In Ref. [19], min-max state feedback model
predictive tracking control based on the extended state-
space model is proposed to improve output tracking per-
formance. However, the controller needs the state of
processes to be measurable. To this end, in Ref. [20],
the input and output variables of processes are selected as
the state of the comprehensive model to solve the problem
of the unmeasurable state, but it leads to a large increase
in the order of the comprehensive model and online com-
puting burden for multi-variable systems. Moreover, for
nonlinear constrained systems, the design separation prin-
ciple between the controller and the observer does not ex-
ist. Therefore, to ensure the stability of the entire closed-
loop control system, the MPC needs to consider the
observer’s estimation error.

Motivated by the analysis above, an improved min-max
FMPTC controller is developed to improve the control per-
formance of multi-variable nonlinear USC boiler-turbine
systems while ensuring the closed-loop system stability
and the inputs in their given constraints. The merit and

drB -7
4 = ~0-005 6r,, +0.005 6 ",

m m

novelty of the proposed controller in this paper lie in that:

1) Unlike the traditional FMPTC scheme, which is de-
signed directly based on the T-S model, the proposed
control method first amplifies the T-S model and then de-
signs the subsequent controller based on the extended T-S
model. The design facilitates the subsequent tracking con-
troller design and allows the controller to use a new state-
and output-based objective function.

2) A new state- and output-based objective function in-
stead of the output-based objective function is employed
for the controller design. The resulting controller can also
control state variables during output tracking processes
and offer a higher degree of freedom to tune the closed-
loop system behavior.

3) In the MPC design, the observer estimation error is
regarded as a bounded disturbance, ensuring that the en-
tire closed-loop control system is stable.

1 USC Boiler-Turbine Dynamics

The model used in this paper represents the behavior of
a1 000 MW USC power plant in Taizhou, China™".
This model is developed from the first-principles, and its
parameters are identified using real plant operating data.
It is well approximated to the real plant dynamics and is
widely used to verify the effectiveness of controllers'™ """

The nonlinear time-delay model is given by

dp,, (43.22p, —5.62p™ —31.84)( -8.96p, +1.165p"% +2 512.4)(500 —1.31h,)

"y, +0.015 75 +0.000 665D,

(1)

dr 1,060 000(1.31/, — 1 205)
dh. (43.22p. —5.62p"% ~31.84)( —8.96p, +1.165p"™ +2 512.4)(3 000 —1.314,)
ar 59 830(1.31h,_ —1 205)
Pu =P, —0.13p)%
h =h

N, =0.000 55u,(43.22p, —5.62p"* ~31.84)( —8.96p,, +1.165p>** +2 512.4)

m

where state variables r;, p_ and &, represent the pulver-
ized coal flow rate that enters the boiler (kg/s), separator
steam pressure (MPa), and the separator steam enthalpy
(kJ/kg), respectively; 7, =17 s represents the delay of
the milling system; the controlled variables p_, h_and N,
represent the throttle steam pressure (MPa), the separator
steam enthalpy (kJ/kg), and the active power (MW),
respectively; manipulated variables u,, D, and u, repre-
sent the pulverized coal flow rate (kg/s), the feedwater
flow rate (kg/s), and the turbine throttle opening, re-
spectively. The manipulated variables are constrained by
40 kg/s<u, <100 kg/s, 350 kg/s<D,, <800 kg/s, 0

<u <I, -10 kg/s<u,<10 kg/s, —40 kg/s<D , <

40 kg/s, and —0.01<u,<0.01. The equilibrium oper-
ating points of the USC thermal power unit are shown in
Tab. 1.

u, +0.278r:% ~0.03D,,

Tab.1 Equilibrium operating points of the USC thermal power unit
Operating  py/ B/ N./ uy/ D/ w(0-1)
condition MPa (kJ-kg™') MW (kg-s ')(kg-s!)

1" 13.68 2786.1 547.56 52.9067 407.029 2 74.47
2# 16.30 2751.5 650.00 62.4817 492.3103 74.25
3# 18.23 2729.0 728.33 69.7721 558.501 8 74.56
4* 20.00 2710.0 800.00 76.4220 619.9746 74.88
5% 22.54 2701.3 901.49 85.808 4 702.039 8 75.28
6* 22.60 2698.01000.00 94.8900 780.200 0 83.30

2 T-S Fuzzy Modeling of the USC Boiler-Tur-
bine System

The T-S fuzzy dynamic model is widely accepted as an
excellent approximator to complex nonlinear plants. Since
the dynamics of USC thermal power units depend on the
load change, the output power N, is selected as the only
premise variable in fuzzy modeling.

