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Abstract: To improve the applicability of the global pressure
and temperature 2 wet ( GPT2w) model in estimating the
weighted mean temperature in China and adjacent areas, the
error compensation technology based on the neural network
was proposed, and a total of 374 800 meteorological profiles
measured from 2006 to 2015 of 100 radiosonde stations
distributed in China and adjacent areas were used to establish
an enhanced empirical model for estimating the weighted mean
temperature in this region. The data from 2016 to 2018 of the
remaining 92 stations in this region was used to test the
performance of the proposed model. Results show that the
proposed model is about 14. 9% better than the GPT2w model
and about 7. 6% better than the Bevis model with measured
surface temperature in accuracy. The performance of the
proposed model is significantly improved compared with the
GPT2w model not only at different height ranges, but also in
different months throughout the year. Moreover, the accuracy
of the weighted mean temperature estimation is greatly
improved in the northwestern region of China where the
radiosonde stations are very rarely distributed. The proposed
model shows a great application potential in the nationwide
real-time ground-based global navigation satellite system
(GNSS) water vapor remote sensing.
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he water vapor is a highly variable component of the
T earth’s atmosphere, which plays a key role in the
weather and climate systems even though it makes up on-
ly a small part of the atmosphere'"!. The precipitation wa-
ter vapor (PWYV) is an important parameter to study the
variation of atmospheric water vapor, and the PWV re-
trieved by GNSS measurements has been widely used in
the monitoring and prediction of various weather events
such as short-term rainstorms, thunderstorms, strong
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winds and hurricanes etc”™. The general principle of

GNSS-PWYV retrieval can be described as follows: When
the electromagnetic signal emitted from a GNSS satellite
travels through the neutral atmosphere, a certain delay
will occur due to the effect of atmospheric refraction, and
the part of delay caused by the water vapor in the atmos-
phere measured along the zenith direction is known as the
tropospheric zenith wet delay (ZWD)'""*'. The ZWD is
approximately proportional to the water vapor content
along the zenith direction and once the ZWD has been es-
timated from the GNSS measurements, the PWV can be
calculated through a conversion coefficient. However,
this conversion coefficient is a variable that depends on
the weighted mean temperature, so it is important to ob-
tain an accurate weighted mean temperature when conver-
ting the GNSS-ZWD to PWV"'. Accurate weighted mean
temperature at a specific location can be calculated via nu-
merical integration by using the measured atmospheric
profiles'*”", but this method is not practical in the real-
time or near real-time GNSS water vapor remote sensing,
since it is difficult for general users to obtain accurate at-
mospheric profile data in time.

The precise modeling of the weighted mean temperature
is an effective way to obtain accurate weighted mean tem-
perature in real time. Many empirical models for predic-
ting the weighted mean temperature have been developed
in last decades, and they can be divided into two catego-
ries according to their applicable conditions. One is called
the surface-meteorological weighted mean temperature
(SMWMT) model. The SMWMT models are usually de-
veloped based on the relationship between the weighted
mean temperature and surface meteorological elements
such as surface temperature, pressure and water vapor
pressure etc'™™
weighted mean temperature (NMWMT) model, which
refers to the models that can calculate weighted mean
temperature without the measured meteorological ele-
ments''"™', The NMWMT models are usually less accu-
rate than the SMWMT models, but they are more suitable
for situations where meteorological elements are difficult
to measure. Among the NMWMT models, the global
pressure and temperature 2 wet ( GPT2w) model is the

. The other one is the non-meteorological

most representative. It is a global blind model for estima-
ting tropospheric delay, but it can also provide the empir-

ical values of the temperature, pressure, water vapor
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pressure, and weighted mean temperature etc''’. Howev-
er, large systematic biases can be found for the GPT2w
model when compared to the radiosonde data distributed
in China and adjacent areas.
GPT2w model does not consider the impact of height

differences between the target location and the gird
71

The main reason is that the

points
technology based on the neural network was proposed to
enhance the performance of the GPT2w model in estima-
ting weighted mean temperature in China and adjacent ar-
eas. The measured atmospheric profile data from radio-
sonde stations distributed in this region was used to estab-
lish an enhanced empirical model and verify its accuracy.

