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Abstract: Aiming at the poor performance of speech signal
detection at low signal-to-noise ratio ( SNR), a method is
proposed to detect active speech frames based on multi-
window time-frequency ( T-F) diagrams. First, the T-F
diagram of the signal is calculated based on a multi-window
T-F analysis, and a speech test statistic is constructed based on
the characteristic difference between the signal and background
noise. Second, the dynamic double-threshold processing is
used for preliminary detection, and then the global double-
threshold value is obtained using K-means clustering. Finally,
the detection results are obtained by sequential decision. The
experimental results show that the overall performance of the
method is better than that of traditional methods under various
SNR conditions and background noises. This method also has
the advantages of low complexity, strong robustness, and
adaptability to multi-national languages.
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he purpose of voice activity detection ( VAD) is to

detect whether the current acoustic signal contains a
voice signal and identify voice segments in it. VAD dis-
tinguishes voice signals from various background noise
signals for subsequent processing. VAD can be applied
on many occasions, such as speech recognition sys-
tem'™'; signal noise reduction and speech enhance-
ment” ™, speech signal extraction and recognition in an
interference environment'”', acoustic scene analysis'®,
and data preprocessing of speech database sample con-
Because acoustic signals are changeable and
complex, it is difficult to find stable features for effective
detection, especially under the condition of a low signal-
to-noise ratio (SNR).

struction'”
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In recent years, research in the fields of acoustic signal
feature extraction and detector design has been extended
to improve the performance of VAD. The feature extrac-
tion of speech signals has been deeply studied. The fea-
tures of speech signals are usually extracted in the time-
frequency ( T-F) domain, including short-time energy
with a zero-crossing rate™ higher-order statistics'’, and

. 10
autocorrelation'” .

More refined features are proposed
based on these frequency features, such as Mel-frequency
cepstral coefficients'''"*'. Ref. [ 13] proposed a wavelet
subband-based VAD algorithm. Refs. [14 —15] proposed
long-term spectral variability ( LTSV) and multi-band
LTSV as features for VAD. In addition, other methods
have been proposed to extract features, including multi-
resolution cochleagram'® and single-frequency filtering
(SFF)"™  As for classifier design, some innovations
have been proposed based on the statistical data of speech

19 . .
17 Supervised learning systems, such as sup-
201

and noise

vector machines and neural network

rithms™",
methods using labeled training data. Ref. [19] proposed a

semi-supervised learning method that uses a noise model

port algo-

can improve the performance of statistical

derived from training data in the initialization process.
Ref. [22] pointed out that it is better to use unsupervised
classification without training data in the practical applica-
tions of VAD. Although new techniques, such as neural
2 and deep neural networks'™™ ", are introduced
into the classification system and usually have good results
in the pre-specified noise conditions and corpus, the per-

networks

formance cannot be guaranteed when the environmental
noise changes and new speech signals appear. Meanwhile,
the performance greatly depends on its parameter values
and hyperparameter (e. g., number of layers, number of
neurons, and coefficient values) settings[zsfzﬁl.

Therefore, VAD applications still need a simple and ef-
ficient method. According to the above research, most
speech signal detection features are constructed in the T-F
domain. T-F features have been proven effective, but tra-
ditional T-F feature extraction methods have some prob-
lems, such as insensitivity to speech, poor resolution,
and poor adaptability to different environmental noise'"”
To improve the detection ability of the signal envelope
and harmonic structure, based on the traditional T-F anal-
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ysis, a multi-window spectrum analysis method based on
Hamming windows was designed to improve the signal
resolution in the T-F domain. Based on the T-F diagram,
envelope detection statistics are constructed, and a sec-
ondary detection framework is designed to realize VAD.

1 Feature Extraction of Speech Signals

Generally, formants are important features of speech
signals. In the vowels excited by the human vocal cords,
the sound energy is highly concentrated in specific spec-
tral bands, thus forming spectral peaks. At a low SNR,
the characteristics of energy aggregation in the frequency
domain are still good detection features for vowels.

