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Abstract: Surface
incorrectly detected due to their small quantity and unapparent
visual features. A method named CSYOLOvV3, which is based
on CutMix and YOLOv3, is proposed to solve such a
problem. First, a four-image CutMix method is used to
increase the small-defect quantity, and the process is
dynamically adjusted based on the beta distribution. Then, the
classic  YOLOvV3 is improved to detect defects
accurately. The shallow and large feature maps are split, and
several of them are merged with the feature maps of the
predicted branch to preserve the shallow features. The loss
function of YOLOV3 is optimized and weighted to improve the
attention to small defects. Finally, this method is used to
detect 512 x 512 pixel images under RTX 2060Ti GPU,
which can reach the speed of 14.09 frame/s, and the mAP is
71. 80%, which is 5%-10% higher than that of other
methods. For small defects below 64 x 64 pixels, the mAP of
the method reaches 64. 15% , which is 14% higher than that of
YOLOV3-GlIoU. The surface defects of the workpiece can be
effectively detected by the proposed method, and the
performance in detecting significantly
improved.
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orkpiece surface defects can reduce the strength of
materials, shorten the life of workpieces, and in-
crease safety-related risks'''. Small defects are a part of
the defects on the workpiece surface. They have great ref-
erence significance because they can reflect potential
risks, such as the early failure of the production line and
workpiece defects. However, given their small quantity
and inconspicuous visual features, the detection of small
defects is one of the problems in the field of workpiece
surface quality inspection on the production line''.
In the field of workpiece surface-defect detection, the
earliest method is manual inspection, which consumes a
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considerable amount of manpower, and the inspection re-
sults are easily affected by the inspector subjectively.

Therefore, new methods are proposed based on machine
learning and machine vision'”!
clude three steps: image preprocessing, feature extrac-

4
[]’ ex-

. Such methods usually in-

tion, and classification. Support vector machines
treme learning machines”, and artificial neural net-
works'” have been used in these methods to realize the
detection of workpiece surface defects. However, such
methods cannot handle complex background images and
detect multiple defects on one image.

In recent years,
(CNN) " has been developed rapidly; it can be used in
the field of target detection and segmentation. Target de-
tection networks are divided into two categories, namely,
one-stage and two-stage methods. The one-stage method
includes YOLO™ and SSD'"', and the two-stage methods
mainly include region-based CNN ( RCNN)'" series.
Several scholars applied these target detection networks to
the detection of workpiece surface defects. Li et al.''"
proposed an improved YOLO network that can be used to
detect six types of steel-strip surface defects. Wei et
al. "' designed a multi-scale deep CNN to detect various
Li et
al. "' introduced a method for detecting container surface
defects based on the SSD network. Xue et al.'" pro-
posed a complex background defect detection method
based on Faster-RCNN. Du et al.'™ improved the
network’s detection performance on casting surface de-
fects by combining feature pyramid networks and Faster-
RCNN. However, the performance of the target detection

the convolutional neural network

types of surface defects on aluminum profiles.

network for small targets still needs to be improved, and
the research on the detection of small defects needs further
development.

Based on the above research, we propose a method
named CSYOLOvV3. This method is used to detect small
defects on a workpiece surface. The CutMix'"
used to expand the training samples dynamically. The
YOLOv3"" is used for defect detection and optimized to
focus on small defects. Firstly, the theoretical basis of
the CutMix and YOLOv3 methods is briefly introduced in
this paper. Secondly,
CSYOLOV3, including the sample enhancement method

method is

the specific implementation of

and optimization on YOLOV3, are explained. Then, the
experiments and comparison with other methods are con-
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ducted to verifie the network performance.

1 Theoretical Basis of the Proposed Method

1.1 CutMix method

The CutMix method is a regularization strategy for the
and it performs sample trans-
formation by cutting and splicing two training images. As
shown in Fig. 1,
moved, and the removed area is filled with a patch from
another image. The category label of the image is mixed
based on the area ratio of the original and patch images.

CNN classification model,

a local area of a training image is re-
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Fig.1 Schematic of CutMix method

1.2 YOLOV3 target detection network

YOLOV3 divides the image into s x s grids, and each
grid is given k anchor boxes. YOLOV3 outputs a tensor of
size s xs x [k x (5 +v)], including the position (x, y),
size (w, h), confidence C, and corresponding categories
probability p(c¢). The labels of position and size are cal-

culated as

b -z

b Y
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~ b - b
w= log(—”’), h :log(—") (1)

a, a,
where (b, by) are the real coordinates of the target bo-
es; (z,, z,) are the coordinates of the upper-left corner
of the grids; and (b,, b,) and (a,, a,) denote the real si-

zes of the target and anchor boxes, respectively.