According to the nonlinearity analysis, the unit’s non-
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linearity increases with the increase of power''”. Al-
though increasing the number of local models can im-
prove the accuracy of the T-S fuzzy model, it increases
the computation burden of the subsequent predictive con-
troller. For the sake of simplicity, three local models are
developed around operation points 17 (547. 56 MW), 3*
(728.33 MW), and 5°(901.49 MW) by using the Tay-
lor series expansion. The membership function of the
fuzzy model is shown in Fig. 1.
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Fig. 1

model

Membership function of active power N, in a fuzzy

Then the model (1) is expressed as the following fuzzy
affine model with time delay:
R':if N, (k) is M', then

x,(k+1) =Ax, (k) +Bu(k) +Bu(k-7) +a,}

y(K) = Cpx, (k) +Du(k) +b,
1=1,2,...,L (2)
where R' denotes the I-th fuzzy inference rule, L =3 the
number of inference rules, M’ the I-th fuzzy set of N_(k),
(A,, Bl, B,T, é‘,, b,, a,, b)) the [-th local model, 7 the time
delay step, and x,, = {ry, p,.» h,}'» u = {uy, Dy, u}"
andy = {p,, h,,N.}" denote the state variable, the con-
trol variable, and output variable at time k, respectively.
By using a singleton fuzzifier, the product inference,
and the center-average defuzzifier, the fuzzy model is ex-
pressed by the global model,

x,(k+1) =Ax (k) +Bu(k) +Bu(k-1) +a,
) ) ) (3)
y(k)y =C,x (k) +D,u(k) +b, }
where

L
4, B, B, ¢ pl=2rb®la B B ¢ bl

L
Suh =1
=1

To obtain a model without time delay, the delay inputs

are amplified into the model. The form of the extended
model is as follows:

(k) =0,1=1,2,....L

x(k+1) =Ax(k) +B,u(k) +a,
} (4)

y(k) =C,x(k) +D,u(k) +b,

where x (k) =[x, (" w(k-1)" u(k-7)"],
~ ~ ~ ~ T
A, O .. O B B, C,

o o 0 ... 0 0| . 1 - o

A.=lo 1 o olB.=lo}C=lo]|:
o o0 ... I O (0] (0]

o - i . B

DM = D#’ a# = [au o 0] ’ b# =

[I;M 0 O]T, O and I denote the zero matrix and

unit matrix with appropriate dimensions, respectively.

The purpose of the subsequent controller design is to
quickly track the load references under unknown uncer-
tainties while ensuring the closed-loop system’s stability
and meeting the input constraints.

3 Improved Min-max FMPTC for the USC
Boiler-Turbine System

In conventional min-max FMPTC, the following predic-
tive mode is employed to design subsequent controllers:

Fk+i+1|k) =A, #(k+i|k) +B, a(k+i|k
F(k+ilk) -y, =C, 2(k+i|k) +5Mﬁ(k+ik)}

wherex =x —-x, u=u-u_, y =y -y,.y, denotes de-
sired outputs, x_ and u the corresponding state and input,
respectively, x(k+i +1 | k) the state of time k + i + 1
calculated at time k.

The above traditional min-max control method is only
suitable for plants without uncertainties because the corre-
sponding x, and u_ of y change when there are uncertain-
ties. However, uncertainties, including modeling errors
and various disturbances, are unavoidable in actual power
plant operation.

The improved min-max FMPTC is based on the follow-
ing extended model:

z(k+1) =A z(k) + B, Au(k)
y(k) =C,z(k) }

where z(k) = [Ax(k) y(k)1', A, = [v " ], B,
C,A, I

[ u
C B +D
Mo "

1), Au(k) =u(k) —u(k-1).