. In this study, the model error compensation

1 Determination of Weighted Mean Tempera-
ture

1.1 Weighted mean temperature calculated by nu-

merical integration

During the GNSS water vapor remote sensing, the
PWYV can be calculated by multiplying the ZWD with a
conversion coefficient, which is described as

10°°
= 1
= R +k/T,) D
where k; and k, are the atmospheric refraction constants;

p. is the density of liquid water; R, is the specific gas

constant of water vapor; T is the weighted mean temper-
ature, which is a variable which can be calculated with
the temperature and water vapor pressure along the zenith

direction.
j < dn

T, (2)
j < dn
n T

where e and T are the water vapor pressure (in hPa) and
absolute temperature (in K) of the atmosphere along the
zenith direction; A and h, are the height of the station and
the tropopause, respectively.

However, it is not practical to calculate weighted
mean temperature with the definition formula because
the specific function expressions of e/T and e/T” are u-
sually unknown.
and temperature at a series of sampling points along a
vertical atmospheric profile can be measured, so the defi-

nition formula of the weighted mean temperature can be dis-
181

However, the water vapor pressure

cretized into

Sle e
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where e, T,, h,and e,,,, T,,,, h,,, are the water vapor

pressure, temperature and height of two adjacent levels of

a vertical atmospheric profile, respectively. The meas-
ured atmospheric profile data collected by the radiosonde
and the reanalysis data from the numerical weather models
(NWMs) can be used to calculate weighted mean temper-
ature with this method.

1.2 Computing weighted mean temperature with the
GPT2w model

The GPT2w model can be used to calculate the empiri-
cal value of weighted mean temperature. During the de-
velopment of the GPT2w model,
was used to simulate the periodic variation characteristics
of weighted mean temperature, which is described as

a trigonometric function

2md . 2md
T, =4, +Alcos(365.25) +Azsm(365.25) +

Amrd . Amrd
B'COS(365.25) +st‘“(365.25) (4)

where d denotes the day of the year; A,, A,, A,, B,, B,
are the coefficients of the GPT2w model,
coefficients with the mesh resolution of 1° x 1° and 5° x
5° are provided by the global geodetic observing system
(GGOS) atmosphere.

The GPT2w model is developed with the reanalysis

and two sets of

products, and an unexpected large bias may occur in the
weighted mean temperature estimates from the GPT2w
model due to the differences between the reanalysis data
U1 Furthermore, the height differences
between target location and grid points for interpolation
were not considered, which leads to a significant negative
bias for the GPT2w model in China and adjacent areas'” .

and measured data

1.3 Computing weighted mean temperature with the
Bevis model

The Bevis model is the earliest SMWMT model for
weighted mean temperature calculation, and it is ex-

pressed as
T,=al +b (5)

where T is the measured surface temperature; a and b are
the model coefficients, and they were fitted with the
measured atmospheric profile data of 13 radiosonde sta-
tions distributed in North America"”
is model also has significant limitations when applied to
China and adjacent areas, since the variation characteristic
of weighted mean temperature in this region may be dif-
ferent from that in North America.

. However, the Bev-

2 Development of the Proposed Model
2.1 Data and study area

In general, the measured data collected by the sounding
balloons is the closest to the actual situations, and the
weighted mean temperature values derived from them are
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regarded as the most accurate one. They usually serve as
the approximate true values for modeling and examining
the performance of the weighted mean temperature mod-
els'"™"". The radiosonde dataset is now available on the
Integrated Global Radiosonde Archive (IGRA) (https://
www. ncei. noaa. gov/data/igra/access/derived-por/) .
The dataset is organized according to the IGRA stations,
and the atmospheric profile data of each station mainly
consists of the meteorological elements at different heights
along the zenith direction with a temporal resolution of 12
h, including the pressure, temperature and water vapor
pressure etc.

The study area chosen for this study is China and adja-
cent areas, where the data of 100 radiosonde stations
measured from 2006 to 2015 was used for modeling and
the remaining 92 stations for testing the performance of
the proposed model. Fig. 1 shows the distribution of ra-
diosonde stations for modeling and testing. The stations
for modeling should be almost evenly distributed to en-
sure the applicability of the proposed model.

