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Abstract: To reduce NO, emissions of coal-fired power plant
boilers, this study introduced particle swarm optimization
employing opposition-based learning ( OBLPSO) and particle
swarm optimization employing generalized opposition-based
learning ( GOBLPSO) to a low NO, combustion optimization
Thermal adjustment tests different ground

area. under

conditions, variable oxygen conditions, variable operation
modes of coal pulverizer conditions, and variable first air
pressure conditions were carried out on a 660 MW boiler to
obtain samples of combustion optimization. The adaptability
of PSO, differential evolution algorithm ( DE), OBLPSO,
and GOBLPSO was compared and analyzed. Results of 51
times independently optimized experiments show that PSO is
better than DE, while the performance of the GOBLPSO
algorithm is generally better than that of the PSO and
OBLPSO. The median-optimized NO, emission by GOBLPSO
is up to 15. 8 mg/m’ lower than that obtained by PSO. The
generalized opposition-based learning can effectively utilize
the information of the current search space and enhance the
adaptability of PSO to the low NO, combustion optimization of
the studied boiler.
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Thermal power remains an important power source
around the world. NO_ emissions emitted from pow-
er plants have been troubling human beings for a long
time.

As a simple, effective,

combustion optimization can cut down NO, emissions
-3

and cheap technology,

through organizing coal combustion in furnaces

For in-service boilers, NO,_ emissions are influenced by
operating parameters like oxygen and wind valve open-
ings. The optimization of these parameters based on arti-
ficial intelligence can provide satisfactory operation strate-
gies. Many researchers'” have improved the NO, predic-

Received 2021-02-16, Revised 2021-07-10.

Biography: Li Qingwei( 1987—), male, doctor, lecturer, ligingweish
@163. com.

Foundation item: The Shanghai Sailing Program (No. 18YF1409000).
Citation: Li Qingwei, Liu Zhi, He Qifeng. Comparative study of low
NO, combustion optimization of a coal-fired utility boiler based on OBL-
PSO and GOBLPSO[ J]. Journal of Southeast University ( English Edi-
tion) , 2021, 37(3):285 —289. DOI: 10. 3969/j. issn. 1003 —7985.2021.
03.008.

tion model, providing the basis for low NO,k combustion
optimization. Optimization algorithms like differential
evolution'”, vortex search!”, genetic algorithmm, and
particle swarm optimization™ have been employed to op-
timize operating parameters to cut down NO, emissions.
Inspired by the birds flocking, Kennedy et al. """ pro-
posed particle swarm optimization (PSO) in 1995. PSO
is famous for its simplicity and effectiveness. However,
it is troubled with the premature and convergence prob-
lems. To overcome this disadvantage, researchers have
been devoted to improvements in aspects of parameter
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multi-
, and algorithm hybridizations

Opposition-based learning ( OBL) strategy evaluates
the original solution and its opposite solution simultane-
ously'"". A better solution is retained based on a greedy
strategy. OBL has been introduced into PSO to enhance
performance' "™ . However, these OBL based algorithms
could not make full use of the obtained information. To
utilize the shrunken search space, Wang et al.'” en-
hanced the PSO using generalized opposition-based learn-
ing (GOBL) characterized by dynamically updated inter-
val boundaries.

To the best of the authors’ knowledge, PSO based on
OBL and PSO based on GOBL have not been studied in
the low NO, combustion optimization area. This paper
studied the adaptability of these two algorithms to the low
NO, combustion optimization systematically.

1 Optimization Algorithms

1.1 Particle swarm optimization

In the PSO algorithm, N particles are initialized to
form a population in the D-dimensional search space.
Each particle has a position vector and a velocity vector,
which can be expressed as {x,, x,, ..., x,,} and {v,,
Vo, ... V), respectively. The fitness of each particle
can be evaluated by an objective function. In each opti-
mization iteration, each particle records its best position,
which is called the historically best position P,. The best
position among all the particles in the population is called
the global best position P,. All particles update their po-
sitions and speeds under the guidance of the best position
and global best position as

vi=wv, +cr(p;-x) +c,r,(p, - X)) (1)
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X =xl v (2)

i

where v! and x| are the velocity vector and position vector
of the i-th particle in the tth generation;  is the inertia
weight, which can balance the capabilities of exploration
and exploitation; ¢,, c, are acceleration factors; r, and r,
are random numbers in [0, 1]; and 7 is the iteration num-
ber.