To transform the signal from the time domain to the T-F
domain, short-time Fourier transform ( STFT) is the most
commonly used method. The traditional STFT processing
has some shortcomings in detecting time-varying features.
In this section, the traditional STFT will be improved to
enhance the T-F analysis capability for speech signals.

1.1 Time-frequency transform of signals

For signal x(¢) and time window w(¢), the STFT is
defined as

STFT(t,f) = f [x(r)w" (r =0]e™dr (1)

The time window w(#) has a decisive influence on the
T-F resolution of the STFT analysis. To obtain the high-
resolution energy distribution, it is necessary to find a
window with good energy concentration in the T-F plane.
This energy concentration is constrained by the Heisen-
berg-Gabor uncertainty principle, which states that for a
given signal, the product of its time width and bandwidth
is a constant.

Time width A, and frequency width A, are parameters
used to describe the energy concentration characteristics of
a window. It is not easy to analytically calculate the cor-
responding A, and A, for various windows commonly used
in digital signal processing. For the convenience of calcu-
lation, the effective time width A, of a signal can be de-
fined as the time from the signal center as the symmetry
center to both sides until it contains 80% of the energy ar-
ea, so is the effective frequency width A,. The analysis
results of the different windows are shown in Tab. 1.

Tab.1 Performance of various windows

Window function A/s Ay/Hz AA,/(s - Hz)
Rectangular 1 1.14 1.140
Hanning 0.380 1.52 0.578
Hamming 0.404 1.26 0.549
Blackman 0.430 1.42 0.611
Gaussian (a=1) 1.794 0.32 0.574
Gaussian (a =5) 0.812 0.66 0.536
Gaussian* (a=1) 1 1.08 1.080
Gaussian * (a =5) 1 1.12 1.120

Note: = refers to truncated Gaussian.

The following conclusions can be drawn from Tab. 1
1) Although the time-bandwidth product of the Gaussian
window can reach the minimum value, the time-band-
width product of truncated Gaussian windows in practice
is much larger than that of ideal Gaussian windows.
2) Hanning, Hamming, and Blackman windows have
similar performance. Among these windows, the Ham-
ming window has the minimum time-bandwidth product,
which means that the Hamming window has the best ener-
gy concentration characteristics in practical applications.

The resolution of the traditional STFT is fixed. The
multi-window spectrum analysis (MWSA) is an effective
method used to improve the adaptability of the T-F trans-
forms to various time-varying signals in the T-F domain.
MWSA is an extension of windowed spectrum analysis
methods, which multiplies signals by a set of window se-
quences with different time widths. The MWSA produces
several spectra, each with a different T-F resolution. For
each point in the T-F domain, the best spectrum from the
whole spectrum set can be chosen, or several spectra can
be combined into one spectrum to get a better estimation
of the signal in the T-F domain. In MWSA, the DFT of
each data frame is replaced by the following formula.

N/2-1

S x(n)h(n)e (2)

n=-N/2

P(k) = Za[

where H is the number of window functions; N is the
number of signal points, and N takes the even number;
h,(n) is the i-th window function. The selection of
h,(n) is quite flexible. In this study, to achieve the ob-
servation of multiple T-F resolutions and to make the data
used in multiple windows align in the time domain, a
group of windows is constructed based on the Hamming
window. The formula of &,(n) is as follows;

0.54 —0.46005(M)

N/i-1
h(n) = N_ N_N (3)
) =n ; < 2
0 otherwise

where «; is the weighted coefficient for each window
function used to reduce the influence of different lengths
of h,(n).

