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Abstract: Because of the excellent performance of Transformer

in sequence learning tasks, such as natural language
processing, an improved Transformer-like model is proposed
that is suitable for speech emotion recognition tasks. To
alleviate the prohibitive time consumption and memory
footprint caused by softmax inside the multihead attention unit
in Transformer, a new linear self-attention algorithm is
proposed. The original exponential function is replaced by a
On the basis of the

associative property of matrix products, the time and space

Taylor series expansion formula.

complexity of softmax operation regarding the input’s length is
reduced from O(N°) to O(N), where N is the sequence
length. Experimental results on the emotional corpora of two
languages show that the proposed linear attention algorithm can
achieve similar performance to the original scaled dot product
attention, while the training time and memory cost are reduced
by half. Furthermore, the improved model obtains more
robust performance on speech emotion recognition compared
with the original Transformer.
Key words: transformer; attention mechanism; speech
emotion recognition; fast softmax
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peech emotion recognition, one of the key technolo-
S gies of intelligent human-computer interaction, has
received increasing interest'"!. Recurrent neural networks,
especially long short-term memory" and gated recur-
rent”’ neural networks, have been firmly established as
the main approaches in sequence modeling problems,
such as speech emotion recognition'™'. However, a re-
current neural network typically performs recursive com-
putation along the positions of the input and output se-
quences, which results in the failure of parallel train-
ing'”. Especially when handling ultralong sequences, the
training efficiency of the recurrent neural network is ex-
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tremely low because of computer memory constraints.
The Transformer model, completely based on the self-
attention mechanism introduced by Google'”', solves the
above problems effectively. By abandoning time-consu-
ming operations, such as loops and convolutions, the time
cost, as well as the memory footprint, is greatly reduced
during training. In Transformer architecture, multihead at-
tention (MHA) realizes the parallel training process, com-
pared with the traditional self-attention mechanism, by al-
lowing the model to pay attention to the information from
multiple representation subspaces of different positions so
that more information in the sequence will be retained. At
present, MHA has been successfully applied in several

! extended multihead

fields. For example, India et al. 8
self-attention in the field of speech recognition, which
mainly solved the speech recognition problem of non-
fixed-length input speech and achieved excellent perform-
ance. In the multimodal emotion recognition task for the
IEMOCAP dataset'”, MHA is used to concentrate on the
only relevant utterance of the target utterance!", which
improves the recognition accuracy by 2. 42% . In Ref.
[11], the dilated residual network combined with MHA
was applied to feature learning in speech emotion recogni-
tion, which not only alleviated the loss of the feature’s
time structure but also captured the relative dependence of
elements in progressive feature learning, achieving 67.4%
recognition accuracy on IEMOCAP dataset.

However, the scaled dot product attention ( SDPA)
computing unit in MHA has quadratic complexity in time
and space, which prohibits its application in the context
of ultralong sequence input. Therefore, Taylor linear at-
tention ( TLA) is proposed to address this limitation,
which has linear complexity in terms of the input se-
quence length and dramatically shortens the time cost and
memory footprint. The proposed algorithm changes the
way attention weights are calculated in SDPA by using a
Taylor formula instead of the exponential operation in
softmax and by making use of the associative property of
matrix products to avoid the tremendous memory con-
sumption of intermediate matrices. Transformer has been
an exceeding success in the field of natural language pro-
cessing, such as machine translation'”,
duction. In this paper, we extend Transformer to the area
of speech emotion recognition, and the Transformer-like
model (TLM) is thus proposed. The proposed TLA algo-

since its intro-
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rithm is shown to have similar emotion recognition per-
formance with SDPA, while the computational power re-
quirement is tremendously reduced. Meanwhile, the TLM
can enhance the position information representation of
acoustic features and thereby obtain more robust emotion
recognition performance.

1 Attention

1.1 Scaled dot product attention

The main implementation unit of MHA in Transformer
is scaled dot product attention ( SDPA), whose structure
is shown in Fig. 1. The main idea is to enhance the repre-
sentation of the current word by introducing context infor-
mation. The query vector Q in Fig. 1 represents the con-
tent that the network is interested in. The key vector K is
equivalent to the labels of all words in the current sam-
ple. The result of the dot product of Q and K reflects the
influence degree of context words on the central word,
and then softmax is used to normalize the correlation
weights. Finally, the attention score is obtained by using
the correlation matrix to weigh the value vector V.