The following fuzzy observer is used to estimate the
state of the extended model (6):
i(k):AM z2(k-1) +B A u(k—1)+HM[j’(k—l) —y(k—l)]}
y(k-1)=C, z(k-1)

,C, =10 I, Ax(k) =x(k) —x(k -

(7)

where z denotes the estimated state, y the estimated output



Min-max fuzzy model predictive tracking control of boiler-turbine system for ultra-supercritical units 45

variable, y the real plant output, and H, the observer

L L
gain. H, = Y w(bH, = Y w(M'N, 1 =1,2, ...,
I=1 =1

L. The matrices M ™'
following LMlIs:

and N, are obtained by solving the

M +M-S (MA,+N.C)"
MA, +N,C, S
§=8">0

>0
[=1,2,...,L (8)

The observer (7) is equivalent to the state’s feedback
correction based on the error between the model output
and the actual output. It effectively overcomes the effect
of the uncertainties of USC boiler-turbine units.

Then, the following prediction model is obtained:

Z2(k+i+1|k)=A, 2(k+i|k) +B Au(k+ilk 0
yk+ilk)y=Cz(k+ilk }()

where 2=z-z, z.=[0 .|, y=y-y, 2(k+i+1
| k) is the state of time k +i + 1 calculated at time .

In the conventional min-max FMPTC, the following
output-based infinite-horizon min-max performance cost
is considered:

min  max Jy (k) = Y (|| Yk +ilk) |, +

u(k+i | k), i=0 i=0
I @k +ilk |3 (10)

where || y(k+i|k) | o=y (k+il)'Q@y(k+ilk),Q
and R are the symmetric positive definite weighting matri-
ces for output and control input, respectively.

By using a novel state- and output-based infinite-hori-
zon quadratic performance cost, the following min-max
optimization problem for USC boiler-turbine units is for-
mulated as

maxJ; (k) = > (|| 2(k +i|k) ||z§ +
i=0

S. t.
Zk+i+1 k) =A Z(k+ilk) +B Au(k+ilk)  ki=0
(12)
2(k | k)=A, z2(k-1)+B,Au(k -1) +H, [y(k-1) —y(k-1)]
(13)
y(k-1)=C, z(k-1) (14)
u, <u(k+ilk)<u,, k,i=0 (15)
Au,, <Au(k+ilk)<Au, — ki=0 (16)

Remark 1

1) Eq. (11) is the form of state adjustment rather than
output regulation because the extended state z( k) contains
tracking errors and state variables. Therefore, we call it
the state- and output-based performance cost.

2) Q =diag{q,, 95> --+»9,-0,0,...,0,q,,q,, ...,
q,.}- q, denotes the weighting parameter for states. The
greater they are, the smoother the corresponding state
changes. 0,0, ..., 0 denotes the weighting parameter for
delay inputs. ¢, denotes the weighting parameter for
tracking errors. The larger they are, the faster the corre-
sponding output tracking speed.

3) Based on the performance cost (11), the subsequent
controller can adjust the state variables while implemen-
ting the tracking adjustment. It allows a higher degree of
freedom to tune the closed-loop system behavior, and
better control performance is expected.

Then the improved min-max FMPTC controller is de-
termined by Theorem 1.

Theorem 1 Consider the fuzzy system (2) subject to
the input constraints: u,, <u(k+i|k) <u,,i=0, Au
<Au(k+i|k)<Au,,,i=0 with the fuzzy observer (7)
determined by LMIs (8) at sampling time k. If there are
N-step-free control increment sequence AU(k), matrix Y,

min

and symmetric positive definite matrix S, the following

s ,‘T‘if}go dynamic optimization problem is feasible:
~ . 2 .
| @tk +ilk) || %) (11) Comine=y, +(1+an)y, (17)
Y AU (K" R" {z(b)H, ()" +AU (k)"H, (k)" }Q"”
s. 1. R*SAU(K) é 0 =0 (18)
Q" {H,(b)z(k) + H,(k) AU(K) } 0 1
0.5 207G, (BT +AU (MG, (k)"
[ R =0 (19)
G,(k)z(k) +G,(k) AU(k) S
S ST éo.s YT R0.5 STAiT +YTBiT
a 1 _
[ Gk }20 (20) 0"’s vl 0 o =0
G,(ky S RY 0 vl 0
AS+BY 0O 0 S
i=1,2,...,L (21)
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ITAU(k) r(u,, —u(k-1)) - and the feedback control law
=
[—HAU(k)] [—r(umax—u(k—l)) (22) =
u(k+ilk)=YS"'x(k+ilk +u(k-1) i=N
AU(k) rAu,,
| ]s[ (23) (25)
- AU( k) - FAumin
can drive the system optimally to track the set-points
Au (k|k)" ! while ensuring the input-to-state stability of the closed-
Au(k+1 k" _ loop system.
where AU (k) : > I = Proof To reduce conservation, following the method
Au (k+N-1 ‘ 5K in Ref. [22], the objective function (11) is divided into
I O 0 I two parts as follows:
I 1 2 = o . desi N-1
: : ol! =] : ; o is a given design pa- J(/;/—l(k)=z[” 2k +ilk) H%+||Au(k+i\k) 121
i=0
1 1 1 1