The true information of the prediction boxes can be ob-
tained by performing the corresponding inverse transfor-

w? w?

mation on the network output. The loss can be obtained

by performing the corresponding error calculation between

(x,y,w,h) and (x,y,w, h).

The DarkNet-53 classification network is used as the
backbone network of YOLOV3 to extract image features,
and YOLOV3 is used to perform multi-scale prediction on
the extracted features. The prediction loss is divided into
where the confidence error and category pre-
diction error are defined by cross entropy, and the posi-

four parts,

tion and size errors are defined by the squared errors. The
prediction loss can be calculated by the following:

s=1 -1

=3 S 4 Ay [ [C,In(C,) + (1= C,) -
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In(1 —P,-,-(C))] (2)

where s is the quantity of grids in one direction; r is the

number of anchor boxes on each grid; I°bJ indicates that

noobj

the anchor box is responsible for the prediction; and [;

is the opposite; variables A and A are constant

weight coefficients.

2 CSYOLOV3 Defect Detection Method

noobj coord

2.1 Dynamic method for training in sample expan-

sion

One of the ways to improve the small-defect detection
performance is by increasing the quantity and diversity of
small defects in the training set. This paper designs a
four-image stitching method based on the CutMix method
and beta distribution. The method is used to enhance the
training images and increase the small-defect training
sample quantity. The beta distribution is used to adjust
the balance between the original and enhanced samples
because the excessive use of enhanced training samples
will reduce the network’s generalization to the original
samples, resulting in a decreased network performance.

Different from the CutMix, n’(n=2) images are used
to generate enhanced images in this paper to maximize the
use of space on the image and avoid the considerable loss
of defect features. In addition to the function of shrinking
images,
transform defect locations and intercept part of the de-

the method proposed in this paper can randomly
fects, which can improve the sensitivity of the network to
the location and size of defects. This paper uses four ima-
ges to generate enhanced samples. The use of additional
images is unnecessary because as shown in Fig. 2, the four-
image stitching-enhanced image after random flipping and
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/AN _
L

Nine-image

stitching

Fig.2 Operation diagram of random shrinking and flipping
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shrinking operations can obtain the same characteristics
originating from complex stitching. Thus, this paper uses
the four-image stitching method combined with random
flipping and shrinking instead of complicated image stitc-
hing.

As shown in Fig. 2, four images are selected and
zoomed out. The shrunk images are placed in the lower-
right, lower-left, upper-right, and upper-left areas based
on the center coordinate (s, s,), which is randomly se-
lected. After placement of the images, the empty area is
filled with a gray value of 128. The shrinkage ratio is set
to 0.5, that is, between 0.4 to 0.6, to ensure that the
image will not be excessively shrunk. As shown in
Fig. 3, to avoid the excessive cropping of images, the
stitching center’s coordinates are selected using the fol-
lowing:

& ~Unif(0.4,0.6), s =&W

A ~Unif(0.4,0.6), s, =AH (3)

where ¢ and A are the coefficients used to determine the
splicing center; and W and H are the image width and
height, respectively.

Resize

Img,

Resize
Img2

Resize
Imgs |

Img;

Fig.3 Schematic of the four-picture stitching method

After the sample is enhanced, the cutting and stitching
of images will cause changes in the target boxes. Thus,
the position and size of the target boxes are updated as
new labels. Fig. 4 shows the update process of the train-
ing labels. The steps are as follows:

1) Four images are randomly selected from the training
sample set, and the target box label is (x,, y;, w;, h;).

2) The image is shrunk by a certain ratio «,. The
change in the target box is presented as

r_ ’_ r_ r_
Wi oy Xwy,  hp =0y Xhy, o Xp =0y XX, Y=o XYy

3) Based on the stitching center point (s,, s,), four

images are placed on the generated image. The label
change of the target box is as

XpEXGES, Y EYES,

4) Finally, whether the target box is truncated is as-
sessed. If the target box is truncated, whether its short-
side length is less than the threshold L is determined. If

the short-side length is smaller than L, then the target box

Training sample set

[Four training samples |——— Labels |

Y Y
Four images Yoo Yoo | f i I -
Woos Hoo| | Wi it || W, 1y
[Img, [ Img, | Tmg, |[ Tmg, |
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img, in ratio oy, Lt i
¢ Ignoring
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duced i X TS V=S,
reduced images at T
. W, o <hy
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Enhanced image

Generating
new label

New labels

New training sample

Fig.4 Flow chart of label update

will be discarded; otherwise, the new position and size
(x}, ¥ wj, h;) of the target box are generated.