1.2 Particle swarm optimization employing an oppo-
sition-based learning

To study the adaptability of PSO employing OBL to the
low NO, combustion optimization, only the opposition-
% is introduced to enhance the PSO with-
out other improvements. This is named OBLPSO. In
each iteration, each particle generates an opposite particle
based on OBL and its current position with a certain prob-

ability as

based learning

X, =a;+b, -x (3)

where a; and b, are the low limit and up limit in the jth di-

mension and x;” is the opposite point of particle i in the

tth generation. If x;” is better than x;, x; will be replaced

by x;".

1.3 Particle swarm optimization employing a gener-
alized opposition-based learning

GOBL is an improved version of OBL!', which can
utilize the knowledge of the current converged search
space. To study the adaptability of PSO employing
GOBL to the low NO, combustion optimization, only the
GOBL is introduced to enhance PSO with a certain proba-
bility, which is named GOBLPSO. The generalized op-
position of the jth dimension of x, can be calculated as be-
low.

X =kla(n) +b(n] -x, (4)

where a,(¢) and b,(¢) are the minimum and maximum
values of the jth dimension in the current population, re-
spectively, and k, is a random number in (0, 1). If xf is
better than x;, x; will be replaced by x;".

2 Combustion Optimization Based on OBLPSO
and GOBLPSO

2.1 NO, emission prediction based on extreme learn-

ing machine

For a given boiler, the NO_ emission is generally influ-
enced by operating parameters like oxygen in the flue
gas, over-fire air valve openings, and the rotating speeds
of the dynamic separator of the coal pulverizer. These pa-
rameters are taken as inputs of the NO,_ emission predic-
tion model.

Prediction models of NO, emissions and efficiencies

were both established based on the extreme learning ma-
chine (ELM)"". Differential evolution ( DE) was em-
ployed to optimize input weights and hidden layer thresh-
olds to enhance performances'™”
zation method and leave-one-out cross validation were al-
so employed.

. Moreover, the normali-

2.2 Combustion optimization based on OBLPSO and
GOBLPSO

NO, emissions at the inlet of selective catalytic reduc-
tion equipment are influenced by operating parameters
like oxygen, over-fire air valve openings, and secondary
air valve openings. The optimization of these parameters
can cut down NO, emissions effectively and reduce the
operation cost of the selective catalytic reduction equip-
ment. For the studied boiler, the secondary air valve o-
penings are controlled automatically. Four corner open-
ings of each over-fire air layer are different. These over-
fire air valve openings and oxygen are optimized by the
OBLPSO and GOBLPSO to reduce NO, emissions. Each
particle represents a set of operation parameters. The cor-
responding NO,_ emission at the inlet of the selective cata-
lytic reduction equipment is taken as the fitness of each
particle. When the operating parameters are optimized to
reduce NO, emissions, corresponding efficiencies are kept
no lower than the original efficiencies.

3 Field Test

The thermal adjustment test on a 660 MW boiler was
carried out. The studied boiler is characterized by tangen-
tial combustion, 7 type, single furnace, balanced venti-
lation, and solid slagging. Each burner has 6 layers of
pulverized coal nozzles, 14 layers of secondary air, and 4
layers of over-fire air. The secondary air valve openings
are controlled automatically. Openings of the over - fire
air in each corner are different from each other. During
each case, the coal quality was kept the same and the ele-
ment analysis was analyzed. There are 18 cases in the
thermal adjustment test,
variable oxygen conditions, the variable operation mode
of coal pulverizer conditions, variable first air pressure
conditions, and variable rotating speeds of the dynamic
separator of coal pulverizer conditions.