Score

Fig.1 Scaled dot product attention
SDPA is calculated by

oK'
A= 1
Ja (1)
S = softmax(A)V (2)
softmax(A,) = Ne : (3)

>t

j=1
where A is the output after scaling; S is the output of the
attention unit; @, K, and V are generated by the input
feature vector with the shape of (N, d), so @, K, Ve
R"*!, where N represents the input sequence length, and
d is the input sequence’s dimension. Generally, N >d or
even N>d is satisfied in ultralong sequence situations.

According to the definition of softmax, Eq. (2) can be
mathematically expanded as

ZN: (‘L-Tkj)
exp v,
2

gl
exp
j=1

d

N (4)

K‘

where Q, K, and V are expressed as column vectors ¢,
k., and v,, respectively. Therefore, the mathematical es-

sence of SDPA is to use exp(q,.Tkj/Jdi) to perform a
weighted average of v,.

1.2 MHA

Multihead attention (MHA) is critically significant in
parallel training for Transformer. By dividing the input
vector into multiple feature subspaces and then applying
the self-attention mechanism, the model may be trained
in parallel while extracting the main information. Com-
pared with the current mainstream single-head average at-
tention weighting, MHA can improve the effective resolu-
tion to enhance the model’s different characteristics of
speech features in different subspaces, which avoids the
inhibition by average pooling of such characteristics.
MHA is calculated by

Qi:XWQ,
K= XWy Viell,n] (5)
v, =XW, iel[l,n

H,=SDPA(Q,. K, V)

S =Concat(H,,H,,....H)W (6)

where X is the input feature sequence; Q,, K,, and V, re-
present query, key, and value, respectively; H, is the at-
tention score of each head; SDPA is the self-attention unit
of each head; W is the linear transformation weight; i =
1,2, ..., n, and n is the number of heads, and i is the in-
dex of each head.

First, the input feature sequence X is equally divided
into n segments in the feature dimension, and each seg-
ment generates a group of (Q,, K,, and V,) after a linear
transformation. Then, H, is respectively calculated for
each head. The n attention scores are spliced successive-
ly. Finally, the total attention score is generated from
spliced vectors by performing the linear transformation.

1.3 Taylor linear attention

An obvious problem pertains to the use of MHA.
When calculating SDPA, each head needs to use softmax
to normalize the dot product of @ and K so that V can be
weighted to obtain the score. As dividing subspaces by
MHA will not affect the input sequence length, the length
of O and K is still N. With an increase in the input se-
quence length, the computational resource demand of
each head during training will increase in quadratic order,
which is unbearable and leads to a decrease in the quality
of long-distance dependent modeling in sequence learning
as well.

As a result, Taylor linear attention (TLA) is proposed
to alleviate this problem. It can be concluded from Sec-
tion 1.1 that the essence of the self-attention mechanism
in MHA is to construct the weight matrix using the inner
product form of Q and K and then to weigh V, where the
weight matrix is nonnegative. Accordingly, the Taylor
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series expansion of e“""(because e isa constant, its in-
fluence is temporarily ignored for the convenience of de-
scription and simplification of the derivation process) in
Eq. (4) can be obtained as
T 2 T 3
ak r, (4 k)" (q.k) _
e =1+q,k + o1 T ap teem
T
1+qk, (7)

If ql.Tij -1, the left-hand side of Eq. (7) is guaran-
teed to be nonnegative. Moreover, the smaller qI.Tkj is,
the closer the left and right sides of Eq. (7) are. There-
fore, we can set sim(q;, k;) =1 +q,.Tkj, and /, normaliza-
tion is performed for ¢, and k; as follows:

s k) =1+ (0 )( || : oo

Therefore, the inequality sim(g,, k;) =0 always holds.
Based on the previous conclusion, TLA is equivalent to
using 1 + q:ikej to weigh v;, where ¢, and k, represent the
normalized column vectors of query and key, respective-
ly. Eq. (4) can be equivalently written as

N

D (1 +q.k,)v,
S, =5 (9)

i N
Y (1 +q.k,)
Jj=1

Eq. (9) can be rewritten as

N
> (v, +q.kyv)
— J=

S, =" (10)
2 (1 +q.k,)
=1
Eq. (10) may be further simplified to
N N
Yoy + 2 q.k v,
s, = 1T (11)

On the basis of the associative property of matrix multi-
plication, i.e., (QK")V =Q(K'V), Eq. (11) can be
further simplified to

N N
T T
Z v, +4q. Z kv,
_ = =
- N

N + q:’ Z kej
i=1

S,

i

(12)

For Eq. (4), QK" should be computed first when compu-
ting softmax, and the time complexity of SDPA is
O(N*d), which is approximately O( N*) in terms of N>
d. For Eq. (12), according to the associative property of
matrix multiplication, K'V can first be computed and
then used to multiply @, so the complexity is O(Nd"),
which is approximately O(N) when N>>d’. Moreover,

N

2 k,; obtained from Eq. (12) can be reused to decrease
Jj=1

the memory footprint.