N/2-1

AT

_ n= N2
a; = g Ve

> hi(n)

n=-N/2

=12, H (4)

From Egs. (2) to (4), the spectrum estimation of a
single frame signal can be obtained. In this study, the
weighted average result is selected as the final spectrum,
which has less noise fluctuation and good adaptability of
time-varying signals. Hence, the MW_STFT transforma-
tion is defined as
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MW_STFT(n,k) =
H n+N/2-1
2
i=1

Z x(m)h,(m — n)esz#k
m=n-N/2

Considering the time variation of speech signals, the
MW _STFT with three windows is selected. The time
lengths of the window functions A4, to h, are 16, 64, and
512 ms. Fig. 1 shows the T-F diagrams of a speech signal
(SNR = -6 dB) by the STFT with different window
lengths and by MW_STFT. Compared with the traditional
STFT, the harmonic structure of vowel signals is clearer,

(5)

and the fluctuation of the background noise is smaller in
the T-F diagram obtained by MW_STFT processing. The
speech signal can also be identified easily from the T-F
diagram by MW_STFT.
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Fig.1 The T-F diagram of speech signal (SNR = -6 dB) by
windows with different lengths and MW_STFT. (a) STFT by #,
(T=16 ms); (b) STFT by h,(T=64 ms); (¢) STFT by h, (T =512
ms); (d) MW_STFT

1.2 Construction of speech features

Usually, noise signals are colored. If energy is directly
used as the test statistic, then it is often difficult to find
speech from the signal due to the strong noise at low fre-
quencies. In the T-F diagram of the signal, noise pro-
vides a floor envelope at each frequency. To compensate
for the influence of the noise intensity, the floor value is
used to calculate the weight value at each frequency. For
MW_STFT(n,k) , the reciprocal u, of the mean value of
the lower 15% data of the envelope value at each fre-
quency index k is calculated. These u, are used to calcu-
late the normalized weight values of each frequency. The
choice of 15% is based on the assumption that there is at
least 15% silence in speech. The weight of each frequen-
cy is given by

w, (k) =

P

i=1

(6)

where K is the number of channels. The window length
of the MW_STFT analysis for 16 kHz sampled signals is

2 048 points, the corresponding channel number K is
1 025, and the frequency resolution is 7. 8 Hz. Now, the
modified T-F diagram MW_STFT, (n,k) can be obtained
by the weight value w, (k).

MW_STET, (n,k) = MW_STFT(n,k)w, (k) (7)

Using this weighting process, the noise level of each
frequency is adjusted to approach a similar level.

To highlight the components of the speech signal, the
weight of each frequency is calculated again using the
ceiling value. For MW_STFT, (n,k) , the average value
of the top 20% data with higher envelope values on each
frequency k is used to calculate the speech enhancement
weight value. Similarly, the choice of a value of 20% is
based on at least 20% of the phonetic assumptions in the
language. The normalized enhancement weight and the
modified T-F diagram are given by

w (k) = 2

P

i=1

(8)

MW _STFT, (n,k) = MW_STFT, (n,k)w_(k) (9)

Using this weighting process, the signal components of
each frequency are enhanced. Now, the weighted energy
can be constructed by MW _STFT, (n, k). For speech
signals, the part below the speech frequency band can be
ignored, which means that the signal components signifi-
cantly lower than the speech frequency should not be in-
cluded in the calculation of energy. Considering that the
signal composed of speech and background noise has a
wide dynamic range, the speech test statistics S(n) based
on the weighted energy are defined as

S(n) = lg(l + ;MW_STFTz(n,k) ) (10)

where k, and k, correspond to the indices of the cut-off
frequency, which are set to 8 and 513, respectively, in
this study, corresponding to the frequencies of 60 and 4
kHz. Through a logarithmic operation, the signal with a
large dynamic range can be compressed, which is more
convenient for subsequent detection processing.