As mentioned above, using enhanced training samples
only is unreasonable. Therefore, the ratio between the
expanded and original samples must be adjusted during
training. The beta distribution is used for dynamic adjust-
ment as

0 ify>0.5

1 if <0.5 4

n ~ Beta(m, n), w={

where m is the quantity of expanded samples that have
been used in the current training; n is the quantity of
original samples; n obeys the beta distribution. When
w =0, the original samples are used for training, and
when w =1, the expanded samples are generated and used
for training.

2.2 Design of defect detection network

The deep DarkNet-53 network can extract rich semantic
information. However, with the deepening of the network
and shrinking of the feature map, the feature of small de-
fects weakens gradually, which reduces the network per-
formance in small-defect detection. The shallow and large
feature maps contain a number of small-defect features.
Thus, we split the large feature maps and send them to the
detection branch for feature fusion. In this manner, the
small-defect feature in the detection branch can be en-
riched, and the small-defect detection performance is im-
proved.

As shown in Fig. 5, different from DarkNet-53, which
uses a convolutional layer with a step size of 2 for feature
map shrinking, maximum pooling is used to shrink the
feature maps before feature fusion in the proposed meth-
od. The purpose is to retain the small-defect feature as
much as possible. The network has three branches, and
feature fusion processing is performed on each branch.
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Fig.5 Structure of the improved YOLOV3

The overall network is based on the residual net-
work'"™; the BN'' layer is used to accelerate conver-
gence and avoid overfitting. The linear activation func-
tion Leaky ReLu is used as the activation function. Fig.
6 shows the structure of Conv. Layer and Ccr. Module.
The BN layer and activation function are placed behind
the ordinary convolutional layer, whereas the Ccr. Mod-
ule is composed of two convolutional layers, in which
the 1 x 1 convolution kernel is used to fuse features from
the channel direction, and the 3 x 3 convolution kernel is

used to obtain large field features.

Conv.Layer Ccr.Module
R T
} Conv | I IXI Conv. Layer|
I T T A
| BN | '3X3 Conv. Layer|
|Leaky ReLU| %

v

Fig. 6 Structure of two main units in the improved YOLOV3

2.3 Loss function of the defect detection network

The position and size losses are separated in the loss
function of YOLOv3, which easily causes two conver-
gence processes to be asynchronous during training.
Therefore, the GIoU™ loss is used to combine the posi-
tion and size losses. The calculation formula of GloU
value and the loss defined are listed as

_|ANnB|
~JAUB|
|E\(AUB) |
Veoiow = View — T
loiow =1 = Vi (5)

where V,; is the IoU value; Vg, is the GIoU value; A
and B are the areas of the target and prediction boxes,
respectively; and E is the smallest closed area that can
contain the prediction and target boxes.

However, GloU still presents several drawbacks. In
such as the target and prediction boxes,
in a cross or containment relationship, GIloU cannot dis-
tinctly reflect the relative position of the two boxes. As
shown in Fig. 7, the black box is the target box, and the
gray box is the prediction box. From the comparison of
the GIoU values of Figs. 7 (a) and (b) and those of
Fig. 7 (¢) and (d), al-
though the relative position of the two boxes is different.
This drawback not only leads to the degradation of the
network’s defect location performance but also reduces
the network’s discrimination and classification perform-

ance due to the inaccurate selection of the defect area.

specific cases,

the values of GloU are equal,

4 4
4
4 .\4‘] 3 14, 3
6 6
(a) (b)
d,
[ 4 odi (304
5
5
6 6

(0 (d)

Fig.7 Comparison of GIoU values in different situations. (a)
The first case of Vg, = 0. 462;

0.462; (c) The first case of Vg,y =0.625; (d) The second case of
Viiou =0. 625

(b) The second case of Vgu =

This paper improves GIoU and calls it HIoU to solve
the above problem. The area difference is used to enable
HIoU to focus on the symmetry of the prediction box

vertices, which is based on the center of the target box,

thereby improving its positioning capability. The HloU
value V., is calculated as
D= ‘Sru =S ‘ + ‘Sru _Slu‘
D
Viow = View — ‘E‘ (6)
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where S is the area of the box formed by the top-right
vertices of the target and prediction boxes, namely, S,
and S,
bottom-right and top-left vertices.