2.2 Methodology

Several studies have discussed the systematic bias of
the GPT2w model in estimating weighted mean tempera-
ture in China and adjacent areas, and the main reason is
that the GPT2w model does not take the height of the target
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Fig.1 The distribution of radiosonde stations for modeling and
testing
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location into account[ ].

In this work, we took the
height and geographic coordinate of the station into ac-
count as input variables to establish an improved model.
The proposed model is developed on the basis of the
GPT2w model and makes use of the powerful multi-input
nonlinear mapping capability of the artificial neural net-

work (ANN)""'. The model error compensation technol-

ogy is also employed in the development of the proposed
model. The flow diagram for establishing the model is
shown in Fig. 2.

| 7—'1“7(91"1’2\\' |

Fig.2 The flow diagram of establishing the model

Firstly, the empirical values of weighted mean temper-
ature were calculated by the GPT2w model. Yao et al. '
and Ding'” suggested that the weighted mean tempera-
tures derived from the GPT2w model should be corrected
via a lapse rate factor in practice, so a constant lapse rate
of —5.1 K/km was used in this study. The weighted
mean temperature derived from the radiosonde data are
usually regarded as the approximate true values, and they
were used to calculate the residuals of weighted mean tem-
perature estimates from the GPT2w model at this stage.

Secondly, the input and output variables were deter-
mined. The input variables include latitude (¢), longi-
tude (A), height (H) of the site, day of year (DoY) and
the corrected value of weighted mean temperature deter-
mined by the GPT2w model (T, s, ). The output varia-

ble is the residual of the GPT2w model (AT, ). The
training samples should be normalized before use, and the
normalized transformations were carried out by

2(x" = x,;,)

X' =TTl (6)
X

max xmin

where x" and x" are the true value and normalized value,
respectively; x,_stands for the maximal value and x ; de-
notes the minimal value of each variable. We finally pre-
pared a total of 374 800 samples for modeling.

Thirdly, the training mission of the neural network was
carried out. A most popular learning algorithm, back-
propagation ( BP), was used for training. The optimal
structure of an ANN model usually needs to be deter-
mined through a series of sensitivity tests, so the number
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of neurons in the hidden layer for each training mission
was set to be 4 to 10,
trained 10 times independently. The training results
showed that when the number of neurons in the hidden

and each ANN structure was

layer is greater than 7, and the performance of the pro-
posed model changes little and tends to be stable. In or-
der to prevent the risk of overfitting, we determined a
neural network structure of 5 x7 x 1 as the core part of
the proposed model.

Finally, we determined the optimal structure of the
neural network and obtained the optimal weight and bias
values. Users can just focus on how to use the final
weight and bias values of the proposed model to calculate
the weighted mean temperature instead of carrying out the
training process again. For a single sample, the process
of calculating weighted mean temperature with the pro-
posed model can be described as

7 = f( b(z) + Z u,;2>g(b;1> + W;[l)x[)) (7)
J= i=1
(T:ax _ Tﬂin)Z + 1 .
AT‘mipre = 2 + Tr: (8)
Tmipre = TnLGI’I‘Zw + ATmipre (9)

where x, is the i-th input variable; m is the number of in-
put variables and n is the number of neurons in the hidden
layer; the weight matrix W, W and bias values b'",
b'? are all determined after a certain training mission; z is
the output of the neural network; 7" and T"" are the
maximal and minimal values of weighted mean tempera-
ture in the training samples; T, .
the proposed model. We named the proposed model as
the GPT2w-NN model in this study.

is the final output of

3 Results and Analysis

A total of 159 703 atmospheric profiles of 92 radiosonde
stations measured from 2016 to 2018 were utilized to veri-
fy the performance of the GPT2w-NN model in compari-
son with the other two published models, the Bevis model
and GPT2w model. The Bevis model is specified as T, =
70.2 +0.72T."".
to calculate weighted mean temperature under two appli-
cation conditions, one with the real surface temperature
and the other without measured surface temperature. For
the latter, the surface temperature derived from the
GPT2w model was used. We called the Bevis models un-

We considered using the Bevis model

der these two application conditions the Bevis-R model
and Bevis-V model, respectively. The bias and root-
mean-square error (RMSE) were used to evaluate model
accuracy.