2 Framework and Implementation of the Speech
Detection Method

In general speech detection, signals are required to start
with a segment of pure background noise, which is used
to estimate the background noise characteristics of the
whole signal. The performance of this kind of method is
closely related to the selection of the segment of pure
background noise. To automatically adapt to the environ-
mental noise, a secondary processing structure is adopted
in the detection framework, which can efficiently realize
VAD using dynamic double thresholds. The framework of
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the proposed VAD is shown in Fig.2. In the preliminary
detection, there is no guidance of labeled samples. How-
ever, the detection system lacks an understanding of the
overall distribution of data, so it is difficult to select accu-
rate thresholds. Therefore, the high threshold 7| and low
threshold T, are adopted. The initial value of T, and 7, can
be set arbitrarily, such as taking the first value of S(n) in
Eq. (10), because the initial value has little effect on the
results due to the existence of a dynamic update mecha-
nism. The update methods of 7, and 7, are as follows:

leaT,+S(n)(1—a)} (1)

T,=aT, +S(n) (1 —a)

where « is a constant. The parameter « corresponds to the
speed at which the parameter adapts to the change of
noise. The smaller the value of «, the faster the change
and the greater the fluctuation of 7, and T,. In this study,
a=0.95.

First detection

| Initialization |
|

[ Double thresholds detection]

]
Dynamic threshold |

High resolution
time frequency

—{Speech frames/noise frames |~

analysis
‘ Improved thresholds
Feature extraction of K-means clustering
S(n) 5% lower S(n) inl|5% higher S(n)

speech frames [|in noise frames

K-means clustering

Speech detection

Adjusted low

Adjusted high
threshold

threshold

( VADresult )

Fig.2 Block diagram of the proposed VAD

Second detection ‘

After the preliminary detection, we obtained the labels
('speech or non-speech frames) of the data. Then, ac-
cording to the experience, 5% lower features from speech
frames and 5% higher features from non-speech frames
are selected, and K-means clustering is used to obtain
more accurate double thresholds for speech detection.

Sequential detection is used in this study to make the
decision process robust. When the dynamic thresholds T
and 7, are ready, a second detection is performed. The
processing flow is shown in Fig. 3.

3 Experiments and Discussions

In this experiment, the TIMIT test corpus is used for
evaluation. Four kinds of noises, namely, Factoryl, Vol-
vo, white, and babble, are selected from the NOISEX-92
database. Volvo noise has the least interference on speech
signals, and the other three kinds of noise have the greatest

Count
speech
rames

Silence
segment

S(n) of next
frame>T7,

Still in speech Count speech
segment frames

Count speech
frames

[ End of a speech

Prepare_for the ]

segment next frame

Fig.3 Decision process of the proposed method

interference on clean speech signals™’, which are selected
to test the performance of the proposed method in adverse
environments. These noises are added to clean speech sig-
nals to generate degraded speech signals. The range of the
SNR in this study is from -20 dB to 5 dB.

Fig. 4 shows the detection results of the proposed meth-
od on the voice signal in the different noise backgrounds
at SNR =5 dB and - 10 dB. As shown in Fig. 4, when
SNR =5 dB, the proposed method has good results for
various noises. When SNR = - 10 dB, the proposed
method maintains good performance against the Volvo
noise interference and can effectively detect the other
three kinds of noise interference, but the performance sig-
nificantly decreases.

The same evaluation parameters as those in Ref. [ 18 ]
are used for comparison with the SFF method; detection
accuracy, FEC (missed detection rate in front-end clip-
ping) and MSC ( missed detection rate in mid-speech
clipping), OVER ( false alarm rate in carry-over of
voice) , NDS ( percentage of noise detected as speech).
FEC and MSC are true rejections, whereas OVER and
NDS are false acceptance. Tab.2 shows the experimental
results of the proposed method under different kinds of
noises at five SNR levels.