The HIoU values of the four cases in Fig. 7 are 0. 462,
0.504, 0.583, and 0. 625. HIoU exhibits an improved
positioning performance. The loss function [, is de-
fined by V., and a cosine weight function related to
the defect area is used to increase the network’s attention
to small defects. The smaller the defect area, the larger
the weight value. The [, is calculated as

respectively, which are the areas formed by the

L, :1.5(1+COS(LW))(1—VO) (7)
HIoU 2Sp HIoU

where u and v are the width and height of the target, re-
spectively; and S, is the image area.

This paper simulates the reverse iterative process of the
HIoU loss to verify its effectiveness. The losses of GloU
and YOLOV3 are used for comparison. A small 64 x 64
box is used as the target box, and a 192 x 192 box is
used as the prediction box; the Adam iterator'"
for parameter optimization. The results are shown in
Fig. 8, where the x-axis is the iteration times, and the y-
axis denotes the IoU value after each iteration. The IoU
value is between 0 and 1. The larger the IoU value, the
more the prediction and target boxes overlap, implying

is used

an improved prediction accuracy. Our loss can reach a
high IoU value in fewer iterations than the other two los-
ses for a 64 x 64 small target box and a 192 x 192 pre-
diction box. Thus, our loss substantially focuses on
small targets, and the convergence process can be fast
and accurate. Fig. 9 visualizes the change in the predic-
tion box during the iteration process. Our loss function

1.0
— Our loss
---GloU loss
0.8r YOLOVS3 loss
()
=06k
S 0.6
2
= 04r .
02
_— | 1 1 1 ]
0 200 400 600 800 1000
Iterations
Fig.8 Iteration curve of the IoU value with different loss
functions
—— Target box —— Target box —— Target box
200 Prediction box 200 Prediction box 200 Prediction box
AIOO AlOO
or [] ot L1
0 100 200 b l(I)O 260 0 100 200
X X X

() (b) (¢)

Fig. 9 Change in the prediction box during iteration. (a)
Change with our loss; (b) Change with GloU loss; (c¢) Change with
YOLOV3 loss

causes the complete overlap of the prediction and target
boxes after 1 000 iterations, whereas the overlap areas of
the other two losses are far smaller than ours.

3 Experiment
3.1 Dataset and experimental environment

The experimental object is an aluminum workpiece
casting, and an industrial charge-coupled device camera
is used to collect surface-defect images. As shown in
Fig. 10, the dark-field illumination is used as the illumi-
nation method, with the LED tube as the light source.
The size of the collected image is 512 x 512 pixels, and
829 pictures are collected. The software Labellmg is
used to mark the surface defects; and eight types of de-
fects, including cracks, discoloration, insufficient pou-
ring, fins, peeling, shrinkage holes, trachoma, and
shrinkage porosity, are marked. The annotated images
are divided into training, validation, and test sets at a ra-
tio of 7:1:2.

Camera

LED

(a) (b)

Fig.10 Dark-field lighting and experimental site. (a) Schemat-
ic diagram of dark field illumination; (b) Picture of the experimental
device

The computer used in the experiment is equipped with
an Intel i7-8700 CPU and an RTX 2060Ti GPU. The
software mainly includes python 3.7.2, DarkNet, Ten-
sorflow 1. 14, cudal0.2, and cuDNN7.6.

3.2 Parameter determination and network training

The K-means ++ algorithm'™' is used to determine the
quantity and size of the anchor boxes reasonably. The
number of categories refers to the number of anchor bo-
xes, and the center of each category after clustering is
the size of the anchor box. The iteration termination con-
dition of clustering is achieved when the results of two
adjacent iterations are the same. The distance function is
defined as follows:

D=1-V,u (8)

As shown in Fig. 11, different numbers of anchor bo-
xes are selected for the clustering experiments. As the
quantity of anchor boxes increases, the average IoU in-
creases rapidly in the early stage and then increases slow-
ly after the number of boxes exceeds 9. Given that the
increase in anchor box quantity will cause a substantial
increase in the network parameters, 9 is selected as the
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number of anchor boxes to balance the amount of calcu-
lation and network performance. As shown in Fig. 12,
the clustering results show that the sizes of the anchor
boxes are (20 x 17), (74 x18), (49 x50), (213 x
28), (118 x82), (235 x47), (470 x36), (465 x61),
and (270 x 167).