2 Model Structure
The TLM structure is shown in Fig. 2.

Outputs

Norm & add

Feed-forward layer
Norm & add

Multihead attention

n

Inputs

Fig.2 Model structure

In the position encoding layer, because the expression
of speech emotion is related to the position of emotional
stimulation, and the model completely adopts the atten-
tion mechanism, it cannot learn the positional relationship
among features, which means that input features need to
be encoded additionally as follows:

P (13)

. p
(p2i) — Sm( 10 OOOZi/d)

P = cos( (14)

P

(p,2i+1) 10 OOOzi/d)
where the shape of the original input vector is (N, d); p e
[0, N) represents the p-th frame of inputs; i [0, d/2 -
1], 2i and 2i + 1 represent the even and odd dimensions of
the current inputs, respectively. The position encoding
vector retains the same shape as the original inputs, which
are then concatenated with the audio feature vector in the
feature dimension to generate the input vector of subse-
quent network layers with the shape of (N, 2d).

Then, the TLA unit is adopted in the MHA layer.
Considering that MHAs at different levels in BERT repre-
sent different functions, the bottom layer is usually more
focused on grammar, while the top layer is more focused
on semantics. Therefore, in this paper, multi-layer MHA
is also adopted to learn different levels of speech emotion
representation.

The feed-forward layer is composed of two linear trans-
formations, and the calculation process is shown as

F(x) =GELU(xW, +b,)W, +b,

GELU(x) =0. Sx{l + tanh /%(x +0.044 715%°) ]}
(16)

(15)

where x is the input to the current layer; and W,, b,(i =
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1,2) denote the weights and biases to be trained in the ments is calculated as follows:
i-th dense layer. The Gaussian error linear unit ( GE- r o= (ryw) “*min(s ™, sw ") (19)

LU) """ is adopted as the activation function to randomly
regularize the input vector and match it with a random
weight according to the size of the input.

As for the connection between layers, a residual con-
nection is adopted, and the final output of the sublayer is
normalized by

O = BatchNorm[ x + Sublayer(x) ] (17)

where x is the input of the sublayer; Sublayer(-) denotes
the implementation function of the sublayer. To facilitate
the connection of residuals, the input and output of each
sublayer remain the same dimension.

Finally, the predicted label is output from a fully con-
nected layer through the softmax activation function.

To prevent overfitting, two regularization methods are
used. One method is to use dropout before the final out-
put of all sublayers and the dropout ratio P, =0. 1. The
other method is to adopt label smoothing, and all one-hot
encoded label vectors are smoothed by

L'=(l-¢L+<

N (18)

where L is in the form of one-hot encoding; L' represents
the label after smoothing; N is the number of one-hot en-
coding states; and € =0. 1.

The Adam optimizer is adopted in the training process.
Moreover, the warmup learning rate'*! used in the experi-

where r, is the initial learning rate; r, is the learning rate
at current training step s; and w denotes the warmup
step. When the current step is less than w, the learning
rate increases linearly; on the contrary, the learning rate
decreases proportionally with the inverse square root of
the number of steps. All parameter settings of the model
are shown in Tab. 1.

Tab.1 Model parameters

Parameters Value Parameters Value
LFBE frames 300 ||Hidden layers’ activation =~ GELU
LFBE features 64  ||Output activation Softmax
Input sequence length 300 ||Batch size 32
Position encoding size 64 ||Epoch 500
Number of MHA layers 6 Dropout 0.1
Number of heads 8 Optimizer Adam
Size per head 16  ||Initial learning rate 0.001
Feed-forward layers 6 Warmup step 1 000
Feed-forward size 512

3 Experiments
3.1 Datasets

The experiments are performed on EmoDB'"”" and UR-
py'd
2. Four emotions, anger, happiness, neutral, and sad-
ness, are selected in the experiment.

The information of each dataset is shown in Tab.