3.1 Accuracies of different models tested by radio-

sonde data in the study area

We calculated the bias and RMSE of different models

with the 159 703 testing samples, which are shown in
Tab. 1. The bias and RMSE of each testing station were
also calculated.

Tab.1 Bias and RMSE of different models K
R Average Average
Models Bias . . RMSE .
site bias sitt RMSE
Bevis-R -0.74 -0.65 4.33 4.17
Bevis-V 0.29 0.50 5.16 5.01
GPT2w -1.67 -1.73 4.70 4.54
GPT2w-NN -0.16 -0.21 4.00 3.87

One can see from Tab. 1 that the GPT2w model shows
the largest negative bias ( —1.67 K), and significant sys-
tematic negative bias can be found for the GPT2w model.
The Bevis-R model and Bevis-V model perform a little
better in bias and no systematic bias has yet been found
for them. The GPT2w-NN model, however, presents a
much smaller bias ( — 0. 16 K) and average site bias
( -0.21 K), which verifies the good applicability of the
proposed model in China and adjacent areas. From the as-
pect of RMSE, the Bevis-V model performs the worst
that it has the largest RMSE and average site RMSE
among all the competing models, but the Bevis-R model
performs a little better than the GPT2w model. Signifi-
cant improvement can be seen for the GPT2w-NN model
that it is about 14.9% better than the GPT2w model,
22.5% better than the Bevis-V model and 7. 6% better
than the Bevis-R model in RMSE. The Bevis-R model
belongs to the SMWMT model, but it is still inferior to
the GPT2w-NN model in terms of both bias and RMSE.

3.2 Accuracy distribution for different models

The distributions of bias and RMSE for each testing
station are shown in Fig.3 and Fig. 4, respectively.
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One can see from Fig. 3 that the Bevis-R model shows
a large positive bias in the mid-latitude region (30°N-60°
N) but large negative bias can be found in the low-lati-
tude region (0°N-30°N), since the coefficients of the Be-
vis model were fitted by using the data in North America.
Moreover, the geographic variations of the relationship
between weighted mean temperature and surface tempera-
ture were not taken into account in the development of the
Bevis model, which is another important reason for the
significant regional differences of model accuracy. The
positive bias of the Bevis-V model is much more signifi-
cant in the northern part of the study area than the Bevis-
R model, and the main reason is that the surface tempera-
ture estimated by the GPT2w model in this region is gen-
erally higher than the actual situation'”. The GPT2w
model shows large negative bias in the northwestern part
of China than that in other regions, since the topography
in the northwestern region is very complex and height
fluctuates greatly, but the height differences between the
testing stations and grid points were not considered. The
biases of the GPT2w-NN model, however, are almost be-
tween —2.0 K and 2.0 K, and there is no remarkable bi-
as for all the testing stations.

In terms of RMSE, the Bevis-R model and GPT2w
model perform similarly, and a large RMSE can be found
for them in the northern and western part of the study
area. The accuracy of the GPT2w model is much lower
than that of the Bevis-R model in the northwestern region
of China, but in other regions, especially those stations at
lower latitudes (around 20°N), the GPT2w model per-
forms slightly better than the Bevis-R model. The reason
is that the weighted mean temperature changes little in the
regions near the equator, and the correlation of weighted
mean temperature and surface temperature is weaker than

that at higher latitudes'”’. A much larger RMSE can also
be found for the Bevis-V model compared with the Bevis-
R model. A common phenomenon for all the competing
models is that the RMSEs in the north are larger than
those in the southern part of the study area, which can be
explained by the fact that the weighted mean temperature
changes at higher latitudes are much larger than those at
lower latitudes due to the solar radiation intensity'”. It is
remarkable that the GPT2w-NN model always performs
the best of all the testing stations, and its model accuracy
is significantly improved especially in the northwestern re-
gion of China where the radiosonde stations are rarely dis-
tributed.