0.8
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505
-
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K

Fig. 11
boxes

Clustering results under different numbers of anchor
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Fig.12 Clustering results with nine anchor boxes( Mean IoU
is 0. 664 2)

The network can be trained after the anchor boxes
have been confirmed. The CutMix method with beta dis-
tribution is used to dynamically enhance the training
samples in real time. Fig. 13 shows part of the enhanced
training samples.

(a) (b)

Fig.13 Two enhanced training images. (a) Enhanced training
sample example 1; (b) Enhanced training sample example 2

The training batch size is 6. The cosine function is
used as the learning rate, which decreases as the training
frequency increases. The training termination condition
is the completion of 2 000 epochs. The learning rate u is
calculated as

w=u,, +0.5(u,. —u,,) ( 1+ cos(’ﬂw)) (9)
plmal

is the initial learning rate; u
learning rate; p,,, is the current iteration times; and

where u is the final

init end
Do 18 the total iteration times.

Fig. 14 shows the validation set loss curve in three ca-
ses, where the blue-green curve is the case observed

without using the CutMix method, the magenta curve re-
presents the case using the CutMix method without beta
distribution, and the red curve denotes the case using the
CutMix method with beta distribution. Compared with
the other two curves, the red curve has a slower decline
in the early stage, indicating that the CutMix method
with beta distribution increases the diversity of the data
set effectively. The red curve stabilizes at about 2. 5,
which is lower than those of the other two curves, indi-
cating that the generalization capability of the network
has been effectively improved. Fig. 15 shows each part
of the validation set loss.

100
80

— No CutMix
— CutMix with beta
— CutMix without beta

Loss

Epoches

Fig. 14 Validation set loss curve in three cases

50
—HIoU loss

40 —— Confidence loss
—Class loss

Loss

09 500 1250 1 500 2000
Epoches

Fig.15 Change curve of different parts of validation set loss

3.3 Experimental results

After the network training is completed, the test set is
used to test the network performance, and the perform-
ance is compared with those of YOLOv3, YOLOV3-
GIoU, and Faster-RCNN™'. The mAP™™' and speed
are used as the performance indicators; mAP is the aver-
age of AP values of all categories, and speed is the num-
ber of images that the network can recognize per second.
Tab. 1 gives the comparison of the detection results of
each method. The mAP value of our method is improved
by 5% -10% compared with the other methods, and its
speed can reach 14. 09 frame/s with the RTX 2060Ti
GPU. Thus, CSYOLOV3 can be used in dynamic detec-
tion during production when the time interval of work-
piece production exceeds 70 ms.

Tab.1 Comparison of the detection results of each method

Method mAP/% Speed/(frame - s ')
YOLOV3 61.75 15.02
YOLOV3-GloU 67.19 15.02
Faster-RCNN 64.66 6.17
CSYOLOV3 71.80 14.09
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The largest defect size in the test set is 238 x 252.
Thus, the defects are divided into three parts based on
their area. These defects include small-scale defects with
an area less than 64 x 64, medium-scale defects with an
area between 64 x 64 and 128 x 128, and large-scale
defects with an area between 128 x 128 and 256 x
256. The detection result of CSYOLOvV3 is compared
with that of YOLOvV3-GlIoU, which exhibits the best per-
formance among the networks used for comparison.

Tab.2 Comparison of the AP value of CSYOLOV3 and YOLOV3-GloU for different sizes of defects

Tab. 2 shows the comparison of the AP value of CSY-
OLOv3 and YOLOvV3-GloU for different sizes of defects.
CSYOLOV3 effectively improves the detection perform-
ance for different defect scales. The values in the table
are the precision, recall, and AP values of two net-
works for different scales of defects. Compared with
YOLOvV3-GIoU, the AP value of CSYOLOvV3 is in-
creased by 13.93%, 7.37%, and 2.87% on the three
defect scales.

%

Small-scale defects

Medium-scale defects Large-scale defects

Method
P R AP P R AP P R AP
YOLOv3-GloU 48.28 62.97 50.22 76.38 77.10 67.23 88.67 90. 46 87.98
CSYOLOV3 86.75 65.15 64.15 83.02 77.36 74.60 90.30 91.32 90. 85

The AP curve of three scale defects is shown in Fig.
16, where the x-axis (recall) represents the percentage of
defect quantity detected by the network to the actual de-
fect quantity, and the y-axis (precision) represents the
proportion of correct defect detection among the defects
detected by the network. The AP value is the area of the
shaded area in the figure. The gray curve is CSY-

— CSYOLOv3
— YOLOV3-GloU

OLOv3, and the black curve represents YOLOv3-GloU.