rameter; w is the upper boundary of the state estimation

error; Q =1 N@é ; R=1I v&OR; &) denotes the Kronecker
product.

Then, at each sampling time k, the free control se-
quence

u(k+i|k) =Au(k+i| k) +u(k-1) 0<i<N (24)

Z(k | k) = Z(k |k

(26)

®

T = 3L ak+ilk) 1+ | Autk +i |k |3]
(27)

Based on Eq. (9), we can explicitly derive multi-step-ad-
vance state prediction:

2k +1k) =A,2(k|k) +B, Au(k|k

2(k+2|k) =A2(k|k) +A,B Au(k|k) + B, Au(k +1 [ k)

Z(k+N-1]k =A"2(k |k +

Then, Eq. (26) is rewritten as

I = | Hy(0ZCk [0+ Hy (AU | 5 + | AUCK) ||
(29)
I
A (k]
where H, (k) = [“(:)] , AU (k) =
[A, (k)]
r Au(k | k)
Au(kJ:rl\k) ’ H, (k) _
LAu(k+N -1 | k)
r 0 0 0
A (k)1°B (k o 0| =
[#(>]: A . 215 -1,
LLA,(K)]1" B, (k) [A,(K)]'B,(k) O

®0. R=I,R®R.

Note that the separation principle between controller
and observer designs may be lost for nonlinear constrain-
ed systems; therefore, the influence of the state estima-
tion error on the stability of MPC systems cannot be ig-
nored.

(28)

N-1

Z{Af['BuAu(k +N-1-jlk
Then one has

z(k) =z(k) —z,(k) +z(k) —z(k) =z(k) —z,(k) +z(k)
(30)

where Z( k) denotes the state estimation error; z( k) de-
notes the real state; z( k) is the estimated state. To fa-

cilitate the subsequent controller design, assume that

state estimation error z( k) is bounded with | z(k) ||
=w.

Next, the controller derivation is divided into three
parts. The first part is to derive the upper bound of the
objective function (11). Control performance is en-
sured by minimizing the upper boundary. The second
part is to derive the condition for guaranteeing the sta-
bility of the closed-loop system. The third part is to
derive the condition that satisfies the input constraints
(15) and (16).

Part 1 This part deduces the upper bounds of J, ' (k)
and Jy (k), respectively, and then obtains the upper
bound of the total objective function J, (k) by the two
upper bounds.

First, we can obtain the upper bound of J; ' (k):

B (0= | Hy (K Z(k) +Hy (k) AUCK) | = +
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I AUCK) || & = | H, (k) Z(k) +H,(k) AUCK) +
H,(bz(k) |5 + || AUK) || <2 || H,(b)z(k) +
H, (b AUCK) || 5+ AUCK) || & +

2| H(Oz(h |5 <2 | H(kz(k) +

H, () AUK) |5 + || AUK) | 5 +

20, [H, (0" QH, (W)W’ <

¥y, +2X, [H, ()" QH, (k)W (31)

Since 2A,, [H, (k)" éHA(k)]w2 is a constant, using
the Schur complements, the last inequality of (31) gives
(18).

Suppose a common Lyapunov function

V(k) =z2(k)"P Z(k) (32)
satisfies

AV =V(Z(k+i+1 k) =V(Z(k+ilk) <

L zZCh+ilk) 5+ [ Autk+i k) |1 (33)

for all time, the system can be guaranteed to be stable.
Furthermore, summing (33) for i=N to i = «, and
with (% | k) =0 and V(e | k) =0, we obtain

Ji(b) <V(Z(k+N k) = | Z2(k+N k) || 7 (34)
Then, substituting (28) into (34) yields
Ji(k) < || G,(b)Z(k) +G (k) AU(K) ||} =
| G,(k)z(k) +G,(k)AU(k) +G, (k) z(k) || 3 <
2| G (K)z(k) + G (k) AU(K) | ; +
2 G, (kz(k) || =2 || G, (k)z(k) +
G,(k)AU(K) || 3 +2 z2(k) "G, (k)"PG,(k)z(k)

(35)
where G, (k) = [A,D]", G, (k) =
[([A,(0]1""'B,(k) [A,(k)]" "B,k [A4,()]1°B, (k)] .