including ground conditions,

4 Results and Discussion
4.1 Related parameters

For PSO, OBLPSO, and GOBLPSO, the inertia weight
acceleration factors were set as 0.8, 2.5, and 2.0, re-
spectively. The particle number is 30 and the maximum
iteration number is 50. The DE algorithm was employed
as the comparison algorithm'?™'. The number of DE pa-
rameter vectors is 30. The mutation and the crossover
constants are 0. 75 and 0. 25, respectively. Each algo-
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rithm is tested 51 times independently for each case.
4.2 Related results and discussion

Fig. 1 shows the NO_ emissions and efficiencies pre-
dicted by ELM. Predicted results are very close to the
original values. For the training samples and test samples
of NO, emissions, the root-mean-square errors are
5.256 5 and 6.608 2 mg/m’, respectively. For the effi-
ciencies of the training samples and test samples, the
root-mean-square errors are 1.29 x 10 “and 1.34 x107*,
respectively. The approximation capability and generali-
zation ability are both satisfactory.

B —+—Original NO,
"‘é o- Predicted NO,
« 360
en
£
§ 3201
E
© 280t
o
Z
2l 6 o 14 18
Case
(a)
93.5-
93.3-
g
>
E 93.1+
Q
E
m 92.9F ——Original efficiency |
o-- Predicted efficiency
92.7+
1 1 1
2 6 10 14 18
Case
(b)

Fig. 1
and test samples. (a) NO, emissions; (b) Efficiencies

Predicted results based on ELM for training samples

Fig. 2 shows the minimum-optimized NO, emissions
based on PSO and DE. It can be seen that the minimum-
optimized NO, emissions based on PSO are generally low-
er than that of DE. This phenomenon is most obvious for
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Minimum-optimized NO, emissions based on PSO and

Case 6 and Case 13; i.e., PSO is more adaptable for the
combustion optimization of the studied boiler than DE.

Fig. 3 shows the median-optimized NO, emissions
based on PSO, OBLPSO, and GOBLPSO. Generally,
the median-optimized NO, emissions based on GOBLPSO
are the lowest among the three algorithms. This phenom-
enon is more obvious for Case 7, Case 8, Case 14, and
Case 15. For Case 14, the median NO, emissions opti-
mized by GOBLPSO are up to 15. 8 mg/m’ lower than
the median NO, emissions optimized by PSO. The GOBL
can enhance PSO for the combustion optimization of the
studied boiler effectively.
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Fig. 4 shows the minimum-optimized NO, emissions
based on PSO, OBLPSO, and GOBLPSO. The advan-
tage of GOBLPSO over the other two algorithms is not
too obvious for the minimum-optimized NO, emissions.
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Minimum-optimized NO, emissions based on PSO,

Fig. 5 shows the original efficiencies and minimum-op-
timized efficiencies based on DE, PSO, OBLPSO, and
GOBLPSO. All minimum-optimized efficiencies are not
lower than the original efficiencies. When the operating
parameters are optimized to reduce NO, emissions, the
corresponding efficiencies are kept no lower than the orig-
The optimized results show that this
strategy is effective.

Fig. 6 shows the optimized progress of the median-op-
timized NO, for Case 8 and Case 14. For both cases, the

inal efficiencies.
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algorithms can converge in 20 iterations. GOBLPSO can
provide the lowest median-optimized NO,_ emissions
among the three algorithms.

5 Conclusions

1) The GOBLPSO outperforms the PSO and OBLPSO
in the aspects of median-optimized results. Up to 15. 8
mg/m’ NO, emissions are reduced further by the GOBLP-
SO compared with PSO for the median-optimized NO,
emissions in Case 14.

2)Median-optimized processes of some cases based on
PSO, OBLPSO, and GOBLPSO show that the processes
based on GOBLPSO are satisfactory.