As shown in Tab. 2, with the decrease in the SNR, the
detection accuracy of the proposed method also decreases.
At a high SNR, the detection accuracy under various noise
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Results of the proposed method in different noise backgrounds and SNRs. (a) Volvo noise and SNR =5 dB; (b) Factoryl noise

and SNR =5 dB; (c) White noise and SNR =5 dB; (d) Babble noise and SNR =5 dB; (e) Volvo noise and SNR = - 10 dB; (f) Factoryl noise
and SNR = —10 dB; (g) White noise and SNR = - 10 dB; (h) Babble noise and SNR = — 10 dB

Tab.2 Experimental results of the proposed method under dif-

ferent kinds of noises at five SNR levels %

Noise WK/ Defection Lo \i6c OVER  NDS
dB accurary

5 97.7 0.3 1.3 0.8 0.0

0 98.2 1.3 0.0 0.5 0.0

Volvo -5 96.2 0.3 3.1 0.0 0.0

-10 9.1 0.3 2.8 2.3 0.0

-20 92.8 1.5 1.3 0.0 1.0

5 94.1 1.0 0.8 0.3 1.0

0 92.1 0.5 4.6 2.3 0.5

White -5 89.2 0.5 1.5 3.3 5.4

-10 81.8 2.3 1.0 3.1 11.8

-20 75.9 0.0 0.0 5.1 18.9

5 94.9 1.5 2.3 1.3 0.0

0 87.4 0.5 4.9 5.9 1.3

Factoryl -5 82.8 1.3 0.0 5.4 9.5

-10 72.6 7.4 9.2 3.8 6.7

-20 54.4 2.8 27.9 2.3 10.0

5 94.6 1.5 0.8 1.3 1.5

0 90.8 0.5 2.1 3.6 3.1

Babble -5 78.0 1.5 0.0 9.7 10.8

-10 72.6 1.5 13.1 5.4 8.5

-20 66.7 3.6 5.4 5.4 18.9

backgrounds exceeds 90% . With the decrease in the
SNR, the babble noise and factory noise have the greatest
impact on speech. The detection accuracy under the con-
dition of SNR = -20 dB is 66.67% and 54.36% . Under
the background of the white noise, the detection accuracy
is 75.90% when the SNR is —20 dB. The energy of the
Volvo noise is mainly concentrated in the low frequency
and has little impact on speech components. Under the
condition of — 20 dB SNR, the detection accuracy is
92.82% .

A comparison of the results of the proposed method,
SFF method, and adaptive multi-rate2 ( AMR2) method
under different noise conditions at SNR =5 and - 10 dB
is shown in Tab. 3.

Tab. 3 shows that under the conditions of the Volvo
background noise ( SNR = - 10 dB) and white noise
(SNR =5 dB), the SFF and the proposed method obtain

Tab.3 Comparison of the proposed method, SFF, and AMR2

method under different kinds of noises %
Noise R Method PN pEC MsC OVER  NDS
dB accuracy