Suppose
2| G(bz(k) + G, (W AUK) | p<y,  (36)
2G, (k)"PG,(k) <ay,l (37)

where P =vy,S ™', and « is a given design parameter.
Then one has

T2 (k) <y, +ay, 2(b) " 2(k) <y, +ay,w* (38)

By using the Schur complements, (36) and (37) can
be converted to (19) and (20), respectively. Then we
can obtain the upper bound of the total objective function
Jy (k):

J2 (k) <y, +2A, [H, ()" QH,(k) 1w’ +7y, + aw’y,
(39)

Therefore, it can be concluded that the minimization of

¥, + (1 + aw’) y, means the minimum of the objective
function J; (k).

Part 2 Consider the following state feedback control
law:

Au(k+ilk)y=YS'Z(k+i|k) i=N

(40)

The stability constraint (33) is satisfied if the following
holds:

(4, +BYS™)'S™'(4, +B,YS™) S +y,'0 +
y, (YS)'R(YS™) =(A,S+BY)'S"'(A,S+B)Y) -

S+y,'S" QS +y,'Y'RY<0 (41)

which can be expressed as (21).
Part 3 The control sequence is divided into free con-
trol inputs AU(k) and state feedback control law u(k + i

k) =YS 'x (k+i|k) +u(k-1),i=N.

The free control inputs are similar to those in conven-
tional MPC, so constraints (22) and (23) are used for
amplitude and rate constraints. However, it is challenging
for the state feedback law to derive amplitude and rate

constraints while guaranteeing stability'"”

. Since only the
first step of the free control sequence is implemented on
the system, we ignore future control constraints in the
form of state feedback to ensure closed-loop stability.

The respective roles of LMIs are as follows: (18),
(19) and (20) guarantee that ¢ is the upper boundary of
the objective function (11), (21) guarantees the stability
of the input-to-state of the closed-loop system, (22) and
(23) ensure that the free control sequence u(k + i \ k),0
< i < N satisfies the given magnitude and rate constraints,
respectively.

4 Simulation Results and Analysis

In this section, three tests are implemented to evaluate
the performance of the proposed FMPTC controller for the
USC boiler-turbine unit.

The parameters of the proposed controller are set as fol-
lows: the sampling time T, = 10 s, state estimation error
bound w=1.2, free control step N=6, o =4.0 x 10°,
time delay step 7 =2, the extended state and input weight

matrices é =diag {120, 120, 100, 0, 0, 0, 0, 0, 0, 15, 20,
0.008} and R = diag{0.1,0.1,0. 1}, respectively. The
input constraints are u,, = {40,350,0}, u,, =
{100,800,1}", Au,, = { - 10, —40, - 0.01}", and
Au,, =1{10,40,0.01}". The parameters of the proposed
algorithm are the same in the following tests.

Case 1 is designed to test the load tracking capability of
the FMPTC controller over a wide operating range. Sup-
pose that the system changes from operating point 6
(22.6 MPa, 2 698 kJ/kg, 1 000 MW) to operating point

1*(13.68 MPa, 2 786.1 kJ/kg, 547.56 MW) at a speed
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of 20 MW/min at t =1 600 s.

The proposed FMPTC controller is compared with two
other controllers.

1) To test the T-S model’s performance, the same
MPTC based on the single linear model obtained at 901.49
MW point (LMPTC) is proposed. The controller parame-
ters are the same as those of the proposed controller.

2) To test the effect of the state and output-based ob-
jective function, the same FMPTC based on the output-
based performance cost ( FMPTC-output) is proposed.

For the control scheme, we set Q =diag{15,20,0.008},
and other parameters are the same as those of the pro-
posed controller.