Fig. 17 shows part of the detection results of the two
methods. The four images above are the results of CSY-
OLOvV3, and the other four are those of YOLOv3-GloU.
CSYOLOV3 presents a better performance in the detec-
tion of small defects, which is manifested by a higher
recognition rate and a lower error rate.

— CSYOLOV3 — CSYOLOvV3
— YOLOV3-GloU — YOLOvV3-GloU

10 10 1.0
0.8 0.8 0.8
5 g g
% 0.6f % 0.6 % 0.6fF
b5 b5 b5
Eoa} 204 2oaf :
02F 0.2 02F |
]
1 1 1 1 1 1 1 1 1 1 1l 1
%02 04 06 08 10 %0 —02 04 06 08 10 0002 04 06 08 10
Recall Recall Recall
(a) (b) (¢)

Fig.16 AP curve of different defect scales. (a) AP curve of large-scale defects; (b) AP curve of medium-scale defects; (c) AP curve of

small-scale defects

B S H . 0.80
CK: 0.98Wrong| e

SC: 0.85
(g)

Fig. 17 Comparison of portions of the detection results. (a) Detection result of CSYOLOV3 on the first image; (b) Detection result of CSY-
OLOV3 on the second image; (c) Detection result of CSYOLOV3 on the third image; (d) Detection result of CSYOLOV3 on the fourth image; (e)
Detection result of YOLOvV3-GIoU on the first image; (b) Detection result of YOLOv3-GloU on the second image; (c) Detection result of YOLOvV3-
GIoU on the third image; (d) Detection result of YOLOv3-GIoU on the fourth image
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An additional experiment is conducted to test the rela-
tionship between the network performance and input im-
age resolution. The test images are zoomed in before in-
putting to the network. Fig. 18 shows the network per-
formance with different input resolutions. The abscissa is
the resolution of the input image, and the ordinate is the
AP value. The black curve represents the mAP value of
all defects, and the grey curve shows the AP value of the
small defects below 64 x 64 pixels on the original im-

701

—— All defects
—o— Small defects

30 C1 | 1 1 1
224 320 416 512 608
Resolution

Fig. 18 Network performance at different input resolutions

111 Inclusion:0.97
“Inclusion:0.95

(b)

4 Conclusions

1) The CutMix method with beta distribution effec-
tively increases the quantity and diversity of small train-
ing defects, thus improving the small-defect detection
performance.

2) The feature fusion of the improved YOLOv3 main-
tains the feature of small defects; the proposed HIoU is
used to define the loss function, which improves the de-
fect location capability. The loss is weighted, which en-
ables the network to focus on small defects.

3) The proposed CSYOLOvV3’s mAP reaches 71. 80%
at the speed of 14 frame/s, which is 5% -10% higher
than that of other methods. For defects smaller than 64
x 64 pixels, the mAP increases by 14% compared with
YOLOV3-GIoU. CSYOLOV3 has a better small-defect
detection performance than the other methods.

4) This method is susceptible to environmental fac-
tors, such as oil covering the workpiece surface, insuffi-
cient or uneven light, and inaccurate lens focus, which
affect the clarity of the captured image. This method has
limitations in detecting defects with limited samples.

age. The performance of the network increases with the
increase in image resolution. When the input image reso-
lution is reduced to 224, and the small defects conse-
quently shrunk below 28 x 28 pixels, the AP value of
small defects is 32. 46% , which can be regarded as an
invalid detection. Therefore, the network is unsuitable
for detecting small defects below 28 x 28 pixels.

Experiments are conducted on the cold-rolled steel sur-
face-defect data set NEU-DET to verify the universality
of the method. Tab. 3 gives the detection performance
of two networks. Our network works more effectively in
detecting the surface defects of the cold-rolled steel.
Fig. 19 shows part of the detection results, namely,
those of CSYOLOvV3 and YOLOvV3-GIoU. CSYOLOvV3
remains effective in detecting small surface defects on the
cold-rolled steel.

Tab.3 Detection performance of two networks

Method mAP/% Speed/(frame - s ")
YOLOV3-GloU 70.25 28.12
CSYOLOV3 75.53 26.58

(d)
Fig.19 Comparison of the detection results on NEU-DT. (a) The first detection result of CSYOLOvV3; (b) The second detection result of
CSYOLOV3; (c) The first detection result of YOLOvV3-GIoU; (d) The second detection result of YOLOv3-GloU

Marking labels manifesting identification difficulty for
each defect will be considered in future works.
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