Tab.2 Dataset information

Dataset Language Size Emotions Type
EmoDB!! German 535 Anger, boredom, disgust, fear, happiness, sadness, neutral Acted
URDU!!¢! URDU 400 Anger, happy, neutral, sad Natural

3.2 Preprocessing

All data samples were resampled with 16 kHz, with a
pre-emphasis coefficient of 0. 97. Each file was divided
into frames of 25-ms width with a stride of 10 ms. Any
audio file longer than 300 frames was truncated to 300
frames, while files shorter than 300 frames were padded
with zeros, where 300 was regarded as the sequence
length. Log Mel-filter bank energies (LFBE) were then
subsequently calculated for each frame with the number of
filter banks set to 64. Each dataset was divided into a
and test set at a ratio of

training set, validation set,

8:1:1.
4 Results

4.1 Effect of the number of heads on performance

In most of the MHA models, such as BERT, the fea-
ture representation sizes ( word embedding) are approxi-
mately 300-1 024 so that the number of heads is empiri-
cally set from 12 to 16'""". Considering that our feature
dimension is 128, we tried 2, 4, 8, 16, and 32 (factors

of 128) to study the effect of the number of heads in
MHA on the performance of speech emotion recognition,
as shown in Fig. 3. In this experiment, the head number
was the only variable, and other parameters remained the
same as listed in Tab. 1.

100
2 80k
2 |
= 60 -+-URDU
-—EmoDB

4 8 12 16 20 24 28 32
Number of heads

Fig.3 Effect of the number of heads on the performance of
emotion recognition

Fig.3 shows that the number of heads does not have a
significant effect on the performance of emotion recogni-
tion. Because of the redundancy of the attention mecha-
nism, even if the attention head is calculated independent-
ly, there is a high probability that the emotional informa-
tion paid attention to is consistent. Notably, UAR in-
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crease with the number of heads on URDU and EmoDB,
indicating that more attention can be paid to the local e-
motional information from those relative outlier attention
heads with the increase in the number of heads so that the
model is further optimized. However, when the number
of heads reaches 8, UAR is almost unchanged or even
slightly decreased, indicating that after the number of
heads increases to a certain number, the expression ability
of emotional information brought by multiple subspaces is
enhanced to reach the upper bound. The increase in the
number of heads may lead to an excessively scattered dis-
tribution of emotional information in the feature sub-
space, which results in a decline in the emotion recogni-
tion performance of the model. Therefore, appropriate
head cardinality should be selected in the experiment not
only to ensure the occurrence probability of outlier heads
to learn more subtle emotion expression but also to pre-
vent the distribution of emotional information from being
too discrete to reduce the recognition performance. In this
paper, the number of heads is set to eight in the subse-
quent experiments.

4.2 Effect of position embedding type on performance

In Transformer, a word vector is added to a positional
encoding vector to embed positional information, which
may not be applicable in speech emotion recognition.
Therefore, we selected two embedding methods, named
add and concatenation, to study the influence of embed-
ding type on the recognition performance. Other parame-
ters were kept consistent with those shown in Tab. 1.

Fig. 4 shows the UAR curve on the test set during the
training. It can be intuitively seen that the recognition
performance of the model with feature concatenation is
better than that with feature addition. Moreover, the
UAR of the model using the add method has greater vola-
tility after convergence, reflecting that the Add embed-
ding method causes the model’s emotion recognition per-
formance to be more unstable, which infers that directly
adding or subtracting the position encoding vector to the
input speech feature may result in invalidation of the posi-
tion information embedding and even loss of the original

100
80
<
—40
---- Concatenation-EmoDB
== Add-EmoDB
20 - —Concatenation-URDU
--- Add-URDU
O 1 1 1 1 1 ]
0 500 1000 1500 2000 2500
Steps

Fig.4 Effect of embedding type for position encoding vectors
on the test set

emotional information. Consequently, using Concatena-
tion on the TLM increases the robustness and improves
the recognition performance to varying degrees.

4.3 Emotion recognition performance

To verify the speech emotion recognition performance
of the proposed method, we chose the TLM with the SD-

PA unit as the baseline!"”

, where eight heads and the
concatenation method were adopted, and other parameters
were consistent with those in Tab. 1. Additionally, we al-
so chose some classical models for further comparison,
such as the support vector machine (SVM)'® and Res-
Net'”', which represent the traditional machine learning
method and prevailing CNN framework, respectively.
Each model adopted the same input as described in Sec-
tion 3. The UAR accuracy results on each dataset are

shown in Tab. 3.