3) GOBL can enhance PSO for the combustion optimi-
zation of the studied boiler effectively.

References

[1] Rahat A A M, Wang C L, Everson R M, et al. Data-
driven multi-objective optimisation of coal-fired boiler
combustion systems [J]. Applied Energy, 2018, 229: 446
—458. DOI: 10.1016/j. apenergy. 2018.07. 101.

[2] Li Q W, Yao G H. Improved coal combustion optimiza-
tion model based on load balance and coal qualities [J].
Energy, 2017, 132: 204 —212. DOI: 10. 1016/j. energy.
2017.05. 068.

[3] Safdarnejad S M, Tuttle J F, Powell K M. Dynamic
modeling and optimization of a coal-fired utility boiler to
forecast and minimize NO, and CO emissions simultane-
ously [J]. Computers and Chemical Engineering, 2019,
124: 62 —-79. DOI: 10.1016/j. compchemeng. 2019. 02.
001.

[4] Tang Z H, Wu X Y, Cao S X. Modeling of the boiler
NO, emission with a data driven algorithm [J]. Journal of
Chemical Engineering of Japan, 2018, 51(8): 695 —
703. DOI: 10.1252/jcej. 17we335.

[5] Tang Z H, Wu X Y, Cao S X, et al. Modeling of the
boiler NO, emission with a data driven algorithm [J].
Journal of Chemical Engineering of Japan, 2018,51(8):
695 —703. DOI: 10.1252/jcej. 17we335.

[6] Zheng L G, Zhang Y G, Yu S J, et al. Use of differenti-
al evolution in low NO, combustion optimization of a
coal-fired boiler [ C]// 2010 Sixth International Confer-
ence on Natural Computation. Yantai, China, 2010:
4395 —4399. DOI: 10. 1109/ICNC. 2010. 5583524.

[7] Li X, Niu P F, Liu J P. Combustion optimization of a
boiler based on the chaos and Lévy flight vortex search al-
gorithm [J]. Applied Mathematical Modelling, 2018, 58:
3-18. DOI: 10.1016/j. apm. 2018. 01. 043.

[8] Ilamathi P, Selladurai V, Balamurugan K, et al. ANN-
GA approach for predictive modeling and optimization of
NO, emission in a tangentially fired boiler [J]. Clean
Technologies and Environmental Policy, 2013, 15: 125 -
131. DOI: 10.1007/s10098-012-0490-5.

[9] Zhou H, Zheng L G, Cen K F. Computational intelli-
gence approach for NO, emissions minimization in a coal-
fired utility boiler [J]. Energy Conversion and Manage-
ment, 2010, 51: 580 —586. DOI: 10. 1016/j. enconman.
2009. 11.002.

[10] Kennedy 1J,
[C1// International Conference on Neural Networks.
Perth, WA, Australia, 1995: 1942 — 1948. DOI: 10.
1109/ICNN. 1995. 488968.

[11] Han H G, Lu W, Hou Y, et al. An adaptive-PSO-based
self-organizing RBF neural network [J]. IEEE Transac-

Eberhart R. Particle swarm optimization

tions on Neural Networks and Learning Systems, 2018,
29 (1): 104 — 117. DOI: 10. 1109/TNNLS. 2016.
2616413.

[12] Jiang F, Xia H'Y, Tran Q A, et al. A new binary hybrid
particle swarm optimization with wavelet mutation [J].
Knowledge-Based Systems, 2017, 130: 90 — 101. DOI:
10. 1016/j. knosys. 2017. 03. 032.