MSTFT 72.6 1.5 13.1 5.4 8.5

Babble -10 SFF 67.7 0.1 12.1 0.1 20.0
AMR2 61.7 0.1 13.1 0.1 25.0

MSTFT 94.6 1.5 0.8 1.3 1.5

Babble 5 SFF 93.3 0.0 2.6 0.1 4.0
AMR2 72.4 0.0 0.5 0.1 26.8

MSTFT 72.6 7.4 9.2 3.9 6.7

Factoryl -10 SFF 67.6 0.1 13.5 0.1 18.7
AMR2 58.8 0.1 17.4 0.1 23.6

MSTFT 94.9 1.5 2.3 1.3 0.0

Factoryl 5 SFF 91.7 0.0 1.9 0.1 6.3
AMR2 74.1 0.0 1.4 0.1 24.2

MSTFT 94.1 0.3 2.8 2.3 0.0

Volvo -10 SFF 98.0 0.0 0.5 0.1 1.3
AMR2 95.9 0.0 0.2 0.1 3.6

MSTFT 97.7 0.3 1.3 0.8 0.0

Volvo 5 SFF 96.4 0.0 2.4 0.1 1.0
AMR2 94.4 0.0 0.5 0.1 4.9

MSTFT 81.8 2.3 1.0 3.1 11.8

White -10 SFF 77.6 0.1 21.9 0.0 0.2
AMR2  63.2 0.1 34.3 0.0 2.2

MSTFT 94.1 1.0 0.8 0.3 1.0

White 5 SFF 97.0 0.1 1.8 0.1 1.0
AMR2 87.5 0.1 8.6 0.1 3.7

nearly 95% detection accuracy, but the SFF shows better
performance. Under the two conditions, the speech com-
ponents in the signal are not significantly disturbed, and
various VAD methods can obtain good results. In six of
the eight cases, the proposed method shows advantages.
Particularly, in the low SNR signals with babble, Facto-
ryl, and white noises, the proposed method improves the
accuracy by more than 4% as compared with the other
methods, which shows that the proposed method has bet-
ter performance under the condition of a low SNR.

The proposed algorithm is programmed by MATLAB
2020a and runs on the workstation with an 8-core CPU
(I7 9700K) and 16 GB RAM. It takes an average time



348 Luo Xinwei, Liu Ting, Huang Ming, Xu Xiaogang, Cao Hongli, Bai Xianghua, and Xu Dayong

of 150 ms to process 12 s long data. This processing effi-
ciency is acceptable for general tasks.

To illustrate the adaptability of the proposed method to
different speech signals, speech signals from speech cor-
pora of different languages are selected, including Man-
darin, Arabic, Japanese, Russian, and Portuguese. Four
sentences are randomly selected and spliced into a long
speech signal. The performance is shown in Tab. 4.

Tab.4 Comparison of the accuracy of the proposed method
for different languages under the same conditions as those in the

TIMIT corpus %
Noise Mandarin Arabic  Japan Russian Portuguese
5 98.0 97.7 96.1 95.5 98.0
Volvo 0 96.7 96.1 96.5 95.8 95.7
-5 93.6 94.6 95.0 90.1 95.3
-10 87.2 94.6 96.3 89.5 93.5
5 93.6 97.6 90.2 94.6 92.2
White 92.3 97.1 87.7 92.4 85.4
-5 88.5 96.9 80.9 87.7 78.0
-10 82.1 90.2 75.9 85.8 70.2
5 93.1 96.6 92.8 95.1 90.6
Factoryl 80.5 89.9 82.3 86.4 75.6
-5 74.4 70.2 72.9 73.1 66.4
-10 62.8 64.1 63.9 65.9 53.8
5 93.1 92.5 88.2 91.0 91.0
Babble 0 84.9 75.7 81.0 79.3 80.3
-5 70.8 70.6 72.0 65.1 77.6
-10 63.3 69.3 71.1 61.7 74.9

For the other five languages, the performance of the
proposed method is comparable to that of English speech
detection. The performance is good at a high SNR. More
specifically, when the SNR is 5 dB, the detection accura-
cy is greater than 90% , regardless of the noise and lan-
guage. In this case, the noise has no great influence on
the characteristics of speech. With the decrease in the
SNR, the performance of this method for all languages
decreases. In the environment of —5 dB white noise, the
proposed method maintains a correct detection rate of
more than 80% for all languages, which is acceptable.
Further analysis of the results shows that the detection ac-
curacy of the proposed method is close to or greater than
90% for Mandarin, Arabic, and Russian, and approxi-
mately 80% for Japanese and Portuguese. This result is
attributed to the frequency distribution characteristics of
the different languages.

4 Conclusions

1) The proposed MW_STFT method can obtain a bet-
ter T-F diagram than the traditional STFT through the
multi-window STFT analysis, which is helpful for impro-
ving the detection ability of characteristic signals.

2) The use of the difference between signal and back-
ground noise to construct speech detection statistics can
effectively improve the speech signal detection ability un-
der colored noise.

3) The proposed detection method improves the per-
formance and robustness of the detection system through a
multi-window analysis and dynamic double-threshold pro-
cessing. Experimental results show that the performance
of the proposed method is generally better than that of tra-
ditional methods.
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