3.3 Accuracies at different heights

The greatest improvement of the GPT2w-NN model
over the GPT2w model is that the height of the site was
taken into account as the input variable, so the accuracies
at different heights were discussed to verify the superiority
of the proposed model. The testing samples were sorted
into 5 groups according to the height, i.e., below 500
m, 500-1000 m, 1 000-1 500 m, 1 500-2 000 m and
above 2000 m. The results are shown in Fig. 5.
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Fig.5 Bias and RMSE of each model at different height ran-
ges. (a) Bias; (b) RMSE

One can see from Fig. 5 that the systematic negative bi-
ases for the GPT2w model are very remarkable at differ-
ent heights, and the largest negative bias occurs at the
heights from 500 m to 1 000 m. In contrast, a large nega-
tive bias can be seen for the Bevis-R model at the heights
below 500 m, while a much larger positive bias is shown
at the heights above 2 000 m. The Bevis-V model shows
no significant bias at the heights below 500 m, but a large
positive bias can be found as the height increases. The
GPT2w-NN model, however, shows no significant bias
at any height ranges, and the systematic negative bias
caused by height differences has been eliminated effec-



A neural network method for estimating weighted mean temperature over China and adjacent areas

89

tively. In the aspect of RMSE, the GPT2w-NN model
and Bevis-R model perform much better than the GPT2w
model and Bevis-V model, especially at the heights above
500 m. The improvement of the GPT2w-NN model over
the GPT2w model is significant, and it benefits not only
from the consideration of the height as an input variable,

but also from the use of local data.
3.4 Seasonal accuracies of different models

We further examined the seasonal performance of dif-
ferent models, and the bias and RMSE in different
months are shown in Fig. 6.
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Fig.6 Bias and RMSE of each model in different months. (a) Bias; (b) RMSE

From Fig. 6, significant negative biases can be found
for the GPT2w model from March to December, and the
biases are particularly large from April to August, nearly
-3.0 K. Large negative biases can also be found in
summer months for the Bevis-R model,
smaller biases in other months. The Bevis-V model per-
forms well in spring and autumn months, but significant
positive biases are shown in winter, and large negative bi-
ases can be found during summer months. The GPT2w-
NN model, however, shows smaller bias in each month
compared with other competing models. A common phe-
nomenon for all the competing models is that the biases in
July and August are much larger than those in other
months. We think the reason is that the study area is in
the Northern Hemisphere, and the solar radiation is in-
tense during summer, which leads to the larger weighted
mean temperature than usual with variation characteristics
that are not easy to be sufficiently captured by most of the
competing models. In terms of RMSE, the Bevis-V mod-
el shows the largest RMSE from October to April, while
the GPT2w model performs the poorest in the summer
months. The Bevis-R model and GPT2w-NN model have
similar performance, and the GPT2w-NN model has a
slight advantage over the Bevis-R model in February and
April. However, the GPT2w-NN model has more advan-
tages over the Bevis-R model because it does not need
any measured surface meteorological elements. Another
common phenomenon for all the competing models is that
the RMSE is the largest in the winter months but the
smallest in summer months. It is mainly caused by the

but it shows

fact that the weighted mean temperature changes are great
1 On the
whole, the improvement of the GPT2w-NN model rela-
tive to the GPT2w model is significant, no matter wheth-
er from the perspectives of the seasonal or regional differ-
ences in model accuracy.

during winter and small during summer

4 Conclusions

1) The GPT2w-NN model shows great improvement on
the GPT2w model and Bevis model, which benefits from
the powerful nonlinear mapping ability of neural net-
works. The neural network shows a powerful capability to
capture the characteristics of relations between the weigh-
ted mean temperature and its associated factors in this
study.

2) The improvement of the GPT2w-NN model also
benefits from an important measure taken in this study,
i. e., the height of the site was introduced as the input of
the proposed model, which is the greatest difference be-
tween the GPT2w model and Bevis model.

3) The GPT2w-NN model takes the measured atmos-
pheric profiles in China and adjacent areas as the data
source, which is another reason why the GPT2w-NN
model has been significantly improved compared with the
GPT2w model.
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