Tab.3 Recognition accuracy of different models on different

emotion categories %
Recognition accuracy
Datasets Model UAR
Anger Neutral Happy Sad

SvMm!! 64.3 100.0 14.3 85.7  66.1
ResNet-50t""!  100.0  50.0 21.4 92.3  65.9

EmoDB .
Baseline 8.7 71.4 71.4 8.7 78.6
Proposed 71.4 71.4  71.4 85.7 74.9
SvMms! 80.0 8.0 80.0 70.0 77.5
ResNet-50t”7  90.0  60.0 80.0 40.0 60.0

URDU .
Baseline 90.0 80.0 80.0 90.0 85.0
Proposed 80.0 80.0 70.0 90.0 80.0

The Transformer-like model outperforms SVM and
ResNet-50, signifying that the TLM is more suitable in
the field of speech. Compared with the baseline, the
emotion recognition performance using TLA is not signif-
icantly different from that of SDPA on the whole, which
indicates the effectiveness of the attention unit algorithm
proposed in this paper.

4.4 Model complexity

The change in the UAR with step number and time af-
ter iterating 3 000 steps on the baseline and proposed
model are shown in Figs. 5 and 6, respectively, under the
parameter settings shown in Tab. 1. As can be seen, the
proposed TLA algorithm and the SDPA algorithm perform
similarly at emotion recognition, but the proposed TLA
algorithm is far lower than the baseline SDPA algorithm
in training time cost, indicating that TLA has lower time
complexity.

To further compare the complexity of the proposed
TLA,
trained on EmoDB. The lengths of the input sequence
(LFBE frames) were chosen as 256, 512, 768,
1 024. The processor used in the experiment was Inter ©
Core(TM) 17-8700 CPU @ 3. 20 GHz, the GPU was
NVIDIA Geforce RTX 2080Ti, and the memory size was

four groups of Transformer-like models were

and
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Fig.5 UAR comparison between the baseline and proposed
models within 3 000 steps
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Fig.6 UAR comparison between the time use of the baseline
and proposed models within 3 000 steps

16.0 GB. To avoid the overflow of memory errors, the
batch size was selected as eight for training. The other
parameters were kept consistent with Tab. 1, and each
model was iterated for 1 500 steps.

The training time of the model as the length of input
sequence increases is shown in Fig. 7 when iterating the
same steps, where the time of the baseline approximately
conforms to the square distribution, while that of the pro-
posed TLM roughly meets the linear distribution. The
proposed TLM obviously has linear time complexity re-
garding the input sequence length. Regarding the memory
usage, as shown in Fig. 8, the memory footprint of TLM
is much smaller than that of the baseline. In addition,
when the input feature length is 768, the memory usage

400 - Proposed A
350 L% Baseline 2

300 '
©250 -
E200f
150 [
100

50 1 1 J
512 768 1024
Sequence length

C1
256

Fig.7 Comparison between the time use of the baseline and
proposed methods with different sequence lengths

has reached the upper limit of available memory so that
although the number of input feature frames increases in
subsequent experiments theoretically, the actual memory
usage of the model remains unchanged. Similar to the
time consumption distribution, the memory use of the
baseline approximately conforms to a square distribution,
while the memory occupation of the TLM roughly satis-
fies a linear distribution, indicating that the proposed
model has a linear space complexity in terms of the se-
quence length.

9 -
g —*Proposed A o
~&-Baseline
7 -
m -
o 6
25
=]
2
23r
=¥
O2F
1F
1 1 1 J
256 512 768 1024

Sequence length

Fig.8 Comparison between the GPU memory use of the base-
line and proposed methods with different sequence lengths

5 Conclusions

1) The best performance of MHA is found with eight
heads, indicating a certain limit on the recognition accu-
racy brought by the number of heads.

2) For the attention computing unit, the proposed TLA
algorithm not only has similar emotion recognition per-
formance to SDPA but also greatly reduces the time cost
and memory footprint during training by making use of
the Taylor formula and the associative property of matrix
products, leading to linear complexity in time and space.

3) For speech emotion recognition tasks, a novel TLM
is proposed, achieving a final UAR of 74. 9% and
80.0% on EmoDB and URDU, respectively. The experi-
mental results demonstrate that the TLM has certain ad-
vantages in handling ultralong speech sequences and has
bright, practical application prospects due to the greatly
reduced demand for computing power.
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