[13] Wang F, Zhang H, Li K S, et al. A hybrid particle
swarm optimization algorithm using adaptive learning
strategy [J]. Information Sciences, 2018, 436 —437: 162



Comparative study of low NO, combustion optimization of a coal-fired utility boiler based on OBLPSO and. . . 289

—177. DOI: 10.1016/j. ins. 2018.01. 027. gress on Evolutionary Computation. Singapore, 2007:

[14] Xia X W, Gui L, Zhan Z H. A multi-swarm particle 4750 —4756. DOI: 10.1109/CEC. 2007. 4425095.
swarm optimization algorithm based on dynamical topolo-  [19] Wang H, Wu Z J, Rahnamayan S, et al. Enhancing par-
gy and purposeful detecting [J]. Applied Soft Computing, ticle swarm optimization using generalized opposition-
2018, 67: 126 — 140. DOI: 10. 1016/j. asoc. 2018. 02. based learning [J]. Information Sciences, 2011, 181:
042. 4699 —4714. DOI: 10.1016/j. ins. 2011. 03. 016.

[15] Liu Z, Qin Z W, Zhu P, et al. An adaptive switchover [20] Tizhoosh H R. Opposition-based learning: A new scheme
hybrid particle swarm optimization algorithm with local for machine intelligence [ C]// Proceedings of Interna-
search strategy for constrained optimization problems [J]. tional Conference on Computational Intelligence for Mod-
Engineering Applications of Artificial Intelligence, 2020, eling Control and Automation. Vienna, Austria, 2005:
95: 103771. DOI: 10.1016/j. engappai. 2020. 103771. 695 -701. DOI: 10.1109/CIMCA. 2005. 1631345.

[16] Rahnamayan S, Tizhoosh H R, Salama M M A. Opposi- [21] Huang G B, Zhu Q Y, Siew C K. Extreme learning ma-
tion-based differential evolution [J]. [IEEE Transactions chine: Theory and applications [J]. Neurocomputing,
on Evolutionary Computation, 2008, 12(1): 64 —79. 2006, 70: 489 —501. DOI: 10. 1016/j. neucom. 2005.
DOI: 10.1109/TEVC. 2007. 894200. 12.126.

[17] Lin H, He X. A novel opposition-based particle swarm  [22] Storn R, Price K. Differential evolution—a simple and ef-
optimization for noisy problems [ C]// Proceedings of In- ficient heuristic for global optimization over continuous
ternational Conference on Natural Computation. Haikou, spaces [J]. Journal of Global Optimization, 1997, 11:
China, 2007: 624 — 629. DOI: 10. 1109/ICNC. 2007. 341 -359. DOI: 10.1023/A:1008202821328.

119. [23] Bao Z Y, Yu ] Z. Intelligent optimization algorithm and

[18] Wang H, Li H, Liu Y, et al. Opposition-based particle its MATLAB example [ M]. Beijing: Publishing House of
swarm algorithm with cauchy mutation [ C]// IEEE Con- Electronics Industry, 2016:39 —42. (in Chinese)

T ) 4 1 5 kP IK L BR R 14 B9 OBLPSO &%
1 GOBLPSO & % b &

(Lifb A R F AR 5 A TS, E# 200090)

FEE ok —F AR & 3548 17 69 NO, HEAX &, 4K R AL AL F FI N A8 R 5 T 45 F % F 7% (OBLPSO)
Fa - SUAR 5] 5 F B 5 (GOBLPSO). f£ 3 660 MW JKIEMZA45 P P HAFTHEIAL TR ST LA T
JEVEMAZIE 77 X T B R R T U5 BRBe 8 B 38, 1R 30t b ey B R Bt m sb B 4 T B F AR 5L 0k
(PSO) A7/ £ 4340 H 3% (DE) ,OBLPSO % #» GOBLPSO H ik #9i& g M. 51 kiks & 5 ALK LR
%90 :PSO H ik aetk T DE H %, GOBLPSO J ik 7t ¥ 4k £ T PSO H 7% 4= OBLPSO # i%. GOBLPSO
Fk Ay NO, Heak & P12 404k PSO Sk 3% % 714K 15.8 mg/m’. ™ SUARR 3 5T 468 2 A R % a7 3 & 2 )
#9158, 3 T B AR RO B RAL P 69 18 R

FEEER) NO HEA MRIRRAL ; B F BEAEAL AR F T 5 7 AR F T

HE 425 : TK323