The simulation results are given in Fig.2. The
LMPTC and the proposed controller have similar per-
formance near the 901. 49 MW load level because the
model of the LMPTC is developed here.
when the operating point deviates from 901.49 MW, the
control performance of the LMPTC decreases due to the

However,

increase of modeling mismatch. Compared with the
FMPTC output, the proposed method has a smaller over-
shoot and shorter settling time. The reason is that the
proposed controller is devised using state and output-
based objective function. This design allows the resul-
ting controller to adjust the state, increase design free-
dom, and obtain a better performance.
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Fig.2 Wide-range load tracking control of the USC boiler-turbine unit. (a) Throttle steam pressure; (b) Separator steam enthalpy; (c) Ac-
tive power (d) Pulverized coal flow rate; (e) Feedwater flow rate; (f) Turbine throttle opening

The purpose of case 2 is to test the disturbance rejection
capability of the proposed FMPTC controller.
thermal power plants, there are various unknown disturb-
ances, such as changes in coal quality and combustion
conditions, which cause outputs to deviate from set-points
and even affect the stability of the closed-loop systems.
For comparison, the traditional min-max RMPC™ s
used to control the plant.

The parameters of the conventional min-max RMPC are
set as follows: the sampling time 7, =10 s, the state and
input weigh matrices Q = diag{30, 100,0. 1} and R = diag
{0.1,0.1,0. 1}, respectively, the input constraints u , =
{40,350,0}", and u,, ={100,800,1}".

In real

Assume that the system runs at operating point 17
(13.68 MPa, 2 786.1 kl/kg, 547.56 MW). At 3 300
s, a step-type disturbance d = — 1 kg/s is added to the
input u,. At t=3 800 s, suppose that the valve has a
partial failure u, = 0. 98u,. The simulation results are
given in Fig. 3. When disturbances occur, the traditional
control method deviates from the set-points because the
corresponding x, and u, of y_have changed. The pro-
posed method can effectively eliminate the effect of dis-
turbances.
equivalent to feedback correction of the state based on
the error between the model output and the actual out-
put.

The reason is that the observer (7) is
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Fig.3 Disturbance rejection performance of the USC boiler-turbine unit. (a) Throttle steam pressure; (b) Separator steam enthalpy; (c)
Active power (d) Pulverized coal flow rate; (e) Feedwater flow rate; (f) Turbine throttle opening

Case 3 is designed to test the robustness of the
FMPTC. In the real control system of USC power plants,
the mismatch between the model and plant is inevitable.
Suppose that the nonlinear model (1) has mismatch 1,

mismatch 2, and mismatch 3; that is, all parameters are
changed t0 99.5%, 100.5% , and 101% of their original

values, respectively. Besides, Gaussian white noise with
powers of 0.001, 0.14, and 0.1 W is added to the out-
put p,, h, and N_, respectively. The simulation results
are shown in Fig. 4. Under model-plant mismatch and
Gaussian white noise, the system still maintains a good
control performance.
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Fig.4 Wide-range load tracking control of the USC boiler-turbine unit under model mismatches and measurement noises. (a) Throt-
tle steam pressure; (b) Separator steam enthalpy; (c¢) Active power (d) Pulverized coal flow rate; (e) Feedwater flow rate; (f) Turbine throttle open-

ing
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The above three cases verify the effectiveness of the
proposed control method. The proposed controller is also
implemented by solving a set of linear matrix inequalities
(LMlIs), which is known to be a computationally effi-
cient the
controller’s calculation time is between 0.2 s and 0. 3 s.
The calculation time exceeds 0.4 s but less than 0.5 s
during only a few sampling times. The results show that
the controller’s calculation time is much shorter than its

algorithm. For most sampling points,

sampling time, indicating the potential of the controller’s
highly good quality in practical applications. MATLAB
R2016b is used on our PC(3.3 GHz, Core-i5 CPU, 16
GB memory).

5 Conclusions

1) An improved min-max stable fuzzy model predictive
tracking control has been developed for constrained non-
linear ultra-supercritical boiler-turbine systems. The sim-
ulation results on the 1 000 MW ultra-supercritical boiler-
turbine model verify the effectiveness of the method.

2) The controller that adopts the objective function
based on the state and output obtains a higher degree of
freedom to adjust the closed-loop system’s behavior and
achieves a better control performance.

3) With the help of the extended model and observer,
the effects of unknown uncertainties are eliminated be-
cause the extended model contains anintegral action and a
state observer equivalent to feedback correction.
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